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Abstract 

Although significant advances have been made in the molecular mechanisms that influence tongue 

squamous cell carcinoma (TSCC) metastasis, less is known about the association between the 

biomechanical behavior of the TSCC cells and their metastasis. To this goal, atomic force microscope 

(AFM) nanoindentation via the rate-jump method was used to detect the elastic modulus of TSCC 

cells from patients and cell lines with different metastatic potential. We found that TSCC cells with 

higher metastatic potential showed a reduction in elastic modulus as compared to TSCC cells with 

lower metastatic potential; moreover, the decrease in elastic modulus was accompanied by changes in 

epithelial–mesenchymal transition (EMT) and cytoskeleton (F-actin and -tubulin), a smaller nucleus 

size, and a large nucleus/cytoplasm ratio. The present findings demonstrate a close relationship 

between cellular elastic modulus and metastasis of TSCC. Also, the detection of elastic modulus by 

AFM nanoindentation via the rate-jump method can potentially be used as a method to grade the 

metastatic potential of TSCC. 
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Background 

Tongue squamous cell carcinoma (TSCC) is significantly more aggressive than other forms of oral 

squamous cell carcinomas (OSCC), and a propensity for rapid local lymph node (LN) metastasis. 

Improvement in patient survival requires a better understanding of tumor metastasis, which would 

allow aggressive tumors to be detected earlier in the disease process and targeted therapeutic 

interventions to be developed. Our previous studies revealed that the metastasis of TSCC may be 

related to many deregulated genes, such as SOD2, miR-138 and miR-222/221 [1-8]. In these studies 

we found that reductions in miR-138 are correlated with an enhanced metastatic potential and induce 

EMT (epithelial–mesenchymal transition) in TSCC cells. Similar to our studies, most of the current 

research regarding cancer metastasis has focused on biological capabilities such as molecular genetics 

and gene signaling, whereas the mechanical nature of the invasion process of the cancer cells has been 

ignored so far [9]. Indeed, the mechanical properties of living cells are strongly linked to the 

molecular alterations in the progression of cancer. Cumulative studies have revealed that the 

mechanical properties of individual cells (such as elastic and viscous) are important in the cell growth, 

motility and metastasis of cancer [10]. Malignant cancer cells are either less elastic (softer) or less 

viscous (less resistant to flow) than their normal counterparts, and metastatic cancer cells exhibit an 

even lower resistance to deformation than nonmetastatic cancer cells [11-13]. However, very few 

studies have focused on the effect of the elasticity of TSCC cells on their metastasis.  

On the other hand, advances in experimental nano-biomechanics during the past two decades 

have enabled direct, real-time mechanical probing and the manipulation of single cells and molecules 

[10]. Commonly used experimental techniques include nanoindentation [14], micropipette aspiration 

[15] and microfluidic techniques [16]. Among these methods, nanoindentation is the most popular 

because quantitative measurement of the mechanical properties can be made directly without the need 

of carrying out time consuming post-experimental analyses. When nanoindentation is carried out on 

atomic force microscopes (AFM), the Hertzian model is commonly used to analyze the data to 

generate an elastic modulus of the sample [14, 17]. However, since the Hertzian model assumes the 

sample to be purely linear elastic, while the cytoplasm-membrane-cytoskeleton structure of a cell 
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should not behave in a purely linear elastic manner, the Hertzian model is almost definitely a wrong 

description of the cell’s nanoindenation response. In fact in such analyses of experimental data by the 

Hertzian model, the resultant elastic modulus estimates are often found to increase with the loading 

rate [18, 19]. To solve this problem, our group has developed a rate-jump protocol for AFM 

nanoindentation which can produce much more reliable measurement of the elastic modulus of soft 

samples than the Hertzian model. This protocol has been found to yield elastic modulus that is 

independent of the rate-jump magnitude from soft samples [18-20].  

 It is well known that the mechanical properties of human cells are largely governed by their 

cytoskeleton [10]. During the descent of a cell from a mature, differentiated state to a highly mitotic 

and motile cancerous state, the cytoskeleton regresses from an ordered and fairly stiff structure to a 

more irregular and compliant state [21,22]. Furthermore, some other factors, such as EMT [23], the 

overall cell size, the nucleus size [24], and chromatin organization [25], are all found to affect the 

cell’s mechanical behavior. However, exactly how these cellular structural factors influence the 

mechanical properties of cell remains quite ambiguous.   

To investigate the relationship between the elastic modulus and metastatic potential of TSCC, the 

elastic modulus of cancer cells from cell lines with different metastatic potentials and primary cell 

samples from TSCC patients were examined using AFM nanoindentation via the above-mentioned 

rate-jump method [18, 19]. Moreover, various cellular structural factors such as the cytoskeleton 

structure, EMT, nucleus size, etc. were also investigated with various imagining techniques, so as to 

explore the structure-mechanical property relationship of different types of tongue cancer cells with 

different metastatic potential. 
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Methods 

Primary cell culture  

Archived tissue samples for primary cell cultures from four TSCC cases were used in the present study. 

Clinical characterizations are summarized in Table S1. All of the patients underwent curative surgery 

and did not receive any adjuvant therapy prior to surgery, and all of the experiments with primary 

samples were performed within a few days after surgery. The present study was approved by the 

Ethical Committee of the First Affiliated Hospital, Sun Yat-Sen University. Primary cell cultures were 

maintained as previously described [22]. Briefly, TSCC tissues were disinfected with Betaisodona 

(Mundipharma, Limburg, Germany), rinsed twice in PBS, minced and placed in 2.5 mg/ml Dispase II 

(Roche, Mannheim, Germany) in DMEM for 18 to 24 h at 4
°
C. Subsequently, tissues were incubated 

in 0.25% trypsin/EDTA for 5 min. Trypsin activity was stopped with DMEM containing 10% fetal 

bovine serum (FBS). The suspensions were centrifuged, resuspended in DMEM/F12 (containing 10% 

FBS, 1,000 units/ml penicillin and 500 μg/ml streptomycin), and cultured at 37°C with 5% CO2.   

