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Abstract 

This paper proposes an analytical urban system equilibrium model for optimizing the density 

of radial major roads in a two-dimensional monocentric city. The proposed model involves 

four types of agents: local authorities, property developers, households and household 

workers (i.e. commuters). The local authorities aim to maximize the total social welfare of the 

urban system by determining the optimal density of radial major roads in the city. The 

property developers seek to determine the intensity of their capital investment in the land 

market to maximize the net profit generated from the housing supply. The households choose 

residential locations that maximize their utility within a budget constraint, and the commuters 

choose the radial major roads that minimize their individual costs of travel between home and 

workplace. A heuristic solution procedure is developed to find the urban system equilibrium 

solution. A system optimum model is also proposed to optimize the density of radial major 

roads that maximizes the social welfare of the urban system. The proposed model can 

endogenously determine household residential distribution and land values across the city, 

along with the housing market structure in terms of housing prices and space. Numerical 

comparative static analyses of congestion pricing and road infrastructure investment (adding a 

new radial major road) are carried out together with evaluation of the effects of the service 

level of radial major roads, urban population size, and household income level on the urban 

economy. 

 

Keywords: Two-dimensional monocentric city; density of radial major roads; urban system 

equilibrium; household residential location choice; housing market; congestion pricing. 
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1. Introduction 

 

Many of the large modernized cities in China such as Beijing, Shanghai and Wuhan have 

dramatically increased in size in recent years as a result of China’s rapid urbanization and 

economic growth. This rapid urban expansion has led to a more decentralized urban structure, 

longer average journey length, increased use of private cars, and higher level of traffic 

congestion, particularly within metropolitan areas. In response, local authorities have 

launched a number of transportation infrastructure improvement projects to increase 

accessibility to the city center and alleviate urban traffic congestion, including the 

construction of radial major roads designed to connect the city’s central business district 

(CBD) to its suburban areas, as shown in Fig. 1. For example, the Wuhan municipal 

government recently approved a proposal to build a new radial major road with a total length 

of 15 kilometers to connect Gedian new town to Guanshan (Wuhan’s CBD). Construction for 

this road project began in January 2012 and will be completed at the end of 2013. 

 

The introduction of a new radial major road is expected to increase the capacity of a city’s 

transportation system and improve the accessibility of its central area. Accordingly, the new 

radial major road can influence commuters’ road choices, which affect the traffic flows and 

traffic congestion level on the major roads. However, the construction of a new major road 

also involves a huge capital cost. The planning and design of city’s radial major roads thus 

involve important welfare considerations. Specifically, an oversupply of major roads can lead 

to wastage of resources due to an inefficient use of road space. An undersupply of roads, in 

contrast, can result in traffic jams generated by a lack of sufficient road capacity to 

accommodate travel demand. This raises an interesting question: what is the optimal density 

(or number) of radial major roads in terms of the total social welfare (or surplus) of an urban 

system, particularly when the city boundary is expanding? The answer has long-term 

implications for sustainable urban development, especially in rapidly expanding Chinese 

cities such as Beijing, Shanghai and Wuhan. 

 

To address this important urban development issue, advanced urban spatial models must be 

developed to help explain and evaluate the effects of different densities of radial major roads 

on the urban economy. In the classical urban models that were developed by Alonso (1964), 

Mills (1972) and Muth (1969), the urban transportation network was assumed to be a 
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perfectly divisible dense system consisting of an infinite number of radial roads. These 

traditional urban models cannot be used to investigate the design issue of the density (or 

number) of urban radial major roads and evaluate the impact of adding a new radial major 

road on the urban economy. One has thus to turn to a model that considers the urban structure 

as a sparse system of discrete radial roads. In this regard, Anas and Moses (1979) conducted a 

pioneering work. In their work, it was assumed that commuters either travel straight along 

dense surface streets to the city center or travel along circular dense surface streets to a radial 

road (i.e. an expressway) and then travel along the radial road to get to the city center (i.e. a 

circumferential-radial or ring-radial travel method). It was also assumed that the urban form 

was symmetric (i.e. the radial roads were evenly distributed along the circular city) and there 

was no traffic congestion on the radial roads. The ring-radial travel method that they proposed 

is useful for modeling a discrete-continuous urban system (e.g., see Baum-Snow, 2007). 

However, the symmetry and congestion-free assumptions may cause a significant bias in the 

prediction capability of the model, and thus restrict its applications in practice. For example, 

congestion pricing issues cannot be addressed under the congestion-free assumption. 

 

D’Este (1987) relaxed the assumptions of a symmetric city that is free of congestion, and 

proposed a trip assignment model using the ring-radial travel method of Anas and Moses 

(1979) to model commuters’ radial major road choices in a two-dimensional monocentric city 

with a small number of radial major roads. Wong (1994) reformulated D’Este’s trip 

assignment model as a mathematical programming problem. These two studies assumed that 

the distribution of residential areas in the city was exogenously given and fixed. However, 

studies have shown that the improved accessibility to road travel resulting from transportation 

infrastructure improvements (e.g. introducing a new radial major road) can induce changes in 

urban land-use patterns, land values and the housing market (in terms of housing prices and 

space) (e.g., see McDonald and Osuji, 1995; Henneberry, 1998; O’Sullivan, 2000; Mikelbank, 

2004; Ho and Wong, 2007; Li et al., 2012b). Accordingly, introduction of a new major road 

may change a city’s household residential location choices and residential distribution, which 

can in turn affect the travel demand on the urban road network and thus the local authorities’ 

decisions regarding whether to introduce new major roads into the system. Therefore, the 

effects that a new transportation infrastructure will have on a city’s household residential 

location choices, land values and housing market must be considered in the planning and 

design of new radial major roads of urban systems. 
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To account for these effects in the urban planning, this paper proposes an analytical model for 

investigating the design issue of the density (or number) of radial major roads in a 

two-dimensional monocentric city (not necessarily symmetric), as shown in Fig. 1. This paper 

makes two major extensions to the related literature. First, an urban system equilibrium 

problem is formulated to model the interactions among the following four types of agents: 

local authorities, property developers, households and household workers (i.e., commuters). 

