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A Study of the Role of Structural Configuration in Visual Recognition of  

Chinese Characters Using Primed Lexical Decision Task 

Lee Ho Mei, Rosanna 

Abstract 

The Lexicality Constituency Model (LCM) (Perfetti, Liu and Tan, 2006) postulated the role 

of structural configuration in Chinese character recognition, however, with no concluding 

evidence from past research. To investigate the role of configuration, a primed lexical 

decision task was used. The configuration and the radicals of the primes were manipulated. 

Behavioral data and electrophysiological data were collected from 34 Cantonese-speaking 

individuals. The behavioral results indicated an interdependent relationship of radicals and 

configuration, whereby the effect of radical similarity was only exhibited when the primes 

had the same configuration as the targets. Interestingly, the electrophysiological results 

suggested that the effect of radicals and configuration were independent of each other. A 

modified LCM was thus proposed to account for the present findings.  

Keywords: configuration, radical, Lexical Constituency Model, character recognition  
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A Study of the Role of Structural Configuration in Visual Recognition of  

Chinese Characters Using Primed Lexical Decision Task 

The logographic Chinese script has distinct orthographic properties from that of alphabetic 

scripts like English. First, Chinese characters can be hierarchically divided into different levels, with 

the two fundamental levels being strokes and radicals, while that of English are visual features and 

letters. The basic composite unit, consisting of lines and dots, of a Chinese character is called 

‘stroke’. A particular combination of contiguous strokes, which appears recurrently as orthographic 

unit, is called radical (Taft & Zhu, 1997). Two radicals may combine together to form phonetic 

compounds, which made up of 90% of Chinese characters (Hoosain, 1991). In a phonetic 

compound, one radical provides information regarding the meaning of the character and is termed 

‘semantic radical’, while the other radical, the ‘phonetic radical’, provides information regarding the 

pronunciation of the character (Hoosain, 1991). For example, for the phonetic compound ‘媽’ 

(/maa1/, mother), the semantic radical ‘女’ (/neoi5/, female) gives clue to the meaning, and the 

phonetic radical ‘馬’ (/maa5/, horse) gives clue to the pronunciation.   

Second, as opposed to the linearly arranged alphabetic scripts with variable lengths, each 

Chinese character occupies a relatively constant square-shape size with different structural 

configurations. Structural configuration can be defined as the relative spatial relationship among the 

radicals of a character (Huang & Wang, 1992) and can be conceptualized as ‘spatial slots’ (Perfetti 

& Liu, 2006, p.231) in which the radicals occupy. According to Lui, Leung, Law and Fung (2010), 

the most common structural configurations have radicals arranged (1) horizontally with the 

left-right spatial slots  like 嫁 (/gaa3/, marry), (2) vertically with top-bottom spatial slots  

such as 爸 (/baa1/, father) and (3) by enclosing a unit partially  as in 鬧 (/naau6/, scold) or 

completely inside another unit  like 困 (/kwan3/, trapped). These three types of configuration 

constituted 94% of all the Chinese characters acquired during primary school years, with the 
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left-right configurations being the most common structural representation, making up of 

approximately 60% of those characters learnt (Lui et al., 2010).    

There are two major schools of thought regarding the structural representation of 

characters. In the Lexical Constituency Model (LCM) as indicated in Figure 1, Perfetti and 

Liu (2006) proposed that word identification involves the specification of three mutually 

dependent constituents, which are orthography, phonology and semantics. They further 

proposed that visual word recognition begins with holistic analysis of the Chinese character 

in terms of its structural configurations. This spatial relationship specifies the order of 

arrangement of radicals, which are the basic input units channeled to the orthography 

constituent as shown in Figure 1.  

 

 
Figure 1. The Lexical Constituency Model (Perfetti & Liu, 2006) 

 

The findings from Perfetti and Tan (1998) lent support to this model. In their study 

using a primed naming task, participants were required to name a target character after a brief 

exposure of the prime character. Perfetti and Tan (1998) found graphic primes, which were 
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visually similar to the target character, provided the initial facilitation at 43ms Stimulation 

Onset Asynchrony (SOA, the time interval between the presentation of prime and target), 

followed by facilitation from phonological prime at 57ms SOA and semantic prime at 85ms 

SOA. They argued that these findings revealed the time course of the involvement of the 

three constituents, in which graphical information initiated the word identification process.  

However, the results obtained from Perfetti and Tan (1998) should be interpreted with 

caution. First, in that study, the properties of the graphic primes used were not carefully 

manipulated, resulting in some primes being graphically similar to the targets, while 79% of 

the primes share one radical with the target. Therefore, the priming effect observed can be 

due to priming by the same radicals instead of the graphical structures. This view is supported 

by Ding, Peng, and Taft (2004) who only found radical priming effect but no priming when 

using primes which are graphically similar to the targets in a lexical decision task. Second, 

Perfetti and Tan (1998) did not control for the relative frequency between the primes and 

targets. This renders their results hard to interpret as Segui and Grainger (1990) found 

inhibition when orthographically-related prime was of a higher frequency than that of the 

target and vice versa. Furthermore, most of their results were not replicable. Contradictory 

results, in which inhibitory but not facilitative effects of graphically-similar primes, were 

found in Chen and Shu (2001) even when they used the same testing stimuli and 

experimental design as Perfetti and Tan (1998). Similarly, Wu and Chou (2000) also found 

graphical inhibition present with orthographically-related primes in a lexical decision task.  

On the other hand, Yeh and Li (2002), using a visual search paradigm, have found 

that similar structural configurations and similar radicals between distracters and targets 

would greatly slow down the rate of identification, thus providing convergent evidence for 

LCM. Supporting evidence also came from a study by Shen and Forster (1999), who 

observed graphic priming effects at SOA 50ms for both simple and compound characters 
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when the relative frequency of primes and targets were carefully controlled. These conflicting 

findings complicated the interpretation of the role that structural configurations may play in 

visual word recognition.  