Cell culture 

UM1 and UM2 are paired TSCC cell lines with different metastatic potentials that were previously 

established from a single patient [26]. Another two paired cell lines with different metastatic potentials 

(UM1/Control and UM1/miR-138, 1386Ln/Control and 1386Ln/miR-138) were also used in this study 

[6]. These cell lines were stable transfected cells with control mimic or miR-138, respectively. 1386Ln 

is a cell line generated from lymph node metastatic disease from hypopharynx squamous cell 

carcinoma [6]. All the cells were maintained in DMEM/F12 containing 10% FBS, 1,000 units/ml of 

penicillin and 500 μg/ml of streptomycin in a 37°C incubator with 5% CO2.  

Wound healing assay 

Wound healing assay experiments were performed as previously described [27]. Images were taken at 

time points 0 h and 24 h post-wounding using a Nikon Diaphot TMD inverted microscope (4×). The 

relative distance traveled by the leading edge from 0 h to 24 h was assessed using Photoshop 7.0 

software (n = 6). 

Transwell invasion assay 
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Transwell invasion assay experiments were performed as previously described [27]. Briefly, Biocoat 

Matrigel invasion chamber inserts (BD Biosciences, NJ, USA) were equilibrated for 2 h at 37 °C in 

serum-free medium. Cells were seeded in serum-free medium in the upper chamber and allowed to 

invade through the Matrigel to the lower chamber for 24 h. Cells on the bottom surface of the filter 

were rinsed and permeabilized with 1% Triton X-100 in PBS for 20 min, stained with DAPI in the 

dark and visualized under a fluorescent microscope. Three random fields were captured at a 

magnification of 10× (n = 3). The number of cells on the bottom surface was compared between 

groups. 

Western Blot Analysis 

Western blot analysis was performed as previously described [28] using antibodies specific to 

E-cadherin, vimentin (Cell Signaling Technology, Beverly, MA, USA) and GAPDH (Sigma-Aldrich, 

MO, USA). 

Immunohistochemical analysis 

Immunohistochemistry was performed according to previous described [29] to detect the EMT 

markers (E-cadherin and vimentin) using a commercially available kit (Invitrogen, Carlsbad, CA). The 

relative intensities of the completed immunohistochemical reactions were evaluated by 3 

independently trained observers who were blinded to the clinical data. Image-Pro Plus v6.0 software 

(Media Cybernetics, USA) was used to score the relative intensities.  

Scanning electron microscopy 

SEM was performed to investigate alterations in the cellular morphology. Briefly, cells were plated 

onto 14 mm diameter coverslips and placed in a 24-well plate for 24 h. Cells were then washed with 

PBS buffer and fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer for 2 h at 4°C. After 

washing with cacodylate buffer with 0.1 M sucrose, cells were dehydrated for 5 min in an increasing 

series of ethanol solutions (30%, 50%, 75%, 90% and 100%). The samples were dried in a Critical 

Point Dryer and coated with gold prior to SEM scanning (Hitachi S4800 FEG SEM, Japan). 

Nucleus size and nucleus/cytoplasm (N/C) ratio measurement  

The nucleus size and N/C ratio measurements were performed using immunofluorescence imaging 
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[30]. Briefly, cells were fixed with 2.5% glutaraldehyde solution and permeabilized with 0.1% Triton 

X-100 in PBS. After a PBS wash, the cells were stained with anti--tubulin-Cy3 (Sigma-Aldrich, MO, 

USA) for cytoplasmic observation and Hoechst 33342 (1 g/mL in PBS, Sigma-Aldrich, MO, USA) 

for nuclear observation. The cells were then washed with PBS and observed under a fluorescent 

microscope. The emission wavelengths for the Hoechst 33342 and Cy3 β-tubulin are 330-380 nm and 

510-560 nm, respectively. The ImageJ (v. 1.45s) software by the National Institute of Health (NIH) 

was used to measure the areas of the cells and their nuclei, and the N/C ratio data were calculated with 

the following equation [31], 

 / nucleus

cell nucleus

Area
N C

Area Area




                                                    (1) 

Immunofluorescence analysis 

Cytoskeletal organization (F-actin and -tubulin) was performed using the direct immunofluorescence 

method [30]. The filamentous actin (F-actin) was stained with a phalloidin-fluorescein isothiocyanate 

(phalloidin-FITC) conjugate solution (Sigma-Aldrich, MO, USA), and the -tubulin was stained with 

anti--tubulin-Cy3. The slides were examined using a fluorescence microscope (Leica, Germany). 

Representative images of the cells were captured at a magnification of 400× and in the same 

exposure times of 200 milliseconds. The emission wavelength for the FITC-phalloidin and Cy3 

β-tubulin are 450-490 nm and 510-560 nm, respectively. The mean intensity of F-actin and -tubulin 

inside each entire cell was measured using ImageJ. In this method, the image was first converted into 

8-bit format, and was then duplicated and used to determine the corresponding measured regions. A 

threshold function was applied to highlight the structure in the copy image and the resultant image 

was then converted into a binary image using the “binary” function of ImageJ. This image was then 

converted back to the original 8-bit format, and the mean intensity of the filaments was obtained by 

the function “analyze particles” in the software. In each group, the mean intensity of the filaments was 

obtained from 10 cells, and the corresponding mean intensities of different groups were compared, 

and in the Results section below, a typical image from each group is shown. 