The traffic congestion effects on the radial major roads are explicitly considered, and the 

household residential distribution and land values across the city along with the structure of 

the housing market in terms of housing prices and space can endogenously be determined. A 

heuristic solution procedure is also presented to solve the urban system equilibrium problem. 

Second, a system optimum model for optimizing the density of radial major roads is proposed 

to maximize the urban system’s total social welfare. With use of the proposed model, 

numerical comparative static analyses of congestion pricing and road infrastructure 

investment (i.e. adding a new radial major road) are conducted. In addition, the effects of road 

level of service (LOS), urban population size and household income level on the urban system 

are also examined. 

 

The remainder of this paper is organized as follows. The next section describes the model’s 

basic assumptions. Section 3 formulates the equilibrium of the urban system, which includes 

the commuters’ route choice equilibrium, the household residential location choice 

equilibrium and the housing demand-supply equilibrium. A heuristic solution approach is 

developed to solve the urban system’s equilibrium problem. Section 4 proposes a system 

optimum model for optimizing the density of radial major roads in a two-dimensional 

monocentric city. Section 5 uses a numerical example to illustrate the applications of the 

proposed model. In particular, comparative static analyses of some policy parameters are 

conducted. Finally, Section 6 concludes the paper and provides recommendations for further 

study. 

 

2. Basic assumptions 

 

To facilitate the presentation of essential ideas without loss of generality, this paper makes the 

following basic assumptions. 
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A1 The urban system is assumed to be a radial, closed and monocentric city, in which the total 

population or number of households is exogenously given and fixed and all job opportunities 

are located in a highly compact city center or CBD. It is further assumed that all of the land 

within the city boundary is owned by absentee landlords and that the value of the land 

at/beyond the city boundary is equal to the agricultural rent or opportunity cost of the land. 

These assumptions have been widely adopted in the field of urban economics (e.g., Alonso, 

1964; Muth, 1969; Mills, 1972; Fujita, 1989; O’Sullivan, 2000; Kraus, 2006; McDonald, 

2009). 

 

A2 There are four types of agents in the urban economy: local authorities, property developers, 

households and commuters. Local authorities aim to optimize the density (or number) of 

radial major roads in the city to maximize the urban system’s total social welfare. The 

property developers determine the intensity of their capital investment in the land market to 

maximize the net profit generated by the supply of housing. Each property developer is 

assumed to adopt Cobb-Douglas behavior for the housing production function (e.g., 

Beckmann, 1974; Quigley, 1984; Brueckner, 2007). 

 

A3 All households are assumed to be homogeneous, implying that the income level and utility 

function are identical for all households. Each household has a Cobb-Douglas utility function 

and the household income is spent on transportation, housing and non-housing goods. The 

objective of each household is to maximize its own utility by choosing the optimum 

residential location, area of housing space and amount of other goods within the household’s 

budget constraints (e.g., Solow, 1972, 1973; Beckmann, 1969, 1974; Anas, 1982; Fujita, 

1989). 

 

A4 Similar to Anas and Moses (1979), D’Este (1987) and Wong (1994), it is assumed that 

commuters traveling from their home locations to workplaces in the CBD first travel along 

the minor ring road that passes their particular home locations to reach a radial major road, 

and then proceed along the major road to reach the city center, which constitutes a ring-radial 

routing system (see Fig. 1). It is also assumed that each commuter chooses the ring-radial 

route that minimizes his/her travel cost, thereby leading to a Wardrop’s user equilibrium for 

route choice. 

 

A5 This paper mainly focuses on the commuters’ journeys between their homes and their 
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workplaces, which are compulsory (or obligatory) trips. The average number of commuters 

(or workers) per household is assumed to be exogenously given and fixed, and is represented 

as  . Every day, each worker completes one two-way commuting journey between his/her 

place of residence and a workplace located in the CBD. Thus, the average daily number of 

trips to the CBD per household is  . For example, 1   indicates that each household 

makes an average of one trip to the CBD per day. The assumption that there is one commuter 

per household has also been adopted in previous related studies (e.g., Anas and Xu, 1999; 

Song and Zenou, 2006; Li et al., 2012a,b,c). 

 

3.  Equilibrium of the urban system 

 

According to A2, there are four types of agents in the urban system: local authorities, property 

developers, households and commuters. The interactions among these agents lead to a number 

of interrelated equilibria: the commuters’ ring-radial route choice equilibrium, the household 

residential location choice equilibrium and the housing demand-supply equilibrium. We 

formulate these respective equilibria in the following subsections. 

 

3.1. Commuters’ route choice equilibrium 

 

3.1.1. Travel cost 

 

As shown in Fig. 1, i represents the ith radial major road and M is the total number of radial 

major roads in the city. Let x be the radial distance of a location from the CBD and i  the 

angle of a location from the nearest radial road i. The travel cost from location ( , )ix   to the 

CBD via radial major road i is defined as ( , )i ix  , which consists of the time and monetary 

costs of travel on the ring-radial routing system, i.e., 

( , ) ( , ) ( , )i i i i i ix T x C x       , (1) 

where ( , )i iT x   and ( , )i iC x   are the travel time and the monetary cost from location 

( , )ix   to the CBD via radial major road i, respectively.   is the value of travel time, which 

is used to convert the travel time into equivalent monetary units. 
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According to A4, the travel time ( , )i iT x   consists of the time taken to travel distance x from 

the CBD along radial major road i and the time taken to travel a circular arc with a length of 

ix  along the minor ring road at distance x from the CBD. This is represented as 

0

( , ) ( ) i
i i i

x
T x T x

V


   ,  (2) 

where ( )iT x  is the time required to travel distance x from the CBD on radial major road i and 

0V  is the average vehicle travel speed on the minor ring road. 