Another group of researchers (Taft & Zhu, 1997; Taft, Zhu & Peng, 1999; Ding, Peng, & 

Taft, 2004) used the Multi-Level Interactive-Activation Model to explain the processing of Chinese 

words. In this model, sub-character information is represented in three hierarchical levels including 

graphic features, radicals and whole character. In a study by Taft and Zhu (1997) using characters 

with the left-right configuration as targets in a lexical decision task, they found that response 

latencies were sensitive to the frequency of the radicals on the right but not on the left. Based on this 

finding, Taft and Zhu (1997) argued that Chinese characters were not being viewed holistically, but 

instead, processing of a character started from left to right. However, Feldman and Siok (1997) 

criticized this view as ignoring the unique structural representations of Chinese and questioned how 

this notion can be applied to characters with different configurations.  

Apart from that, Taft, Zhu and Peng (1999) also proposed that radicals are 

position-sensitive and carry position-specific information. For example, the left, right, top and 

bottom positions in which the same radical may appear in a character would have four 

position-specific representations. They based this argument on the findings that characters with 

transposable radicals like ‘呆’  (/ngoi4/, dull) and ‘杏’ (/hang6/, apricot) were not confused with 

each other. Tsang and Chen (2009) challenged this claim by using a false matching task. They 

found that false matching resulted whenever there was one common radical, irrespective to its 

position, in the source character, hence, supporting position-general radicals.  

In short, neither model has examined Chinese characters with different configurations. The 

relative role played by positional-specific information of radicals and the holistic structural 

configuration is still not resolved. Moreover, manipulation of both radical position and the 

structural configuration will almost always be confounded with each other. Hence, in this study, the 
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role of structural configuration in visual recognition of words was focused on and thoroughly 

studied using a primed lexical decision task with electrophysiological recordings.  

The present study used the masked priming paradigm, which is a technique referring to the 

brief presentation of a prime stimulus sandwiched between the forward and backward mask, prior 

to the presentation of the target stimulus (Forster, 1998). The forward and backward masks serve to 

minimize the prime visibility so as to rule out the possibility that any priming effect observed be 

attributed to predictive strategies (Forster, 1998). It should be highlighted that information extracted 

from the prime was not processed as an independent perceptual entity. Instead, it was integrated 

with the information provided by the target. Thus, this masked priming technique was especially 

useful in the current study for investigating the information that was relevant in Chinese characters 

recognition by manipulating the properties of the primes. The extent of information extracted from 

the prime could be controlled by manipulating the priming duration. Past studies have observed 

Chinese orthographic priming effect with priming duration from 43 to 50 ms (Shen & Forster, 1999; 

Feldman & Siok, 1999a; Perfetti & Tan, 1998). As the monitor available in this experiment has a 

refresh rate of 60Hz, a priming duration of 48 ms (equivalent to 3 sweeps) was chosen  

In addition to collecting behavioural data of response time (RT) and accuracy, which only 

provide us with the overt response of the participants after they have undergone a series of mental 

operation, the present investigation was aided by the use of event-related potential (ERP). The 

electrophysiological data time-locked to specific stimulus events, may reflect the rapid underlying 

perceptual and cognitive processes because of its high temporal resolution and real-time imaging 

(Bentin, Mouchetant-Rostaing, Giard, Echallier & Pernier, 1999; Fonaryova Key, Dove & Maguire, 

2005). In this study which aimed to investigate early orthographic processes, these covert cognitive 

processes might have been overlooked without the use of ERP.  

In our experiment, the three ERP components chosen were N1, P2 and N400 measured in 

the occipital region, frontal region, and central-parietal region respectively. While the N400 
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component would only be analyzed for its lexicality effect, both the visual N1 and P2 involved in 

the early orthographic processing would be analyzed in depth. N1 is functionally associated with 

spatial properties of stimuli (Heinze, Luck, Mangun & Hillyard, 1990). Also, according to Grainger 

and Holcomb (2009), N150 (or N1) reflects visual features processing, and with increased feature 

similarity between the prime and target, more negativity in amplitude is observed. In literature of 

Chinese character processing, N1 was found to be related to radical processing. Hsiao, Shillcock 

and Lavidor (2007) reported that when semantic radicals were located on the left hand side, a 

more negativity of the ERP component N1 was observed at the left hemisphere as compared 

to the right. On the other hand, P2 was associated with graphical processing as Liu, Perfetti 

and Hart (2003) found that the amplitude of P2 was attenuated when graphically-similar prime was 

presented prior to the target. Furthermore, in a study by Kong, Zhang, Kang, Du, Zhang and Wang 

(2010) using a semantic judgment task, a greater positivity of P2 was observed when the prime was 

phonologically similar to the target. Thus, P2 is sensitive to both orthographic and phonologic 

processing in Chinese. The ERP component N400 reveals long term semantic memory use during 

semantic processing and integration (Kutas & Federmeier, 2000). The easier it is to access the 

semantic information in the long term memory, the less negative the amplitude of N400 (Holcomb 

& Grainger, 2009). 

 In the present study, a primed lexical decision task was carried out. The participants had 

to decide whether the target was a real character or not after a brief presentation of the prime. The 

configurations and ‘radicals’ of the primes were manipulated in order to investigate the role played 

by configuration in word recognition. Manipulation of ‘radicals’, apart from referring to the 

manipulation of the orthographic units, also included manipulation of symbols made up by blocks. 

The term ‘radical’ was chosen over ‘component’ so as to avoid confusion with ERP components.  