 

 9 

Atomic force microscopy nanoindentation 

Nanoindentation experiments were performed in an AFM (JPK NanoWizard II, Germany) to measure 

the cellular elastic modulus as previously described [19, 20]. A silicon nitride cantilever-tip (CSG01, 

supplied by NT-MDT Company, Russia) was used, and the end of the tip was cut off using focused 

ion-beam (FIB) milling (FEI Quanta 200 3D FIB/SEM) to form a flat-ended cylindrical tip with 

diameter 1.01m as shown in our previous study [20]. The choice of the flat-ended tip geometry with 

a cylindrical shape here ensures that the tip-cell contact area is a constant during the nanoindentation 

test, and this greatly simplifies the analysis [32]. The cantilever sensitivity was calibrated by indenting 

on the glass substrate in the presence of DMEM cell culture medium, and the spring constant of the tip 

was calibrated to be 0.037 N/m using the thermal fluctuation method prior to AFM nanoindentation. 

The cells were cultured on glass coverslips and placed on a Biocell
TM

 holder (JPK, Germany), which 

ensured a constant 37°C environment for the cells during the entire AFM nanoindentation assay. AFM 

nanoindentation was performed by controlling the movement of the clamping base of the AFM 

cantilever-tip via a PZT scanner while the sample sat on a stationary base, and the deflection of the 

AFM cantilever at the tip’s end was recorded by a position-sensitive photo-diode detector. 

The indentation schedule employed in this study is shown in Figure 1A and 1B. Each cell was 

mechanically probed by AFM at its most bulging part, where the nucleus was likely to be, as shown in 

Figure S1. The cell is not homogeneous, and therefore the values of elastic modulus may change 

significantly at different positions of the cell. In this case, indenting on the most bulging part of cell 

with the help of microscopic observation should largely reduce measurement errors [33, 34]. 

Moreover, indenting on this location will ensure that the membrane-cytoskeleton-nucleus response of 

the cell to be measured which is more pertinent to metastasis through narrow openings. The 

indentation depth was chosen to be at least 1 μm in order to better simulate deformations which occur 

physiologically as described by Xu et al [35]. Instead of running the test at a constant displacement 

rate as in the Hertzian method, in the rate jump method, a step change in the displacement rate is 

imposed, which results in a step change in the load rate. Theoretical considerations as previous 

described have shown that the relationship between these two step changes yields an elastic modulus 
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which is intrinsic of any power-law viscoelastic material [36]. As is shown in our previous study, the 

Hertzian method gives an apparent elastic modulus which increases with the loading rate, but the 

rate-jump method gives elastic modulus values which are independent of the rate-jump magnitude 

[19]. In the present study, each cell was just indented once, and 30 cells were randomly selected to be 

indented in each sample group for further statistical analysis.  

In the rate-jump protocol, the elastic modulus of the sample is given by [19] 

h
E

aP  











21
2


               (2)

 

where h and P are the indentation depth and indentation force, and a, E and v are the radius of the 

cylindrical tip’s end (0.505 micron in the present study), the sample’s intrinsic Young’s modulus and 

Poisson’s ratio, respectively. In Eq. (2), P  and h  are jumps in the rates of P and h across the 

unloading point, and in the AFM used, the indentation force P is evaluated as  hkP    where k is 

the spring constant of the AFM cantilever, is the programmed movement of the clamp base of the 

cantilever, and h is the deflection of the AFM tip as detected by the photo-diode detector (see ref. [19] 

for details). As explained in detail elsewhere [18, 20, 36], the rate-jump method involving eqn. (2) 

assumes the tested sample to be viscoelastic, and the elastic modulus )1/( 2E  returned from eqn. 

(2) is the resultant of all the elastic spring elements in the viscoelastic constitutive law of the sample 

while the viscous dashpot elements, which can be nonlinear in general, do not play any role. Eqn. (2) 

is the result of a subtraction between the effects of the constitutive law just before and just after the 

rate-jump point [36], and the viscous dashpots are immaterial here because their deformations are 

continuous across the rate jump and are therefore subtracted out, i.e. they do not react to the rate jump. 

Only the elastic springs react to the rate jump and this is why eqn. (2) contains only the net elastic 

modulus although the sample is viscoelastic. In the event if the spring and dashpot elements are time 

or load-history dependent, as would be the case for large deformations when the cytoskeleton, for 

example, becomes significantly modified, then the )1/( 2E  returned from eqn. (2) will be the 

instantaneous value at the moment when the rate jump is applied [36]. The validity of this rate-jump 
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method in general has been verified in a wide range of soft materials on different mechanical testing 

platforms, including depth-sensing indentation on bone tissues, polymers and soft metals [18,37,38]，

micro-plate compression on stem-cell inserted collagen micro-masses for tissue engineering purposes 

[39], AFM nanoindentation of cells and soft polymers [19,20, 39], as well as macroscopic uniaxial 

tensile testing on polymers [40]. In the results below, the values of the Young modulus E are reported 

and these were calculated from the measured reduced moduli )1/( 2E  by assuming the Poisson 

ratio v of the cells to be 0.5.  

Statistics 

The data were analyzed with Student’s t test to determine the significance between two variables or 

one-way analysis of variance (ANOVA) to calculate the significance when there were more than two 

variables. Associations between elastic modulus and cell migration and invasion were tested using 

Pearson’s product-moment correlation and Spearman’s rank correlation. 
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Results 

Elastic modulus of TSCCs with different metastatic potentials  

Among the TSCC cases (Table S1), Case 3 had LN metastasis and recurrence after one month and 

died six months postsurgery; however, Cases 1, 2 and 4 did not have LN metastasis, and no recurrence 

occurred during the 10-18 months of follow-up. Using the wound healing and transwell assays, we 

found that UM1 cells and UM1/Control cells had a higher migratory and invasive ability (i.e. higher 

metastatic potential) than UM2 cells and UM1/miR-138 cells, respectively (Figure 2). Similarly, 

primary cells obtained from Case 3 had the highest metastatic potential than those obtained from the 

other three cases (Figure 2). In another paired OSCC cell line, 1386Ln/control cells exhibited 

significantly elevated metastatic potential when compared to 386Ln/miR-138 cells (Figure S2). 