 

Travel time ( )iT x  depends on the level of traffic congestion on radial road i. Let  ( )i it Q x  

be the travel time per unit of distance around location x on radial road i, where ( )iQ x  is the 

traffic volume (i.e., the number of commuters) at location x on radial road i.  ( )i it Q x  is 

assumed to be a strictly increasing function of traffic volume ( )iQ x  at location x and can be 

estimated using the following Bureau of Public Roads (BPR) function 

 
2

0 1

( )
( ) 1.0

a

i
i i i

i

Q x
t Q x t a

K

  
    
   

,  (3) 

where 0it  is the free-flow travel time per unit of distance on radial road i, iK  is the capacity 

of radial road i and 1a  and 2a  are positive parameters. 

 

Hence, ( )iT x  can be expressed as 

 
0

( ) ( )
x

i i iT x t Q w dw  ,  (4) 

where ( )it   can be calculated using Eq. (3). 

 

The monetary cost ( , )i iC x   is assumed to be a linear function of the distance traveled, as 

assumed in Wang et al. (2004) and Liu et al. (2009), i.e., 

0 1 2( , )i i i i i iC x c c x c x     ,  (5) 

where 0ic  is the fixed cost of travel (e.g., the parking charge in the CBD per work trip) and 

1ic  and 2ic  are the variable costs (e.g., fuel cost per unit of distance) of travel on the radial 

and ring roads, respectively. 
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Remark 1. (Properties of the travel cost function). The first-order partial derivatives of 

( , )i ix   with regard to x and i , respectively, are given by 

  1 2
0

( , ) ( , ) ( , )
( ) 0i i i i i i i

i i i i i

x T x C x
t Q x c c

x x x V

       
              

 and (6) 

2
0

( , )
0i i

i
i

x x
c x

V

  
  


. (7) 

Therefore, for a given i , ( , )i ix   is a strictly increasing function of the distance between 

x and the CBD. For a given x, ( , )i ix   is a strictly increasing function of i . This implies 

that the travel cost increases outwardly in the direction of the radial major road extensions and 

away from the radial major roads along the minor ring roads. 

 

3.1.2. Boundary contour 

 

As Fig. 1 shows, two adjacent alternative radial major roads in the two-dimensional 

monocentric city, i and i+1, compete for travel demand. A watershed boundary exists that 

divides the area between these adjacent radial roads into two sub-areas. The watershed 

boundary is also called market area boundary in Anas and Moses (1979). For presentation 

purposes, we define iB  as the boundary contour, which divides the travel demand between i 

and i+1 into those who use i and those who use i+1, as shown in Fig. 1. According to A4, 

when an equilibrium state is reached no commuter in the city has an incentive to change 

his/her choice of radial major road when traveling to the CBD. This means that the cost of 

traveling from point iB  on the boundary contour to the CBD using radial roads i and i+1 is 

identical. The travel choice equilibrium can be mathematically expressed as 

1
ˆ ˆ( , ) ( , )i i i i ix x      ,  (8) 

where ˆ ( )i x  is the angle between major road i and boundary contour iB  at distance x from 

the CBD and i  is the angle between radial major roads i and i+1. 

 

From Eqs. (1) and (8), one obtains 

   2 1 2
0 0

ˆ ( ) ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i
i i i i i i i i i

x x x
T x c x x T x x c x x

V V

   
                  

.  (9) 

Thus, ˆ ( )i x  can be expressed as 
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   0
1

2 0

ˆ ( ) ( ) ( )
2 2

i
i i i

i

V
x T x T x

x c V 

 
   

 
,  (10) 

where ( )iT x  can be determined by Eq. (4). 

 

The boundary contours 1 2, ,..., MB B B  can be determined by Eq. (10). The catchment area of 

radial major road i is the sector bounded by 1iB   and iB . 

 

Remark 2. (Property of angle ˆ
i ). Suppose that the variable travel cost 2ic  on any ring road 

is a constant (i.e. 2 2ic c  in Eq. (5)), we then have 
1
ˆ ( )

M

ii
x


   . In fact, summing both 

sides of Eq. (10) from i = 1 to M yields 

   0
1 1

1 1 2 0

ˆ ( ) ( ) ( )
2 2

M M
i

i M
i i

V
x T x T x

x c V 
 

 
   

  .  (11) 

Note that 1 1( ) ( )MT x T x   holds for a circular city. Therefore, Eq. (11) can be reduced to 

1 1

ˆ ( )
2

M M
i

i
i i

x
 


   .  (12) 

Note that 
1

2
M

ii
   . Substituting it into the above equation, one immediately obtains 

1
ˆ ( )

M

ii
x


   .  

 

Remark 2 reveals that the traffic flows on the radial major roads are interdependent; that is, an 

increase in the flow on one radial road leads to a decrease in the flow on another. It should be 

pointed out that the free-flow travel times and capacities (i.e., 0it  and iK  in Eq. (3)) may 

change across the radial major roads due to the roads’ varying geometries, sight distances and 

service levels. Thereby, ˆ ( ) 2i ix    cannot hold. However, when a city is served by evenly 

spaced radial roads with the same free-flow travel times and capacities, as assumed in D’Este 

(1987), then the city’s structure is entirely symmetrical.  

 

Remark 3. If the radial major roads in a city are evenly distributed (i.e., 1

2
i i M


    , 

1, 2,...,i M  ) and have identical travel time functions (i.e., 0 ( 1)0i it t   and 1i iK K  , 

1, 2,...,i M  ), then ˆ ( )
2

i
i x

M

 
   . 