Conditions involving blocks were included to investigate whether non-linguistic stimulus which 

only specified the spatial relationship would be able to produce a priming effect.  
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In the lexical constituency model, with its consideration given to the radicals and spatial 

relationships among radicals, one would expect the participants to respond fastest to targets if the 

target has the same configuration and radicals as that of the prime; but to respond slowest to targets 

if the target and prime have different configurations and radicals. Also, if configuration has a role to 

play during character recognition, conditions with primes having the same configuration as the 

targets would have a larger negativity at N1 or less positive amplitude at P2 than conditions with 

different configuration. If there is an effect of radical similarity, then conditions with prime having 

the same radicals as the targets would exhibit a P2 with reduced positivity when compared to 

priming conditions with different radicals. Lexicality effect would be observed at N400 in which 

pseudo characters showed a more negative N400 than real characters.  

Method 

Participants   

Thirty-four right-handed native Cantonese-speaking volunteers within the age of 18 to 25 

years old (M = 21.52, SD = 1.60, male: 17, female: 17) were recruited. They all had completed their 

secondary education in local mainstream schools and had not lived outside of Hong Kong for more 

than 2 years. All of them had corrected-to/normal vision, normal hearing, without any neurological 

disorder and indicated no prior history of reading difficulties. Edinburgh Handedness questionnaire 

(Oldfield, 1971) was used to measure handedness. 

Materials   

All the stimuli were of size 5 cm x 4.8 cm and they were presented in yellow, MingLiu 

font on a black background (See Appendix A for the full list of targets and primes). The targets 

included thirty real characters and thirty pseudo characters. The real character targets used 

were less than 80 per million in printed frequency according to Hong Kong Corpus of Chinese 

NewsPaper (HKCCNP) (Leung & Lau, 2011) and the number of strokes of these characters 

ranges from 7 to 16 ( M = 10.77, SD = 2.60). All real character targets used were not regular 
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phonetic compound and each of them consisted of two radicals. The pseudo character targets 

were generated by re-arranging the radicals of the thirty real characters. For example, the 

pseudo character target ‘ ’ was formed by combining the radical of ‘女’ (/neoi5/, girl) and ‘立’ 

(/laap6/, stand) from the real character target ‘姚’ (/jiu4/, handsome) and ‘粒’ (/lap1/, granule) 

respectively. It should be noted that all the pseudo character targets were treated as fillers in this 

experiment and they were stroke-matched to the real-character targets. The primes were created by 

manipulating the two independent variables: (1) the configuration (2 levels: same or different 

configuration), and (2) the radicals (3 levels: symbol, same or different radicals) respective to the 

real character targets. As a results, each target character (e.g. , /jin6/, a steep hill) was paired with 

six types of primes. They were: (1) same configuration-same radical (SCSR) (e.g. ); (2) different 

configuration-same radical (DCSR) (e.g. ); (3) same configuration-different radical (SCDR) 

(e.g. ); (4) different configuration-different radical (DCDR) (e.g. ); (5) same 

configuration-symbol (SCSY) (e.g. ); (6) different configuration-symbol (DCSY) (e.g. ). 

Four of the priming conditions (i.e. SCSR, DCSR, SCDR, DCDR) were pseudo characters with 

total number of instances in which components appearing in legitimate positions in real characters 

matched across the conditions. These four types of primes were stroke-matched to their 

corresponding targets. The symbol conditions were made up of two blocks which resembled the 

definition of structural configuration proposed by Perfetti and Liu (2006).  

Procedure 

A primed lexical decision task was carried out. The participants were seated in front of a 

LCD monitor (16ms per sweep), which was at a distance of approximately 100 cm, in an 

electrically and acoustically shielded room. Each participant underwent 15 practice trials before the 

experiment and was given 360 experimental trials evenly divided into six blocks. The sequence of 

presentation of blocks was randomized across participants and the items within each block were 

pseudo-randomized to avoid consecutive presentation of target characters. Excluding electrode 
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placement procedures, the entire test session lasted about 1.5 hour for each participant. Participants 

were allowed to take breaks in between blocks for as long as they needed. Before the experiment 

began, the participants were instructed to keep their movements and eye blinks minimal, and the 

effects of eye and body movements to the electroencephalography (EEG) signals were also shown 

to them. The experimental trial began with a fixation cross lasting 500 ms, followed by a blank 

page which remained for 500 to 700 ms to reduce the anticipation effect of the subjects. The exact 

duration of the blank page was varied randomly with an average of 600.07 ms. A forward mask 

lasting for 100 ms was then followed sequentially by the presentation of the prime for 48 ms, 

backward mask of 16 ms and the target, which remained on the screen until the participant made a 

response using keypress. Participants were instructed to indicate whether the target was a real 

Chinese character as quickly and accurately as possible. After a response, a blank screen lasting  

500 ms was shown, followed sequentially by a 500 ms ‘eye blink’ cue and another blank screen for 

a random duration within 800 ms to 1000 ms with an average of 896.78 ms. The eye blink cue 

served to signal the participant to blink before the next trial began. A trial sequence is shown in 

Figure 2. The E-prime program was used to present the stimuli and to measure RT and the accuracy 

of the response. Across all the participants, the response hand for lexical decision was 

counter-balanced.  