Atomic force microscope nanoindentation via the rate-jump method was used to detect the elastic 

modulus of these TSCC cells with different metastatic potentials. As shown in Figure 1C, Table 1 and  

Table S2, UM1 cells, UM1/Control cells and 1386Ln/Control cells (with higher metastatic potential) 

had significantly lower elastic modulus values when compared to UM2, UM1/miR-138 and 

1386Ln/miR-138 cells (with lower metastatic potential), respectively. Primary cells obtained from 

Case 3 also exhibited significantly lower elastic modulus when compared to primary cells obtained 

from the other three cases. The histograms for each sample were provided in supplemental Figure S3, 

in which the distribution of elastic modulus values for the less invasive cells showed a normal 

distribution. The relationship between cellular elastic modulus and metastatic potential was further 

examined and  indicated a strong association between elastic modulus and metastatic potential as 

shown in Table S3. These results revealed that cells with higher metastatic potential had lower elastic 

modulus values than cells with lower metastatic potential, which means that they were softer or more 

deformable.  

The relationship between EMT and elastic modulus of TSCC 

To investigate the relationship between elastic modulus and EMT, TSCCs with different metastatic 

potential were observed under SEM and the expression of EMT markers (E-cadherin and vimentin) 

was also assessed. Figure 3 and Figure S4A show that the primary cells obtained from Case 3, UM1 
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cells, UM1/Control cells and 1386Ln/Control cells (all with lower elastic modulus and higher 

metastatic potential) were all spread out and had a fibroblastic morphology. On the other hand, 

primary cells obtained from the other three cases, UM2 cells, UM1/miR-138 cells and 

1386Ln/miR-138 cells (all with higher elastic modulus and lower metastatic potential) were more 

adherent to one another showing promoted formation of cell clusters. More surface protrusions, 

microvilli and filopodia-like processes were found in cells with lower elastic modulus and higher 

metastatic potential.  

Moreover, as shown in Figure 4, primary cells obtained from Case 3, UM1 cells and UM1/Control 

cells (with lower elastic modulus and higher metastatic potential) had higher expression levels of 

vimentin and lower expression levels of E-cadherin as compared with primary cells obtained from the 

other three cases, UM2 cells and UM1/miR-138 cells (with higher elastic modulus and lower 

metastatic potential), respectively. These observations are in agreement with the hypothesis that EMT 

may be related to the elastic modulus and metastatic potential. 

The relationship between Cytoskeleton and elastic modulus of TSCC 

As shown in Figures 5, 6, and Figure S4B, the F-actin cytoskeleton in TSCCs features a dense cortical 

layer underneath the plasma membrane and an isotropic network throughout the cell body. -tubulin 

was localized in the space between the nucleus and the cell membrane. F-actin and -tubulin intensity 

profiles in the primary cells obtained from Cases 1, 2 and 4, UM2 cells, UM1/miR-138 cells and 

1386Ln/miR-138 cells (with higher elastic modulus and lower metastatic potential) were significantly 

higher than those in primary cells obtained from Case 3, UM1 cells, UM1/Control cells and 

1386Ln/Control cells (with lower elastic modulus and higher metastatic potential), respectively. 

Moreover, UM2 cells, UM1/miR-138 cells and 1386Ln/miR-138 cells had a thick cortical layer of 

F-actin and a thick nuclear layer of -tubulin. These resluts imply that lower elastic modulus in TSCC 

cells with higher metastatic potential are related to less organization and decreased intensity of F-actin 

and -tubulin.  

The relationship between nucleus size and elastic modulus of TSCC 

As shown in Table 2 and Table S2, primary cells obtained from Case 3, UM1 cells, UM1/Control cells 
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and 1386Ln/Control cells (with lower elastic modulus and higher metastatic potential) had 

significantly smaller nucleus sizes and higher N/C ratios than primary cells obtained from the other 

three cases, UM2 cells, UM1/miR-138 cells and 1386Ln/miR-138 cells (with higher elastic modulus 

and lower metastatic potential), respectively. Thus, the nucleus size and the N/C ratio may lead to a 

reduction in the elastic modulus and an increase in metastatic potential. 
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Discussion 

The elastic modulus is an inverse measure of the deformability or compliance of individual cells and 

is therefore important in the initiation of cancer [10]. Many studies have shown that malignant tumor 

cells display either lower elastic modulus (softer) and/or lower viscosity (less resistant to flow) [13, 21, 

41, 42]. Although Remmerbach et al. recently showed that both oral epithelial cell lines and primary 

cancer cells have an increased deformability compared with their normal counterparts [22], not many 

studies have focused on oral cancer. Recently researchers also found that mechanical properties are a 

critical determinant for the efficiency of cancer cell invasion [11, 21, 30, 41, 42]. Swaminathan et al. 

found that cancer cells with the highest migratory and invasive potential are five times less stiff (with 

lower elastic modulus) than cells with the lowest migration and invasive potential [11]. In the present 

study on tongue cancer cells, we revealed that, just like other types of cancer, cells with lower 

metastatic potential from TSCC cell lines and patients had significantly higher elastic modulus (i.e., 

less deformable) than those of cells with higher metastatic potential. The elastic modulus of tongue 

cancer cells with lower metastatic potential is only around twice of that of cells with higher metastatic 

potential, which means that the difference between them is less significant than those reported in 

previous studies [11]. It is believed that this is due to the individual differences among different types 

of cancer cells. It should also be noted that, based on the elastic modulus measured in this work, the 

difference between elastic modulus of tongue cancer cells with high metastatic and low metastatic 

potential is less significant than those of other types of cancers, and therefore a protocol for accurate 

measurement of the elastic modulus of cancer cells is necessary for evaluating the metastatic potential. 