 10

 

3.1.3. Travel demand for each radial major road 

 

Let ( , )iq x   be the hourly density of travel demand (i.e., the number of commuters per unit 

of land area) at location ( , )ix  ,   be the average number of daily trips to the CBD per 

household and   be the peak-hour factor (i.e., the ratio of peak-hour flow to the average 

daily flow), which is used to convert the travel demand from a daily to an hourly basis. 

( , )iq x   can then be defined as 

( , ) ( , ) ( , )i i iq x n x n x       ,  (13) 

where  (  ) is the average number of peak hour trips to the CBD per household and 

( , )in x   is the household residential density at location ( , )ix  , which is defined later. 

 

The hourly travel demand ( )iQ x  at location x on radial major road i can thus be given by 

1 1 1 1

ˆ ˆ( ) ( )

ˆ ˆ( ( )) ( ( ))
( ) ( , ) ( , )

i i i i

i i i i

x w x w

i x w x w
Q x q w wd dw n w wd dw

   

 

     
          ,  (14) 

where ix  is the distance from the city boundary to the CBD (or the city length) along radial 

road i and ˆ
i  is given by Eq. (10). 

 

The first-order derivative of ( )iQ x  with regard to x is 

1 1

ˆ ( )

ˆ( ( ))

( )
( , )

i

i i

x
i

x

dQ x
xn x d

dx  



  
    .  (15) 

This implies that 
( )

0idQ x

dx
 . The travel demand function ( )iQ x  is therefore a decreasing 

function of distance x from the CBD. 

 

Remark 4. In view of the above, once the household residential density ( , )in x   is known, 

one can then determine the travel demand ( )iQ x  by Eq. (14) or (15), the travel time ( )iT x  

by Eq. (4), the travel cost ( , )i ix   by Eq. (1) and the boundary contour set 

 , 1, 2,...,iB i M  or, equivalently, the critical angle set  ˆ ( ), 1, 2,...,i x i M   in terms of Eq. 

(10). 
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3.2. Housing market equilibrium 

 

3.2.1. Household residential location choice behavior 

 

To model household residential location choice behavior, we first define the household utility 

function. In this paper, the following Cobb-Douglas form of the household utility function is 

adopted 

( , ) ( , ) ( , )i i iU x z x g x     , , 0, 1      , (16) 

where ( , )iU x   is the utility function of households at location ( , )ix  ,   and   are 

positive constants, ( , )iz x   is the composite non-housing goods consumed per household at 

location ( , )ix  , for which the price is normalized to 1, and ( , )ig x   is the average 

consumption of housing per household at location ( , )ix  , which is measured in square 

meters of floor space. 

 

According to A3, it is assumed that each household chooses the residential location that 

maximizes its own utility, subject to budget constraints. The household utility maximization 

problem can be represented as 

,
max   ( , ) ( , ) ( , )i i i

z g
U x z x g x     ,  (17) 

s.t.   ( , ) ( , ) ( , ) ( , )i i i iz x p x g x Y E x       , (18) 

where ( , )ip x   is the average annual rental price per unit of housing floor area at location 

( , )ix  , Y is the average annual household income and ( , )iE x   is the average annual travel 

cost (or expenditure) from location ( , )ix   to the CBD along the ring-radial routing system, 

which can be measured by 

( , ) 2 ( , )i i iE x x    , (19) 

where the “2” denotes a round-trip journey between location ( , )ix   and the CBD and   is 

the average annual number of trips to the CBD per household. The (one-way) average travel 

cost, ( , )i ix  , from location ( , )ix   to the CBD can be determined by Eq. (1). 

 

Substituting ( , )iz x   in Eq. (18) into Eq. (17) and setting the derivative of ( )U   with regard 

to g equal to zero (i.e., 0dU dg  ), one obtains 
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 ( , )
( , )

( , )
i

i
i

Y E x
g x

p x

  
 


. (20) 

 

When the household residential location choice equilibrium state is reached, all households in 

the city have the same utility level regardless of their residential locations. Let u be the 

common utility level. The following equation then holds 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )i i i i i iu z x g x Y E x p x g x g x
            ,  (21) 

where ( )g   and ( )p   can be derived from Eqs. (20) and (21) as functions of the common 

utility level u, as follows: 

  1( , , ) ( , )i ig x u Y E x u
         and (22) 

 1 1( , , ) ( , )i ip x u Y E x u
         .  (23) 

Eqs. (22) and (23) describe the equilibrium amount of housing floor space per household and 

the equilibrium price per unit of housing floor space, respectively, at location ( , )ix  . These 

equations show that for a given level of utility, the average housing price decreases and the 

average housing floor space per household increases as the travel cost increases, and vice 

versa. 

 

3.2.2. Property developers’ housing production behavior 

 

This subsection focuses on the supply side of the housing market. In this paper, property 

developers are assumed to behave in keeping with the following Cobb-Douglas form of the 

housing production function 

   ( , ) ( , )
b

i ih S x S x     , 0 1b  , (24) 

where  ( , )ih S x   is the housing supply per unit of land area at location ( , )ix  , ( , )iS x   is 

the capital investment per unit of land area at location ( , )ix   (also referred to as capital 

investment intensity) and   and b are positive parameters. 

 

Let ( , )ir x   be the rent or value per unit of land area at location ( , )ix   and k be the price of 

capital (i.e., the interest rate). The net profit per unit of land area, ( , )ix  , at location ( , )ix   

can then be given by 
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   ( , ) ( , ) ( , ) ( , ) ( , )i i i i ix p x h S x r x kS x         , (25) 

where the price per unit of housing floor space ( )p   is given by Eq. (23). The first term on 

the right-hand side of Eq. (25) is the total revenue from housing leases. The final two terms 

are the land rent cost and the capital cost, respectively. 