 

 
 

         
 
 
 
 
 

Figure 2. Experimental trial sequence of the primed lexical decision task 
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EEG recording and pre-processing 

The EEG signals were recorded from 128 Ag/AgCl electrodes (QuikCap, Neuromedical 

Supplies, Sterling, USA) with a common vertex reference electrode located between electrodes 63 

(Cz) and 64 (CPz), and the ground electrode positioned anterior to electrode 60 (Fz) on the 

forehead. Two electrodes placed on the supra- and infraorbital ridges of the left eye was to 

measure vertical eye movements (VEOG) while the horizontal eye movements (HEOG) were 

measured by another pair of electrodes placed lateral to the outer canthus of both eyes (see 

Appendix B for the electrode montage). Electrode impedance was maintained below 10 KΩ as 

much as possible. Continuous recording and digitization of the EEG signals at a rate of 1000Hz 

were then followed by the use of SynAmps2 ® (Neuroscan, Inc.) amplifiers at a band-pass filter 

of 0.05-200 Hz to amplify the signals for off-line analysis.  

For the off-line analysis, first, bad channels for each participant were deleted. Then, the 

continuous wave was filtered using a band-pass filter, specifying the low-pass filtered below 30 

Hz and high-pass filtered above 0.05 Hz (zero phase shift mode, 12 dB). Channels that were 

affected by eye blinks were then corrected for each participant. After that, the EEG wave was 

epoched with 400-ms pre-stimulus intervals and 1000-ms post-stimulus onset intervals. Following 

baseline correction which used the pre-stimulus interval (-400 ms - 0 ms), trials with voltage 

variations outside the range of 60 μV or with contamination by eye movements were rejected.  

Finally, data was re-referenced to the average activity across the whole head for further analysis.  

Data analysis  

 The behavioral data of response latencies and percentage of error were submitted to 

within-participant and between-item two-way Analysis of Variance (ANOVAs). The two 

independent variables were configurations (2 levels: same and different configuration) and radicals 

(3 levels: symbols, same and different radicals). In both analysis, post-hoc multiple comparisons 

were adjusted using the Bonferroni correction. The Greenhouse-Geisser () correction was applied 
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when the assumption of sphericity of variance was violated.  

For the analysis of ERPs, the mean amplitudes of the chosen electrodes for each participant 

were computed for investigating the experimental effects. Within-participant three-way ANOVA 

was conducted for each ERP component, with the inclusion of electrode location (left, central, and 

right) as the additional independent variable. When the assumption of sphericity of variance was 

violated, the Greenhouse-Geisser () correction was reported. The significance threshold of 

post-hoc ANOVAs was corrected for multiple comparisons using the Bonferroni adjustment. 

Results 

Behavioral results  

Thirty-three participants provided data for behavioral analysis as one participant was 

eliminated due to technical errors in the E-prime recording. Before the analysis, four trials (out of 

11880 trials, < 0.01%) were eliminated as the response latency either exceeded 3 s or less than 200 

ms. Both participant and item analysis excluded incorrect trials and three items (2 real-character 

targets and 1 pseudo character target) whose error rates were more than 30% across all six 

conditions. This accounted for 8.42% of the trials eliminated. Trials with pseudo character targets 

were treated as fillers, and trials that exceeded ±3standard deviations (0.02%) from the mean of 

each participant were also excluded from the final analysis. Mean response latencies of correct trials 

for each condition are shown in Table 1. 

Table 1.  
Mean response latencies (in ms) in participant analysis and item analysis 

Conditions 
Example Participant Analysis Item analysis 

Prime Target M1 SE M2 SE 
SCSR   566.34 12.72 567.20 5.51 
DCSR   578.18 13.56 578.49 5.66 
SCDR   597.92 13.08 600.97 7.79 
DCDR   587.04 13.63 586.52 4.81 
SCSY   565.22 12.65 567.21 6.01 
DCSY   572.65 15.01 574.45 8.64 
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The results showed a main effect of radical similarity, F1 (2, 64) = 29.18, p < .05,   

ηp
2 = .48; F2 (2, 162) = 2.24, p < .05, ηp2

 = .09, thus suggesting that response latencies were 

affected by the units presented in the prime. Bonferroni post hoc tests revealed that targets 

were responded to significantly faster (p < .05) when primes shared the same radicals (M1 = 

572.26, SE = 12.82; M2 = 572.84, SE = 3.99) than ones that had different radicals (M1 = 

592.48, SE = 13.13; M2 = 593.74, SE = 4.64). Similarly, targets were also responded to 

significantly faster (p < .05) when the primes were symbols (M1 = 568.93, SE = 13.67; M2 = 

570.83, SE = 5.24) than when they had different radicals. The comparison between primes 

with symbols and primes with same radicals as the target was not significant (p = 1.00). The 

main effect of configuration was non-significant, F1 (1, 32) = .76, p = .39, ηp
2 = .02; F2 (1, 

162) = 0.65, p = .80, ηp
2 = .00, thus indicating that response latencies were not affected by the 

similarity or difference of the configurations between the primes and targets.  

The interaction effect of configuration and radical was found to be significant in the 

participant analysis, F1 (1.63, 52.05) = 5.72, p < .05, ηp
2 = .15, ε = .81, but not in the item 

analysis F2 (2, 162) = 2.24, p < .11, ηp
2 = .03. Further one-way ANOVAs with the alpha (α) 

level adjusted to 0.02 were carried out to compare the effects of configuration among same 

radicals, different radicals and symbols. Even though none of the three comparisons was 

significant, the results showed that the effect of configuration was approaching significance 

when linguistic units were used in the primes. Targets in the same configuration as the primes 

were faster to respond to than in different configuration when targets and primes shared the 

same radicals (F1 (1, 32) = 4.10, p = .05, ηp
2 = .11; F2 (1, 54) = 2.04, p = .16, ηp

2 = .04), and 

when they shared different radicals F1 (1, 32) = 4.91, p = .03, ηp
2 = .13; F2 (1, 54) = 2.49, p 

= .12, ηp
2 = .04. However, the effect of configuration was far from being significant when 

symbols were used as primes, F1 (1, 32) = 2.37, p = .13, ηp
2 = .07; F2 (1, 54) = 0.47, p = .50, 

ηp
2 = .01, suggesting that nonlinguistic stimuli were processed differently from linguistic 
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materials. Therefore, the symbol conditions (i.e. SCSY, DCSY) were removed from further 

participant and item analysis.  