Thus, these findings suggest that cellular elastic modulus may be related to the metastasis of TSCC 

and can be used as a cell marker and a diagnostic parameter for TSCC metastasis. Moreover, the 

present study also shows that the rate-jump method for AFM nanoindentation can be used as a 

standard protocol for measuring the elastic modulus of living cells, since the measured values are 

intrinsic properties of the cells. 

Tumor metastasis is the dominant cause of death in patients with TSCC. EMT is a critical step in the 

process of metastasis, which leads to cancer spread and treatment failure. Recently, studies from our 
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group and other groups have demonstrated that EMT is important in determining the biological 

behaviors and clinical prognosis of tongue cancer [5, 43]. For example, Sakamoto found that the 

development of delayed neck metastasis in stage I/II TSCC was closely related to the induction of 

EMT in primary tumor cells [43]. Our previous studies have suggested that downregulation of 

miR-138 is associated with mesenchymal-like cell morphology and enhanced cell migration and 

invasion [3-8]. Besides, EMT-associated changes were also found to influence cellular mechanics [44]. 

Buckley et al, found that alveolar epithelial cells (A549) with TGF-β1 stimulation gave rise to a 

significant increase in stiffness and induced EMT changes [44]. In the present study, we also found 

that TSCC cells with lower elastic modulus and higher metastatic potential had EMT changes. These 

observations revealed that EMT might lead to a decrease in elastic modulus and an increase in the 

metastatic potential of TSCC.  

The cytoskeleton is the structural framework that predominantly shapes a cell and provides its 

mechanical rigidity. According to the tensegrity theory, a cell can be viewed as a tensional structure in 

which actin filaments bear tensile loads and microtubules bear compression loads [30]. Among the 

different cytoskeletal filaments, F-actin provides the highest resistance to deformation [10]. Changes 

in the cytoskeleton would therefore reflect the overall mechanical properties of the cell [21, 24, 45-47]. 

Compared with nonmetastatic cancer cells, Guck et al. found that the increased deformability 

(decrease in elastic modulus) of cancer cells with metastatic competence appears to be accompanied 

by a reduction in the amount of F-actin [21]. In the present study, we observed differences in the cell 

cytoskeleton (F-actin and -tubulin) that were accompanied with changes in cell metastatic potential 

and elastic modulus. In the cells with lower elastic modulus and higher metastatic potential, the 

cytoskeleton was reduced and less organized, with lower levels of F-actin gathered underneath the 

plasma membrane and decreased levels of -tubulin organized around the nucleus. These observations 

confirmed that changes in the cytoskeleton may regulate the cellular elastic modulus and induce cell 

motility, invasion and metastasis. 

Directed-cell migration, which often requires nuclear reshaping to allow passage of cells through 

narrow openings, is dependent not only on changes in cytoskeletal elements but also on global 
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chromatin condensation [25, 48]. Rolli et al. found that the diameters of the nuclei of pancreatic 

epithelial cancer cells (Panc-1) are reduced by 12% after sphingosylphosphorylcholine treatment, 

which can enhance the invasive behavior and deformability of Panc-1 [24]. Stroka et al. also found 

that increased cell stiffness correlates with an increase in cell area [49]. Similar to these studies, we 

demonstrated that TSCC cells with higher metastatic potential had smaller nuclei and higher N/C 

ratios than cells with lower metastatic potential. Thus the small nuclei may decrease the overall elastic 

stiffness of the cells and allowed them to pass through narrow openings, and this corresponds to an 

increased invasion of TSCC cells.  

From the above, the present findings revealed a close relationship between cellular elastic modulus 

and the metastatic potential of TSCC cells. The EMT, cytoskeleton, nucleus size and 

nucleus/cytoplasm ratio are all factors contributing to a change of the cellular elastic modulus. 

Combined with our previous studies [3-8], we hypothesize that TSCC cells with higher metastatic 

potential undergo a series of molecular changes, such as deregulation of miR-138, then induce EMT 

and cytoskeleton disorganization, modulate the nucleus size and nucleus/cytoplasm ratio, and finally 

have their cellular elastic modulus reduced and metastasis mediated. Thus, the cellular elastic modulus 

may be used to grade the metastatic potential of TSCC and as a diagnostic parameter for TSCC 

metastasis. In addition, since the present rate-jump method of AFM nanoindentation takes only 

minutes rather than hours to complete as in invasion assays, this is an efficient and reliable approach 

for classifying cancer cells to enable broad screening of suspicious lesions with metastasis of TSCC.  

To conclude, the significance of this work can be summarized as follows. 1) We used a new method 

(rate-jump AFM nanoindentation) to measure the elastic modulus of cancer cells in which the viscous 

effects can be eliminated giving rise to reliable and intrinsic measurements of the elastic modulus.  2) 

Although tongue squamous cell carcinoma (TSCC) is significantly more aggressive than other forms 

of oral squamous cell carcinomas, how metastasis is linked to cellular biomechanics is basically 

unknown for this type of carcinoma. Using both TSCC cell lines and TSCC cells from patients with 

different metastatic potential, we found a close relationship between the elastic modulus and 

metastatic potential of TSCC cells. 3) With the efficient rate-jump AFM nanoindentation method, we 
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demonstrated that the cellular elastic modulus can be used as a diagnostic parameter for grading the 

metastatic potential of TSCC. 4) By indenting on the nucleus location of the cells, we showed that the 

cellular elastic modulus (and hence metastatic potential) of TSCC cells are related to the filament 

organization in the cytoskeleton, the nucleus size and also the nucleus/cytoplasm ratio. 