 

From A2, each property developer in the housing market aims to maximize his/her own net 

profit by determining the optimal capital investment intensity, which is expressed as 

 max   ( , ) ( , ) ( , )b
i i i

S
x p x S r x kS        . (26) 

 

The first-order optimality condition of the maximization problem (26) yields 

1( , ) 0b
ip x bS k

S


    


. (27) 

Substituting ( )p   in Eq. (23) into Eq. (27) produces the capital investment intensity as a 

function of the utility level u, i.e., 

  
1

1 1 1 1( , , ) ( , ) b
i iS x u Y E x u bk

            .   (28) 

 

The household residential density ( , )in x   at location ( , )ix   can thus be calculated by 

      
1 (1 )

( ) ( )1 1 ( )( , , )
( , ) ( , )

( , , )

bb b bi b
i i

i

h S x u
n x bk u Y E x

g x u


     

      


. (29) 

 

Note that under perfect competition, the property developers earn zero profit, thus 

 ( , ) ( , ) ( , ) ( , )
b

i i i ir x p x S x kS x       .  (30) 

Substituting Eqs. (23) and (28) into Eq. (30) yields 

  
1

1 1 1 11
( , , ) 1 ( , ) b

i ir x u k Y E x u bk
b

              
 

.  (31) 

 

Eqs. (28), (29) and (31) define the equilibrium capital investment intensity, residential density 

and land value at any location within the city, respectively. It can be seen that given the utility 

level u, the capital investment intensity, residential density and land value all decrease as 

either the travel cost or the interest rate increases, and vice versa. 
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3.2.3. Housing demand-supply equilibrium 

 

Balancing the housing supply and demand requires that all households fit exactly inside the 

city boundary, i.e., 

1 1

ˆ ( )

ˆ( ) 0
1

( , )
i i

i i

M x

i

n x xdxd N
 

 

  


    , (32) 

where N is the total number of households in the city. The left-hand side of Eq. (32) is the sum 

of the number of households in the catchment areas for all of the radial major roads within a 

city. 

 

The equilibrium rent per unit of land area devoted to housing at the city fringe ( , )ix   equals 

the exogenous agricultural rent or the opportunity cost of the land; that is, 

( ( ), , )i ar x u r   ,  (33) 

where ar  is a constant agricultural rent. 

 

Using Eq. (31), Eq. (33) can be rewritten as 

  
1

1 1 1 11
1 ( , ) b

i ak Y E x u bk r
b

             
 

.  (34) 

 

Remark 5. Eqs. (32) and (34), together with Eqs. (22), (23), (28), (29) and (31), determine 

the housing market equilibrium. Given the travel cost ( , )iE x   or ( , )i ix   (see Eq. (19)), 

one can determine the values of household utility level u and the city boundary ix  by solving 

the system of Eqs. (32) and (34) and thus the following functions: ( , )ig x  , ( , )ip x  , 

( , )iS x  , ( , )in x   and ( , )ir x  . 

 

3.3. Calculating the equilibrium solution for the urban system 

 

In this subsection, a procedure for calculating the equilibrium solution of the urban system is 

presented. Given the household residential density ( , )in x  , the commuters’ route choice 

equilibrium problem can determine the functions ( )iQ x , ( )iT x  and ( , )i ix   in addition to 

the boundary contours  , 1, 2,...,iB i M . In contrast, given the travel cost ( , )i ix  , the 



 15

housing market equilibrium problem can determine the functions ( , )in x  , ( , )ig x  , 

( , )ip x  , ( , )iS x   and ( , )ir x   and the constants u and ix . The interdependence of the 

interrelated equilibria leads to a stationary solution with regard to residential density and 

travel costs, as follows: 

 (0) (0) (1) (1) * *,    n ψ n ψ n ψ ,  (35) 

where the bolded symbols represent the vectors of the corresponding variables; that is, 

 ( , )i ix  ψ  and  ( , )in x n . 

 

The step-by-step procedure for determining the (stationary) equilibrium solution of the urban 

system is as follows. 

 

Step 1.  Choose initial values for the household residential density (0)n , then determine the 

travel demand vector  (0) (0) ( )iQ xQ  in terms of Eqs. (13) and (14), the travel time 

vector  (0) (0) ( )iT xT  by Eq. (4), the travel cost vector (0)ψ  by Eq. (1) and the 

critical angle vector  (0) (0)ˆ ˆ ( )i x θ  according to Eq. (10). Set the iteration counter 

to 1l  . 

Step 2.  Solving the system of Eqs. (32) and (34) yields the values of ( )lu  and  ( )l
ix . The 

values of the vectors ( )lg , ( )lp , ( )lS , ( )ln  and ( )lr  can then be obtained by 

substituting ( )lu  and  ( )l
ix  into Eqs. (22), (23), (28), (29) and (31). 

Step 3.  Determine the travel demand vector ( )lQ  in terms of Eqs. (13) and (14) and the 

travel time vector ( )lT  according to Eq. (4). The auxiliary travel cost vector ( )lψ  

can then be obtained by Eq. (1) and thus, the critical angle vector ( )ˆ lθ  by Eq. (10). 

Step 4.  Update the travel cost according to  ( 1) ( ) ( ) ( )l l l l l   ψ ψ ψ ψ . 

Step 5.  If the relative gap ( 1) ( ) ( )|| || / || ||l l l ψ ψ ψ  is smaller than a pre-specified tolerance, 

then stop. Otherwise, set 1l l   and go to Step 2. 