A two-way ANOVA with radical similarity (same or different) and configurations (same 

or different) as independent variables were then carried out. The results again showed the main 

effect of radical similarity, F1 (1, 32) = 41.06, p < .05, ηp
2 = .56; F2 (1, 108) = 11.95, p < .05, 

ηp
2 = .10. Participants were significantly faster to recognize the character when the prime 

and target shared the same radicals (M1 = 572.26, SE1 = 12.82; M2 = 572.84, SE = 3.99) then 

when the prime and target shared different radicals (M 1= 592.48, SE = 13.13; M2 = 593.74, 

SE = 4.64). No main effect of configuration was observed, F1 (1, 32) = .02, p = .89, ηp
2 

= .00; F2 (1, 108) = 0.07, p = .79, ηp
2= .00, suggesting that manipulating the configuration 

between primes and targets did not affect character recognition.  

An interaction effect of radical similarity and configuration was revealed, F1 (1, 32) 

= 7.67, p < .05, ηp
2 = .19; F2 (1, 108) = 4.53, p < .05, ηp

2 = .04. Post-hoc multiple comparisons 

with alpha (α) level adjusted to .008 showed that the effect of the radical similarity was only 

manifested when the prime and target was in the same configuration (p1 < .008; p2 < .008). This 

is evidenced by targets of the SCSR priming condition were responded to significantly faster than 

targets in the SCDR priming condition. Other than that, the targets in the SCSR priming condition 

were significantly faster (p1 < .008; p2 = .01) responded to than in the DCDR priming condition; 

also, participants were significantly faster (p1 < .008; p2 = .02) to recognize the targets in the 

DCSR condition than in the SCDR condition. No other significant comparisons were observed 

(all p’s > .008) (see Appendix C for a summary of all the planned comparisons).  

The error rate was subjected to participant and item analysis (see Appendix D for a table 

of the mean error rates). Both analyses showed that the error rate was not significantly affected by 

radical similarity, configuration or the interaction of radical and configuration of the prime (all p’s 

> .05).  
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In sum, the behavioral results indicated a main effect of radical similarity and interaction 

of configuration and radical. Characters that shared similar radicals to their primes were faster to 

respond to than target characters with different radicals to their primes. This radical similarity 

effect was only manifested when the primes and targets were of the same configuration.  

Event-related Potential Results 

Visual inspection of ERP waveforms and peaks 

All ERP responses to the real character targets presented after different priming conditions 

were averaged and used to observe the general morphology of the ERP waveform. Figure 3 and 5 

illustrated the grand average ERP’s waveforms in micro Volts (μV) across the time course of 

prime and target from the chosen electrodes (34, 42, 51, 61, 63, 68, 77, 89, and 97) to represent 

the N1, P2 and N400 components respectively. It should be noted that the grand average 

waveforms were plotted with the positive voltages in the downward direction. As shown in 

Figure 4 (bottom), the N1 component peaked in the occipital regions at approximately 110 ms, 

thus a time window of 80 ms to 140 ms was selected in the left (42), middle (68) and right (97) 

electrode sites to calculate the mean amplitude across conditions for each participant. The 

positive-going P2 component found at the centrofrontal region, see Figure 4 (middle), which 

peaked at approximately 255 ms and thus, a time window of 225 to 285 ms was chosen for 

electrodes 34, 61, and 89. After these early components, a smaller negative-going potential at the 

central region reflecting the N400 component, peaked at 320 ms. A time window of 290 to    

490 ms was selected at electrodes 51, 63, and 77 for analysis. Visual examination of the whole 

head topographical plots illustrated in Figure 4 and 6 confirmed the regions of brain activation 

during those specified time windows for the ERP components N1, P2 and N400 respectively.  

The priming conditions involving symbols (SCSY, DCSY) were not analyzed because the 

behavioral analysis indicated that there was no significant priming effect by symbols, and it was 

suspected that the processing of nonlinguistic stimuli (i.e. blocks as primes) was inherently 
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different from the processing of linguistic stimuli (i.e. pseudo or real-characters). Indeed, this was 

confirmed by visual examination of the topographical plot and ERP waveform in Appendix E (see 

also Maurer, Brandeis & McCandliss, 2005). 
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Figure 3. Grand average waveform of the N1 and P2 components under different priming
 conditions at posterior and centrofrontal regions during 80-140 ms and 225-285 ms
 respectively.  

Note: FM = forward mask, BM = backward mask, P = the presentation of the prime. 
 

 

 
Figure 4. Topographical plots showing activity in different priming conditions. 
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Figure 5. Grand average waveforms at central region during 290 to 490 ms when real
 character and pseudo character were used as targets.  

Note: FM = forward mask, BM = backward mask, P = the presentation of the prime. 
 

 

 
Figure 6. Topographical plots showing activity when different types of targets were used. 

 

N1 (80-140ms) 

For the N1 component, the three-way repeated measures ANOVA showed a main effect of 

configuration, F (1, 32) = 1.57, p < .05, ηp
2 = .60, whereby primes sharing the same 

configuration as the targets (M = -3.83, SE = 0.52) had a more negative amplitude than 

primes having different configuration from the targets (M = -2.90, SE = 0.50). No main 

effects of electrode location, F (2, 64) = 0.16, p = .85, ηp
2 = .01, and radical similarity effect 

were observed, F (1, 32) = 1.57, p = .22, ηp
2 = .05.  