 

 



 

 19 

REFERENCES: 

1. Ye H, Wang A, Lee BS, Yu T, Sheng S, Peng T, et al. Proteomic based identification of 

manganese superoxide dismutase 2 (SOD2) as a metastasis marker for oral squamous cell 

carcinoma. Cancer Genomics Proteomics 2008; 5:85-94. 

2. Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, et al. MicroRNA-222 regulates cell invasion by 

targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 

(SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 2009; 

6:131-139. 

3. Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z, et al. Identification and experimental 

validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 

target in tongue squamous cell carcinoma. Hum Genet 2011; 129:189-197. 

4. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, et al. Downregulation of the Rho 

GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell 

migration and invasion in tongue squamous cell carcinoma. Int J Cancer 2010; 127:505-512. 

5. Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, et al. MicroRNA-138 suppresses 

epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 2011; 

440:23-31. 

6. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and 

promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 2009; 

286:217-222. 

7. Jin Y, Wang C, Liu X, Mu W, Chen Z, Yu D, et al. Molecular characterization of the 

microRNA-138-Fos-like antigen 1 (FOSL1) regulatory module in squamous cell carcinoma. 

J Biol Chem 2011; 286:40104-9. 

8. Wang C, Liu X, Chen Z, Huang H, Jin Y, Kolokythas A, et al. Polycomb group protein 

EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell 

carcinoma. Mol Carcinog 2011, doi: 10.1002/mc.21848. 

9. Shoushtari AN, Szmulewitz RZ, Rinker-Schaeffer CW. Metastasis-suppressor genes in clinical 



 

 20 

practice: lost in translation? Nat Rev Clin Oncol 2011; 8:333-342. 

10. Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater 2007; 3:413-438. 

11. Swaminathan V, Mythreye K, O'Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical 

stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer 

Res 2011; 71:5075-5080. 

12. Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK. AFM-based analysis of human 

metastatic cancer cells. Nanotechnology 2008; 19:384003. 

13. Suresh S. Nanomedicine: elastic clues in cancer detection. Nat Nanotechnol 2007; 2:748-749. 

14. Lekka M, Laidler P. Applicability of AFM in cancer detection. Nat Nanotechnol 2009; 4:72. 

15. Chen K, Li D, Jiang YH, Yao WJ, Wang XJ, Wei XC, et al. Influence of expressed TRAIL on 

biophysical properties of the human leukemic cell line Jurkat. Cell Res 2004; 14:161-168. 

16. Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC, et al. Microfluidic endothelium 

for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 

4:e5756. 

17. Ngan AHW, Tang B. Viscoelastic effects during unloading in depth-sensing indentation. 

Journal of Materials Research 2002; 17:2604-2610. 

18. Tang B, Ngan AHW. A rate-jump method for characterization of soft tissues using 

nanoindentation techniques. Soft Matter 2012; 8:5974-5979. 

19. Zhou ZL, Ngan AHW, Tang B, Wang AX. Reliable measurement of elastic modulus of cells by 

nanoindentation in an atomic force microscope. Journal of the Mechanical Behavior of 

Biomedical Materials 2012; 8:134-142. 

20. Tang B, Ngan AHW. Nanoindentation using an atomic force microscope. Philosophical 

Magazine 2011; 91:1329-1338. 

21. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, et al. Optical 

deformability as an inherent cell marker for testing malignant transformation and 

metastatic competence. Biophys J 2005; 88:3689-3698. 

22. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J. Oral cancer 



 

 21 

diagnosis by mechanical phenotyping. Cancer Res 2009; 69:1728-1732. 

23. Buckley ST, Davies AM, Ehrhardt C. Atomic force microscopy and high-content analysis: two 

innovative technologies for dissecting the relationship between epithelial-mesenchymal 

transition-related morphological and structural alterations and cell mechanical properties. 

Methods Mol Biol 2011; 784:197-208. 

24. Rolli CG, Seufferlein T, Kemkemer R, Spatz JP. Impact of tumor cell cytoskeleton organization 

on invasiveness and migration: a microchannel-based approach. PLoS One 2010; 5:e8726. 

25. Gerlitz G, Bustin M. The role of chromatin structure in cell migration. Trends Cell Biol 2011; 

21:6-11. 

26. Nakayama S, Sasaki A, Mese H, Alcalde RE, Matsumura T. Establishment of high and low 

metastasis cell lines derived from a human tongue squamous cell carcinoma. Invasion 

Metastasis 1998; 18:219-228. 

27. Liu Z, Li S, Cai Y, Wang A, He Q, Zheng C, et al. Manganese superoxide dismutase induces 

migration and invasion of tongue squamous cell carcinoma via H(2)O(2)-dependent snail 

signaling. Free Radic Biol Med 2012;53:44-50. 

28. Wang A, Zhang B, Huang H, Zhang L, Zeng D, Tao Q, et al. Suppression of local invasion of 

ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro. BMC Cancer 2008; 

8:182. 

29. Ding X, Zhang N, Cai Y, Li S, Zheng C, Jin Y, et al. Down-regulation of tumor suppressor 

MTUS1/ATIP is associated with enhanced proliferation, poor differentiation and poor 

prognosis in oral tongue squamous cell carcinoma. Mol Oncol 2012; 6:73-80. 

30. Nikkhah M, Strobl JS, De Vita R, Agah M. The cytoskeletal organization of breast carcinoma 

and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. 

Biomaterials 2010; 31:4552-4561. 

31. White FH, Jin Y, Yang L. An evaluation of the role of nuclear cytoplasmic ratios and nuclear 

volume densities as diagnostic indicators in metaplastic,dysplastic and neoplastic lesions of 

the human cheek. Histol Histopathol 1997; 12:69-77. 