 

In Step 1, the initial household residential density can be assumed to be uniform across this 

city. In Step 2, the system of Eqs. (32) and (34) can be solved using an iterative method in 

which the decision variables  ix  and u are sequentially updated while holding the value of 
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the other variable fixed. Specifically, one chooses initial values for  ix , then solves Eq. (32) 

to obtain the value of u. The values of  ix  can then be updated by solving Eq. (34) using 

the bi-section method for the value of u that has just been obtained. Repeating the iterative 

process yields the solutions for  ix  and u. 

 

4. Model for optimizing the density of radial major roads 

 

As previously stated, local authorities aim to maximize the total social welfare (SW) of the 

urban system by optimizing the density of the radial major roads within the two-dimensional 

monocentric city. The social welfare, which takes into account the benefits of all parties in the 

urban system, is defined as the total utility of all households plus the aggregate rent received 

by the absentee landlords minus the total road investment cost. The social welfare 

maximization problem can be formulated as 

 
1 1

ˆ ( )

ˆ( ) 0
1 1

max   SW= + ( , )
i i

i i

M Mx

a i
M

i i

uN r x r xd dx
 

 

  
 

        , (36) 

where   is a parameter that converts the utility level of households into the equivalent 

monetary units. ( , )r x   can be determined using the equilibrium formulation of the urban 

system proposed in the previous section. i  represents the construction cost of radial major 

road i. The first term on the right-hand side of Eq. (36) denotes the total utility of all 

households, the second term denotes the aggregate rent received by the absentee landlords, 

and the third term denotes the total construction cost of all radial major roads. 

 

It is assumed that the construction cost, i , of radial major road i is a function with respect 

to the length, ix , of radial road i and its capacity iK , as follows: 

i i ix K   , (37) 

where   is a positive constant. Eq. (37) indicates that the road construction cost is 

proportional to the road length and width. 

 

Note that the model (36) is an integer programming problem with the number of radial major 

roads as the decision variable. In general, this type of problem is difficult to solve (Li et al., 

2011, 2012c). Fortunately, the number of radial major roads in a city is finite. Therefore, a 
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simple approach to determine the optimal density of radial major roads is to compare the 

resultant values of objective function (36) using different numbers of radial major roads. 

 

5. Model applications 

 

In this section, a numerical example is given to illustrate the applications of the proposed 

model and the contributions of this paper. The numerical example is intended to ascertain the 

effects of road level of service (LOS), urban population size (number of households) and 

household income level on the optimal density of the radial major roads and the performance 

of the urban system. It is also used to investigate the effects of various urban policies, such as 

congestion pricing and road infrastructure investment (introducing a new radial major road) 

on the urban economy. 

 

In order to quantitatively evaluate the effects of congestion pricing scheme and adding a new 

radial major road, some performance measures are defined as follows: 

City area (or size) =
1 1

ˆ ( )

ˆ1 ( ) 0

i i

i i

xM

i
xdxd

 

 

   
   ,  (38) 

Average household residential density = city areaN ,  (39) 

Average housing space per family = 
1 1

ˆ ( )

ˆ1 ( ) 0
( , ) ( , )

i i

i i

xM

i
g x n x xdxd N

 

 

   
     ,  (40) 

Average housing price = 
1 1

ˆ ( )

ˆ1 ( ) 0
( , ) city area

i i

i i

xM

i
p x xdxd

 

 

   
    ,  (41) 

Average land value = 
1 1

ˆ ( )

ˆ1 ( ) 0
( , ) city area

i i

i i

xM

i
r x xdxd

 

 

   
    ,  (42) 

Average capital investment intensity = 
1 1

ˆ ( )

ˆ1 ( ) 0
( , ) city area

i i

i i

xM

i
S x xdxd

 

 

   
    .  (43) 

 

For presentation purposes, in the numerical experiment, all of the radial major roads in the 

city are assumed to have identical free-flow travel times and capacities. The baseline values 

(i.e. base case) for the model’s input parameters are shown in Table 1. In the following 

analysis, unless specifically stated otherwise, the input data are identical to those of the base 

case. The computer code for the numerical experiment (written in programming language C) 

is not shown in the paper so as to save space, but available from the authors on request. 

 

5.1. Effects of road LOS, urban population size, and household income level on density of 
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radial major roads 

 

We first investigate the effects of the road LOS, number of households (or population size), 

and household income level on the optimal density of the radial major roads. Fig. 2 plots the 

contour of the annual total social welfare of the urban system in the space of the road LOS (i.e. 

road capacity) and the number (or density) of radial major roads. It can be seen that for a 

given road capacity, as the density of the major roads increases, the annual total social welfare 

of the urban system first increases and then decreases. The maximum social welfare for a 

given road capacity (or LOS) occurs at the point of tangency between the horizontal line 

passing through the given road capacity and the social welfare contour. For example, the 

horizontal line with the road capacity of 4950 vehicles per hour touches a social welfare 

contour at point F, as shown in Fig. 2. This means that when the road capacity is 4950 

vehicles per hour, the optimal number of the radial major roads is 7. Any point on the dotted 

curve in Fig. 2 represents the maximum social welfare for a given road LOS. It can also be 

seen that as the road capacity (or LOS) increases, the optimal number of the radial major 

roads decreases, and vice versa. 

 

Fig. 3 displays the change of the annual total social welfare of the urban system with the total 

number of households and the number (or density) of the radial major roads. It can be seen 

that for a given number of households, the associated horizontal line touches a social welfare 

contour, implying that there is an optimal number of the radial roads. For instance, when the 

number of households is 300,000, the optimal number of the radial roads is 8. The dotted 

curve in Fig. 3 defines the maximum social welfare levels for different numbers of households. 

It shows that as the number of households (or population size) grows, the optimal number of 

the radial roads increases. 

 

Fig. 4 indicates the change of the annual total social welfare of the urban system with the 

household income level and the number of radial major roads. It can be observed that the 

optimal number of the radial major roads would be 7 regardless of the household income level. 