There was a two-way interaction between electrode location and configuration, F (2, 

64) = 6.08, p < .05, ηp
2 = .16. With alpha (α) level adjusted to 0.02 for multiple comparisons, 

Real Pseudo 

N400 
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further analyses of one-way ANOVAs at each electrode site found a significant difference 

between the same configuration and different configuration conditions at electrode site 42, F 

(1, 32) = 23.56, p < .02, ηp
2= .424, at electrode site 68, F (1, 32) = 29.16, p < .02, ηp

2 = .48 

and electrode site 97, F (1, 32) = 46.67, p < .02, ηp
2 = .59. The effect size (ηp

2) was the largest 

at the right electrode 97, thus indicating that the effect of configuration was manifested most 

profusely there. In the other two-way interaction, the results indicated a significant electrode 

location by radical similarity interaction, F (1.67, 55.33) = 4.98, p < .05, ηp
2 = .16, = .83. 

Post-hoc one-way ANOVA at each electrode location showed a significant radical similarity 

effect at the left electrode site 42, F (1, 32) = 9.02, p < .02, ηp
2 = .22, whereby the amplitude 

of the evoked potential was more negative when primes had the same radicals as the targets 

(M = -3.60, SE = 0.55) than primes had different radicals from the targets (M = -3.12, SE = 

0.50). No significant radical effects at electrode site 68, F (1, 32) = .39, p = .54, ηp
2 = .01, and 

electrode site 97, F (1, 32) = .01, p = .94, ηp
2 = .00 were found.   

Three-way interaction among electrode, configuration and radical similarity was also 

observed, F (2, 64) = 4.66, p < .05, ηp
2 = .13. Figure 7 illustrated the relationship of the four 

priming conditions at each electrode location. Post-hoc configuration by radical similarity 

ANOVAs for each electrode location was administered. At all three electrode locations (42, 

68, 97), the main effects of configuration were observed, F42 (1, 32) = 23.56, p < .05, ηp
2 

= .42; F68 (1, 32) = 29.16, p < .05, ηp
2 = .48; F97 (1, 32) = 46.67, p < .05, ηp

2= .59. The evoked 

potential amplitude in conditions using primes with same configuration as the targets (M42 = 

-3.73, SE = 0.53; M68 = -3.89, SE = 0.54; M97 = -3.89, SE = 0.65) was always more negative 

than primes with different configurations from the targets (M42 = -2.99, SE = 0.52; M68 = 

-3.10, SE = 0.54; M97 = -2.64, SE = 0.59). However, only at the left electrode 42 was the main 

effect of radical similarity indicated, F (1, 32) = 9.02, p < .05, ηp
2 = .22, where a more 

negative amplitude was evoked in conditions with primes having the same radicals as the 
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targets (M = -3.60, SE = 0.55) than primes with different radicals (M = -3.12, SE = 0.50). 

P2 (225-285ms)  

For the P2 ERP component, the results showed significant main effect of electrode, F 

(2, 64) = 11.62, p < .05, ηp
2 = .27. Post-hoc pairwise comparisons revealed that the evoked 

potential had a smaller positivity at the central electrode 63 (M = 1.18, SE = 0.49) than the 

left electrode 34 (M = 2.00, SE = 0.47) ( p <.05)and the right electrode 89 (M = 1.86, SE = 

0.39) (p < .05). No other significant comparisons and effects were observed (all p’s > .05). 
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Figure 7. Mean Amplitude and Standard Error of the four priming conditions at the 3
 electrode sites (i.e. 42, 68, 97) of the N1 component between 80-140 ms.  

 

N400 (290-490 ms)  

For the N400 ERP component, a significant main effect of electrode was found, F 

(1.07, 34.14) = 59.39, p < .05, ηp
2 = .65, = .53. Post hoc pair-wise comparisons indicated 

that the amplitude of the evoked potential was most negative going at the right electrode 77 

(M = -5.97, SE = 0.78), followed by the central electrode 63 (M = 1.98, SE = 0.44) and left 

electrode 51 (M = -0.36, SE = 0.43). The amplitudes at these electrode sites were all 

significantly different from each other (all p’s < 0.05). Also, the main effect of lexicality has 

also approached significance, F (1, 32) = 4.33, p < .05, ηp
2 = .12. The evoked potential 
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amplitude of pseudo characters (M = -0.54, SE = 0.25) were more negative than real 

characters (M = -0.36, SE = 0.29). In addition, a significant interaction between electrode and 

lexicality was found, F (1.24, 39.76) = 5.86, p < .05, ηp
2 = .16, = .62. With alpha level 

adjusted to 0.02 to account for multiple comparisons, post-hoc one-way repeated measures 

ANOVA at each electrode location was conducted. Significant lexicality effect was found at 

the central electrode 63, F (1, 32) = 9.15, p < .02, ηp
2= .22 where the amplitude evoked by 

pseudo characters (M = 1.74, SE = .43) was more negative going than that of real characters 

(M = 2.22, SE = .47). No significant lexicality effect was found at the left electrode 51, F (1, 

32) = 4.57, p = .04, ηp
2 = .13, and the right electrode 77, F (1, 32) = 2.23, p = .15, ηp

2 = .07.  

To summarize the main ERP findings, the N1 component indicated a main effect of 

configuration at all three electrode sites, and the interaction effect of electrode and 

configuration demonstrated that the configuration effect was strongest at the right electrode 

97. Primes sharing the same configuration with the targets elicited a more negative N1 than 

primes with different configuration. Moreover, the two-way interaction of electrode and 

radical showed that the effect of radical similarity was only exhibited at the left electrode 42. 