 

 22 

32. Acerbi I, Luque T, Gimenez A, Puig M, Reguart N, Farre R, et al. Integrin-Specific 

Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM 

Tips in Lung Cells. PLoS ONE 2013; 7: e32261. 

33. Morita Y, Mukai T, Ju Y, Watanabe S. Evaluation of Stem Cell-to-Tenocyte Differentiation By 

Atomic Force Microscopy to Measure Cellular Elastic Moduli. Cell Biochem Biophys 2012; 

DOI 10.1007/s12013-012-9455-x 

34. Mackay JL, Kumar S. Measuring the elastic properties of living cells with atomic force 

microscopy indentation. Methods Mol Biol 2013;931:313-329.  

35. Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T. Cell Stiffness Is a Biomarker of 

the Metastatic Potential of Ovarian Cancer Cells. PLoS ONE; 7: e46609. 

36. Ngan AHW, Tang B. Response of power-law-viscoelastic and time-dependent materials to 

rate jumps. Journal of Materials Research 2009; 24:853-862. 

37. Tang B, Ngan AHW. Nanoindentation measurement of mechanical properties of soft solid 

covered by a thin liquid film. Soft Materials 2007; 5:169-181. 

38. Tang B, Ngan AHW, Lu WW. An improved method for the measurement of mechanical 

properties of bone by nanoindentation. Journal of Materials Science-Materials in Medicine 

2007; 18:1875-1881. 

39. Chan BP, Li CH, Au-Yeung KL, Sze KY, Ngan AHW. A microplate compression method for 

elastic modulus measurement of soft and viscoelastic collagen microspheres. Annals of 

Biomedical Engineering 2008; 36:1254-1267. 

40. Chan YL, Ngan AHW. Invariant elastic modulus of viscoelastic materials measured by 

rate-jump tests. Polym Test 2010; 29:558-564. 

41. Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PC, Ros R. AFM stiffness 

nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol 

2011; 8:015007. 

42. Ketene AN, Schmelz EM, Roberts PC, Agah M. The effects of cancer progression on the 

viscoelasticity of ovarian cell cytoskeleton structures. Nanomedicine 2012; 8: 93-102. 



 

 23 

43. Sakamoto K, Imanishi Y, Tomita T, Shimoda M, Kameyama K, Shibata K, et al. Overexpression 

of SIP1 and Downregulation of E-cadherin Predict Delayed Neck Metastasis in Stage I/II 

Oral Tongue Squamous Cell Carcinoma After Partial Glossectomy. Ann Surg Oncol 2012; 19: 

612-619. 

44. Buckley ST, Medina C, Davies AM, Ehrhardt C. Cytoskeletal re-arrangement in 

TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force 

microscopy and high-content analysis. Nanomedicine 2012;8:355-364. 

45. Kokubo K, Igawa S, Fukuda A, Shinbo T, Hirose M, Masuda N, et al. The role of nitric oxide in 

reducing deformability of Lewis lung tumor cell stimulated by inflammatory cytokines. 

Nitric Oxide 2008; 19:312-319. 

46. Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F. Connection between biomechanics and 

cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron 2010; 

41:257-262. 

47. Lee SY, Zaske AM, Novellino T, Danila D, Ferrari M, Conyers J, et al. Probing the mechanical 

properties of TNF-alpha stimulated endothelial cell with atomic force microscopy. Int J 

Nanomedicine 2011; 6:179-195. 

48. González Avalos P, Reichenzeller M, Eils R, Gladilin E. Probing compressibility of the nuclear 

interior in wild-type and lamin deficient cells using microscopic imaging and computational 

modeling. J Biomech 2011; 44:2642-2648. 

49. Stroka KM, Aranda-Espinoza H. Effects of Morphology vs. Cell-Cell Interactions on 

Endothelial Cell Stiffness. Cell Mol Bioeng 2011; 4:9-27. 

 



 

 24 

Figure legends 

Figure 1 The elastic modulus values of TSCCs with different metastatic potentials 

A: Loading schedule for the rate jump method. When doing experiment, the tip was first retracted for 

2 μm within 1s, and then was made to approach the cells with a constant speed 0.55μm/s for 10s and 

then held for 30s. After that, the tip was retracted with a constant speed 0.1μm/s for 10 s. The final 

unload point at 41s was treated as the rate-jump point where eqn. (2) was applied. 

B: The indentation force vs time curve in rate jump tests using the loading profiles in Fig. 1A. 

C: The elastic modulus of TSCC cells. Inside each box chart, the body denotes the values of 90% 

tested samples in the region, the number on top of each box chart is the mean value for each group, 

which is also the line inside the body box. The two ends of each box chart are the maximum and 

minimum value. Significant differences were found between Primary cells obtained from Case 3 and 

primary cells obtained from the other three cases; UM1 cells and UM2 cells; UM1/Control cells and 

UM1/miR-138 cells (P<0.05).   

 

Figure 2 The metastatic potential of TSCC cells 

The migration ability of TSCC cells was assessed using a wound healing assay (A, B, C). The 

invasion ability of TSCC cells was assessed using a transwell invasion assay (D, E, and F). UM1 cells, 

UM1/Control cells and primary cells obtained from Case 3 had a higher migratory and invasive ability 

than UM2 cells, UM1/miR-138 cells and primary cells obtained from the other three cases, 

respectively. *: P< 0.05.  