This implies that the household income level has no apparent effect on the optimal density of 

the radial major roads. 

 

5.2. Effects of optimal congestion pricing on density of radial major roads 
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In the literature, congestion pricing schemes generally include first-best scheme, 

cordon-based scheme, and distance-based scheme (see Mitchell et al., 2005; Li et al., 2012a). 

The first-best and cordon-based schemes have been widely explored in the field of urban 

economics (for more details, see Mun et al., 2003; Verhoef, 2005; Anas and Rhee, 2006; Li et 

al., 2012a; De Lara et al., 2013). Here, we investigate the effects of the distance-based 

congestion pricing scheme on the optimal density of the radial major roads. The 

distance-based pricing scheme implies that the toll is proportional to the distance traveled, 

that is, the product of the travel distance and the toll per unit of distance. Fig. 5 depicts the 

contour of the annual total social welfare of the urban system in the toll-road density space. It 

can be seen that the maximum social welfare occurs at the toll level of $0.36 per kilometer 

and 6 major roads, causing a social welfare of $10.389 billion per year (see Table 2). 

 

Table 2 summarizes the effects of the congestion pricing scheme on the urban system. It can 

be seen that implementation of the congestion pricing scheme causes a decrease in the city 

size (or city area) by 234 square kilometers (from 1261.1 to 1027.0 square kilometers). This is 

because the additional tolls under the distance-based congestion pricing scheme increase the 

annual transportation expenditures of households and thus lead them to move towards the city 

center. As a result, the average residential density, average housing price, average capital 

investment intensity, and average land value increase by 90 households per square kilometer, 

$92.3 per square meter, $25.4 million per square kilometer, and $0.6 million per square 

kilometer, respectively. However, the average housing space per household decreases by 0.6 

square meter. In addition, it can also be seen that the congestion pricing scheme leads to a 

decrease in the household utility level by 4.6 utility units due to an increased travel cost, and 

in road construction cost by $55.8 million due to a reduced city size, but the aggregate land 

rent increases by $62.8 million due to an increased land value. As a result, the annual social 

welfare of the urban system increases by $18.8 million (from $10370.2 to $10389.0 million). 

 

5.3. Effects of a new additional radial major road on urban system 

 

In this subsection, we address the following two problems: (1) where is optimal location of a 

new additional radial major road? (2) What are the effects of a new additional radial major 

road on the urban system? For illustration purposes, we consider a city with five existing 

radial major roads, which are numbered as 1, 2, 3, 4, and 5, respectively, as shown in bolded 

lines in Fig. 6. The angles among the five radial major roads are 120°, 40°, 50°, 60°, and 90°, 
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respectively. 

 

5.3.1. Optimal location of a new additional radial road 

 

In order to determine the optimal location of a new additional radial major road in the city 

shown in Fig. 6, Fig. 7 depicts the annual social welfare curves when the new additional 

radial road is located between any two existing radial roads, respectively. In Fig. 7, ijR  

represents to insert the new additional radial road in between roads i and j. It can be seen in 

this figure that the optimal location of the new additional radial road should be located 

between radial roads 1 and 2 with 0.92 radian (i.e. 52.7°) from the radial road 1 (shown in 

dotted line in Fig. 6), which results in the maximum social welfare level of $10.359 billion 

per year. 

 

5.3.2. Comparison of urban system performances before and after adding a new radial road 

 

Finally, we examine the effects of an additional radial road (shown in Fig. 6) on the urban 

system. Figs. 8a-d and 8a'-d' plot the contours of the household residential density, housing 

price, housing space per household, and capital investment intensity across the city before and 

after introducing a new radial road, respectively. It can be seen that introduction of a new 

radial road leads to a change in the urban shape from a pentagram (i.e. a five-pointed star) to a 

hexagram (i.e. a six-pointed star). In the meantime, it also leads to a decrease in the household 

residential density, the housing price, and the capital investment intensity, but an increase in 

the housing space per household. Specifically, the household residential densities on the city 

boundary and in the city center decrease by 0.5 (from 61 to 60.5) and 648 (from 3992 to 3344) 

households per square kilometer respectively, as shown in Figs. 8a and a'. The housing prices 

on the city boundary and in the city center (shown in Figs. 8b and b') decrease by $3 (from 

$1248 to $1245) and $250 (from $4836 to $4586) per square meter, respectively. The housing 

spaces per household on the city boundary and in the city center (see Figs. 8c and c') increase 

by 0.18 (from 13.24 to 13.42) and 0.26 (from 4.79 to 5.05) square meter, respectively. The 

capital investment intensities on the city boundary and in the city center decrease by $0.1 

(from $14.2 to $14.1) and $211 (from $1295 to $1084) million per square kilometer 

respectively, as shown in Figs. 8d and d'. 
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Table 3 further summarizes the effects of adding a new radial road on the performance of the 

urban system. It shows that introduction of a new radial road increases the size of the city by 

87.8 square kilometers and the average housing space per household by 0.2 square meter. 

However, it also decreases the average household residential density from 432.9 to 402.3 

households per square kilometer, the average housing price from $2094.8 to $2067.7 per 

square kilometer, the average land value from $2.6 to $2.5 million per square kilometer, and 

the average capital investment intensity from $122.7 to $114.7 million per square kilometer, 

respectively. As a result, the household utility level increases 2.7 utility units, the total land 

rent decreases by $8.3 million, the road construction cost increases by $70 million, and the 

annual social welfare increases by $29 million. 