The amplitude of the evoked potential was more negative for primes sharing the same 

radicals with the target than primes with different radicals. The three-way interaction of 

electrode, radical and configuration revealed the separate effects of radical similarity and 

configuration at electrode 42. At N400 component, a main effect of lexicality and an 

interaction effect of lexicality and electrodes were observed. The results showed that pseudo 

character targets elicited a more negative-going potential than the real character targets at the 

central electrode site 63 but not at the left electrode 51 and the right electrode 77. 

Discussion 

The main purpose of this study was to investigate whether structural configuration is 

involved in character processing and how it contributes to visual recognition of Chinese. This 
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was done by collecting behavioral data on response latency, and using the early ERP 

components N1 and P2 as indicators of orthographic processing. The behavioral results 

demonstrated that lexical judgment was faster when prime and target shared the same radicals 

than when they did not. Lexical judgment was also significantly affected by the interaction 

between radical and configuration, in which the effect of radical similarity was only 

manifested when the primes had the same configuration as the targets. These results suggest 

that radical and configuration have an interdependent relationship. Interestingly, the ERP 

results seem to suggest otherwise. Strong configuration effect was found at the N1 

component in left, middle and right electrodes. Furthermore, the N1 component also revealed 

significant three-way interaction, indicating independent effects of configuration and radical 

similarity in the left posterior occipital-temporal region (electrode 42).  

An effect of configuration was observed at the posterior regions during 80 - 140 ms 

post onset of target with a slightly greater effect at the right electrode site than the left. 

Greater negativity was elicited when prime had the same configuration as that of the target, 

thus implying an enhanced activation of the target which required less effort to process. This 

result is concordant with previous work on alphabetic script that N1 (or N170) reflects visual 

word form processing (Simon, Bernard, Largy, Lalonde & Rebai, 2004) and orthographic 

discrimination (Bentin et al., 1999). However, while left-lateralized hemispheric dominance 

for orthographic processing but right dominance for non-orthographic processing were 

reported in alphabetic scripts (Bentin et al., 1999), the configuration effect found in the 

present study was greatest in the right hemisphere. This is unsurprising because processing of 

structural configuration requires holistic processing of the spatial organization which the right 

hemisphere is more superior in (Ellis, Young, & Anderson, 1988).  

In contrast, the effect of radical was found at the left posterior region during 80-140 

ms. When the prime and target share the same radicals, greater amplitude of the N1 
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component was observed. This represents an increased activation of and less effort to process 

the target. It should be highlighted that even though the pseudo character prime may share the 

same radicals with the target, the positions of the radicals in primes and targets were always 

different. For instance, if the target was  (/jiu4/, handsome), with the radicals ‘女’ (/neoi5/, 

girl) and ‘兆’ (/siu6/, sign), then the two priming conditions with the same radicals as the 

target would be SCSR (e.g. ) and DCSR (e.g. ). According to Dufau, Grainger and 

Holcomb (2008), N1 is sensitive to even slight positional difference of letter strings between 

primes and targets, and this difference of letter locations resulted in less negativity in N1. 

Therefore, it is reasonable to argue that the priming observed in this study was not due to 

mere visual overlap of similar features but rather, the effect of the radicals as a processing 

unit. The notion that N1 is able to reflect linguistic process is supported by McCandliss, 

Posner and Givon (1997) on visual word learning.  

While the role of radicals in character recognition has been reported, the realization of 

the effect was different from the observation of this study. Liu, Perfetti and Hart (2003) found 

‘graphic similarity (p. 1242)’ effect which originated from shared radicals at P200 (or P2) in 

the occipital and pre-central motor areas instead of N1. Yet, in this study, no radical 

similarity effect was found at P2. This discrepant finding might be due to the experimental 

tasks they used in which meaning or pronunciation judgments were made. In their task, a 

character was first presented for 140 ms, which allowed sufficient time for phonological 

processing to take place, before the presentation of the target character for the participant to 

make judgment. As Hsu, Tsai, Lee and Tzeng (2009) found phonological consistency effect 

at P2, the findings of Liu et al. (2003) might be due to orthographic or phonological 

processing instead of radical effect alone.  

Lexicality effect was observed at N400, in which pseudo character targets elicited a 

larger N400 amplitude than real character targets. This implies more effort was required to 
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process the pseudo character targets than the real character targets. The lexicality found is 

compatible with past findings (Holcomb, Grainger & O'Rouke, 2002; Kiyonaga, Midgley, 

Holcomb & Grainger, 2007) and thus, validated the results of the lexical judgment task.  

The findings of the present study are generally compatible with the Lexical 

Constituency Model (Perfetti et al., 2006) in that the model postulates the roles played by 

radical and configuration. However, it specifies that character in the orthography level is only 

activated by ‘radical written in the sequence specified in the radical slot’ (Perfetti et al., 2005, 

p. 49). In other words, it is the combined effect of configuration and radical which sends 

activation to the orthography level. However, our findings clearly demonstrate independent 

effects of configuration and radical. Therefore, to accommodate our observation, the LCM 

will have to be modified by separating the input (radical) level into input by configuration 

and radical. This is illustrated in Figure 8.  

 

 

Figure 8. A modified Lexical Constituency Model (LCM) (Perfetti & Liu, 2006) 
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As shown in Figure 8, configuration and radical send separate activation to the 

orthography level. In this framework, it is assumed that the activation elicited by radical is 

stronger than that of configuration. This is so assumed despite the ERP results showing a 

strong configuration effect. We propose that because activation from configuration, e.g. the 

left-right configuration, is distributed to a large pool of characters as more than 60% of 

Chinese characters (Lui et al., 2010) contain that configuration. However, the activation from a 

radical is only distributed to a selected and limited group of characters containing that radical. 