 

Figure 3 The morphology of TSCCs with different elastic modulus 

The cell morphology of TSCC primary cells and cell lines were detected under SEM as described in 

the Materials and Methods section. Primary cells obtained from Case 3, UM1 cells and UM1/Control 

cells had a fibroblastic morphology. Primary cells obtained from the other three cases, UM2 cells and 

UM1/miR-138 cells had a more adherent phenotype, which promoted the formation of cell 

clusters.      : microvilli;    : filopodia-like processes. 
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Figure 4. The expression of EMT markers in TSCCs with different elastic modulus 

The EMT markers E-cadherin and vimentin were detected as described in the Materials and Methods 

section. Using immunohistochemistry (A, B), Primary cells obtained from Case 3 (in both cancer and 

LN tissue) had a higher expression level of vimentin and a lower expression level of E-cadherin 

compared with primary cells obtained from the other three cases, P< 0.05. Semi-quantitative analysis 

of the immunohistochemistry is shown in B. Relative staining intensities were analyzed by using 

Image Pro Plus 6 software. Western blot analysis (C, D) demonstrated a higher expression level of 

vimentin and a lower expression level of E-cadherin in UM1 cells compared to UM2 cells (C), or 

UM1/Control cells compared to UM1/miR-138 cells (D).   

 

Figure 5 F-actin in TSCCs with different elastic modulus  

F-actin was detected with immunofluorescence as described in the Materials and Methods section. 

The F-actin cytoskeleton features a dense cortical layer underneath the plasma membrane and an 

isotropic network throughout the cell body. Nuclear staining showed that the shadows within the cells 

coincide with the nucleus (not included in the image). F-actin intensity was significantly decreased in 

the cells with lower elastic modulus [i.e., primary cells obtained from Case 3, UM1 cells and 

UM1/Control cells] compared with cells with higher elastic modulus [i.e., primary cells obtained from 

the other three cases, UM2 cells and UM1/miR-138 cells], respectively. P< 0.05. 

 

Figure 6 -tubulin in TSCCs with different elastic modulus 

-tubulin was detected with immunofluorescence as described in the Materials and Methods section. 

The -tubulin was localized in the space between the nucleus and the cell membrane. Nuclear staining 

showed that the shadows within the cells coincide with the nucleus (not included in the image). 

-tubulin intensity were significantly increased in primary cells obtained from the other three cases, 

UM2 cells and UM1/miR-138 cells compared with primary cells obtained from Case 3, UM1 cells and 

UM1/Control cells, respectively. P< 0.05.  
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Table S1 Clinical characteristics of four TSCC cases 

Case Gender 

Age 

(ys) TNM 

Pathology 

diagnosis 

LN 

metastasis Recurrence Follow-up 

1 male 53 T3N0M0 Middle-D N N 18m 

2 female 37 T3N0M0 High-D N N 12m 

3 male 59 T2N1bM0 Middle-D Y 1m ps die 6m ps 

4 male 59 T1N0M0 Middle-D N N 10m 

*: ys: years; ps: post-surgery; D: diffententiation; Y: yes; N: no; m: months 
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Table S2 Elastic modulus and nucleus size of 1386Ln/Control cells and 1386Ln/miR-138 cells 

 nucleus size (m
2
) N/C ratio Eelastic  (kPa) 

1386Ln/Control (n=38) 178.19±48.17* 0.39±0.05* 4.51±1.14* 

1386Ln/miR-138 (n=59) 207.30±78.34 0.25±0.03 6.77±1.50 

The data are presented as meanstandard deviation. *: compared between 1386Ln/Control cells and 

1386Ln/miR-138 cells, P<0.05. 
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Table S3 The association between elastic modulus/migratory and elastic modulus/invasion  

  Pearson Spearman 

  r p value r p value 

Elastic modulus/relative migration TSCC cell lines -0.688 0.000 -0.677 0.000 

 TSCC cases -0.682 0.000 -0.782 0.000 

Elastic modulus/relative Invasion TSCC cell lines -0.639 0.000 -0.632 0.000 

 TSCC cases -0.720 0.000 -0.782
*
 0.000 

TSCC cell lines include UM1, UM2, UM1/Control and UM1/miR-138; TSCC cases include case 1, 

case 2, case 3 and case 4. The TSCC cell lines and cases were classified by their migration and 

invasion (shown in Figure 2 and Figure S2), with the migration and invasion value of UM2 cells or 

case 1 falling into 1, and the migration and invasion value of other TSCC cell lines and cases was 

descibed in comparision with UM2 cells or case 1, respectively.  
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Supplementary figure legends: 

Figure S1 TSCC cells were mechanically probed by AFM at their most bulging part 

 

Figure S2 The migration and invasion ability of another paired OSCC cell lines 

(1386LN/Control and 1386LN/miR-138) 

The migration ability was assessed using a wound healing assay (A). The invasion ability was 

assessed using a transwell invasion (B). 1386LN/Control cells had a higher migratory and invasive 

ability than 1386LN/miR-138 cells. *: P< 0.05.  

 

Figure S3 Histograms of elastic modulus for each sample from TSCC cell lines and patients 

 

Figure S4 Morphology and cytoskeleton of another paired OSCC cell lines (1386LN/Control and 

1386LN/miR-138)  

A: The morphology of` 1386Ln/Control and 1386Ln/miR-138 cells under SEM. 1386Ln/Control cells 

appeared spread out assuming a fibroblastic morphology. 1386Ln/miR-138 cells appeared more 

adherent to one another and promoted formation of cell clusters.  

B: Cell cytoskeleton F-actin and -tubulin in 1386Ln/Control and 1386Ln/miR-138. The F-actin 

cytoskeleton features a dense cortical layer underneath the plasma membrane and an isotropic network 

throughout the cell body. The F-actin stress fiber was found to reduce and less organize in higher 

metastatic potential 1386Ln/Control as compared to 1386Ln/miR-138. *: P< 0.05. The -tubulin was 

localized in the space between nucleus and cell membrane, the -tubulin was found to increase and 

more organize (around nucleus) in 1386Ln/miR-138 as compared to 1386Ln/Control. *: P< 0.05. 
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