Therefore, information of the configuration and the radicals is extracted from the 

prime, and sends separate activation to the orthography level. Relevant information from the 

prime will then be assimilated with the information of the target stimulus. For instance, for 

the target stimulus ‘ ’ (/jiu4/, handsome), the SCSR pseudo character prime ‘ ’ activates 

characters with the same left-right configuration at the orthography level like ‘佔’ (/zim3/, 

occupy), 媽 (/maa1/, mother). At the same time, the prime also activates characters with one 

or more identical radicals like ‘姚’ (/jiu4/, handsome), ‘媽’ (/maa1/, mother), ‘窕’ (/tiu5/, 

slim). Relative to the other characters like ‘媽’ and ‘窕’ which only consist of one identical 

radical with that of the prime, the target ‘姚’ receives more activation because it contains 

both identical radicals as the prime. In other words, in the SCSR priming condition, the target 

‘姚’ receives activation from configuration and also, from both radicals of the prime. This 

results in the SCSR priming condition having the fastest latency response behaviorally among 

the four conditions, and also, significantly faster than conditions with different radicals like 

the SCDR and DCDR conditions.  

The response latency of the DCSR priming condition was also found to be 

significantly faster than that of the SCDR condition. In the DCSR condition where the pseudo 

character ‘ ’ is used as prime and ‘姚’ as target, characters with the top-bottom 
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configuration will be activated, like ‘委’ (/wai2/, appoint), ‘窕’ (/tiu5/, slim); and also, 

characters with the same radicals will be activated, like ‘委’, ‘窕’, ‘姚’. Even though the 

character ‘委’ and ‘姚’ both receives two sources of activation, because of the assumption 

that radical sends stronger activation, the target‘姚’is the most activated as it receives 

double activation from both radicals of the prime as compared to 委, which receives 

activation from the radical‘女’(/neoi5/, girl) and configuration. On the other hand, in the 

SCDR condition where the pseudo character‘ ’is used as a prime, the target only receives 

activation from the configuration. Therefore, as radical provides greater facilitation, the 

DCSR condition was significantly faster than that of the SCDR condition.  

Having argued for the more important role of the radical in lexical processing, it is 

intriguing that the DCSR and DCDR priming condition were not significantly different. 

However, we also note that the difference between the two conditions barely missed the 

significance threshold when adjusted for multiple comparisons (p = 0.008).  

Indeed, the present findings converge with studies which observed the role of 

configuration (Yeh & Li, 2002). The more salient configuration effect in Yeh and Li (2002), 

compared to the subtle effect in this study, may be due to the more perceptually-driven visual 

search task they used. Thus, the theoretical implications of this study not only acknowledge 

the subtle role played by structural configuration during character recognition, but also 

contribute to the investigation of position specificity of radical. Furthermore, models that do 

not postulate the role of configuration, for instance, like the Multi-Level 

Interactive-Activation Model proposed by Taft (2006), may not be able to accommodate the 

findings from the present study.  

Limitation of the present study and future research 

One experimental limitation of this study may be the limited trials left for analyzing 
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the P2 component after artifact rejection. This may account for the null effects of radicals and 

configuration observed at P2. Presently, the configuration effect was only manifested at N1 

but not at other components. If a manifestation of this effect was found at P2 or even N400, a 

stronger account of configuration being involved in character recognition but not at low-level 

perceptual processes which were usually reflected by N1, could be formulated. Therefore, to 

further our understanding of the possible roles played by configuration, more participants 

should be recruited in future study using the same experimental paradigm.  

Conclusion 

The ERP and behavioral results complemented each other and confirmed the role 

played by configuration and radicals in character recognition. This has subsequently led to a 

modification to the LCM proposed by Perfetti et al. (2006) to accommodate the separate 

activation by configuration and radicals. The present findings and its theoretical implications 

no doubt enrich and enhance our understanding of lexical processing of Chinese characters.
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APPENDICES 

Appendix A: A table of target words and primes used in the lexical decision task. 

 

Target  Priming conditions 

Real Pseudo  SCSR DCSR SCDR DCDR SCSY DCDY
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Appendix B: Electrode montage 

 
Note. The filled black dots indicate the electrodes used for analysis of N1 component (electrode 
42, 68, 97), P2 component (electrode 34, 61, 89) and N400 component (electrode 51,63,77). The 
filled grey dots indicate the reference electrode (REF) and the ground electrode (GND). 
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Appendix C: Post-hoc multiple comparisons with mean difference (Mdifference) in ms between 

conditions and the significance level (p) of the difference 

 

Pairwise 

comparisons 

Participant analysis Item analysis 

Mdifference  Sig. (p) Mdifference  Sig. (p) 

SCSR vs SCDR -31.58  0.00 * -33.77  0.00 * 

SCSR vs DCSR -11.84  0.05  -11.29  0.16  

SCSR vs DCDR -20.70  0.00 * -19.32  0.01  

SCDR vs DCDR 10.88  0.03  14.45  0.12  

DCSR vs DCDR -8.86  0.06  -8.03  0.29  

DCSR vs SCDR -19.74  0.00 * -22.477  0.02  

Note. *p < 0.008
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Appendix D: A table showing the mean error rates (%) in participant analysis and item analysis 

 

Conditions 
Example Participant Analysis Item analysis 

Prime Target M1 SE M2 SE 
SCSR   8.19 0.86 7.47 1.40 
DCSR   7.76 0.79 7.90 1.36 
SCDR   8.08 0.73 7.47 1.24 
DCDR   6.91 0.78 6.06 1.03 
SCSY   7.28 0.77 7.47 1.49 
DCSY   7.44 0.86 6.39 1.19 
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Appendix E: (1) Grand average waveforms at posterior region and (2) topographical plots 

showing activity during 290 to 490 ms when symbols and radicals were used as primes.  
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Note: FM = forward mask, BM = backward mask, P = the presentation of the prime. 
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