 

6. Conclusion and further studies 

 

This paper investigated the design problem of the density of radial major roads in a 

two-dimensional monocentric city. The urban system concerned included four types of agents: 

local authorities, property developers, households and commuters. The interdependence 

among these agents induces a number of interrelated equilibria; namely, the housing 

demand-supply equilibrium, household residential location choice equilibrium and 

commuters’ ring-radial route choice equilibrium. Based on the urban system equilibrium 

analysis, a heuristic solution approach was developed to solve the urban system’s equilibrium 

problem and a system optimum model was proposed to determine the optimal density of the 

radial major roads so as to maximize the urban system’s social welfare. In the proposed model, 

the household residential distribution, capital investment intensity, land values, housing prices 

and housing space can all be endogenously determined. An illustrative numerical example 

was given to assess the effects of road level of service (LOS), urban population size and 

household income level on the optimal density of the radial major roads. The comparative 

static analyses of the congestion pricing and road infrastructure investment were also carried 

out. The proposed model can be served as a useful tool for the long-term strategic planning of 

sustainable urban developments and for evaluation of various transportation, land-use and 

housing policies. 

 

The proposed model offers some new insights and interesting findings. First, the road 

capacity (or LOS) and the number of households (or population size) have a significant effect 
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on the optimal density (or number) of the radial major roads. Specifically, the optimal number 

of the radial major roads increases with the increase of the number of households but 

decreases with the increase of the road LOS. However, the household income level may have 

little impact on the optimal density of the radial roads. Second, congestion pricing scheme can 

decrease the size of city and thus lead to a more compact city. It can also increase the social 

welfare of the urban system and save the government’s investment on road infrastructure 

projects at the expense of the household utility. Third, the introduction of an additional radial 

major road can increase the size of city and thus cause a more decentralized city. Households 

and the whole urban system can benefit from the road infrastructure investment that is funded 

by the government. 

 

Although the modeling methodology proposed in this paper provides a new avenue for 

modeling the interactions among land use, housing market and transportation infrastructure 

improvements, further extensions are necessary. First, the city of interest was assumed to be 

monocentric in this paper. However, modern cities generally have multiple business and 

commercial centers. Therefore, further studies could improve the model by shifting from a 

monocentric city to a polycentric structure (Wong, 1998; Kloosterman and Musterd, 2001; 

Yin et al., 2013; Ho et al., 2013). Second, this paper focused mainly on the auto mode, thus 

ignoring the competition and substitution effects between auto and transit modes. To 

incorporate the interaction and competition between different transportation modes, the 

single-mode system should be extended into a multi-modal system (Capozza, 1976; Anas and 

Moses, 1979; Li et al., 2012a). Third, all of the households in this paper were assumed to be 

homogenous. However, an empirical study by Kwon (2003) showed that household income 

level may affect residential location choice. Therefore, future models should be extended to 

consider the choice behavior of households with different income levels and demographic 

characteristics. 
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Fig. 1. A typical circular city with radial major roads. 
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Fig. 2. Change of annual social welfare (billion $) with the number of radial major roads and 

the road capacity. 

 

 

Fig. 3. Change of annual social welfare (billion $) with the number of radial major roads and 

the total number of households. 
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Fig. 4. Change of annual social welfare (billion $) with the number of radial major roads and 

the household income level. 
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Fig. 5. Change of annual social welfare (billion $) with the number of radial major roads and 

the toll per unit of distance. 
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Fig. 6. A city with five radial major roads. 
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Fig. 7. Change of annual social welfare with the location of a new additional major road. 
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Fig. 8. (a)-(d) represent household residential density (households/km2), housing price ($/m2), housing space per household (m2/household), and 
capital investment intensity (million $/km2) across the city before introducing an additional major road, respectively. (a')-(d') represent those after 
introducing an additional major road, respectively. 
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Table 1 Input parameters for the numerical illustration. 

Parameter Baseline value 

N (total number of households in the city) 500,000 

Y (annual household income, $/year) 100,000 

iK  (capacity of major road i, veh/h) 6000 

ar  (agricultural rent at the city boundary, $/ 2km ) 300,000 

 ,   (parameters in household’s utility function) 0.75 and 0.25 

b,   (parameters in housing production function) 0.7 and 80.8 10  

k (interest rate) 5% 

0ic  (fixed component of monetary travel cost, $) 10 

1ic , 2ic  (variable component of monetary travel cost, $/veh-km) 1.0, and 1.0 

0V  (average vehicle travel speed, km/h) 50 

0it  (free-flow travel time per unit of distance, h/km) 0.02 

  (value of travel time, $/h) 20 

  (average annual number of trips to the city center per household) 365 

  (average daily number of trips to the city center per household) 1.0 

  (a positive parameter in road construction cost function) 500 

  (a parameter that converts the utility level of urban households 

into the equivalent monetary units) 
80 

  (peak-hour factor) 10% 
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Table 2 Performance of urban system without and with congestion toll schemes. 

Performance index 
No congestion 

toll 

With congestion 

toll 

City size (km2) 1261.1 1027.0 

Average residential density (households/km2) 396.5 486.9 

Average housing space per family (m2/household) 7.8 7.2 

Average housing price ($/m2) 2061.4 2153.7 

Average land value (million $/km2) 2.4 3.0 

Average capital investment intensity (million $/km2) 113.1 138.5 

Household utility level 203.4 198.8 

Aggregate land rent (million $) 2676.9 2739.7 

Road construction cost (million $) 441.0 385.2 

Annual social welfare (million $) 10370.2 10389.0 

 

 

Table 3 Performance of urban system before and after constructing a new radial major road. 

Performance index Before  After  

City size (km2) 1155.1 1242.9 

Average residential density (households/km2) 432.9 402.3 

Average housing space per family (m2/household) 7.5 7.7 

Average housing price ($/m2) 2094.8 2067.7 

Average land value (million $/km2) 2.6 2.5 

Average capital investment intensity (million $/km2) 122.7 114.7 

Household utility level 200.3 203.0 

Aggregate land rent (million $) 2689.7 2681.4 

Road construction cost (million $) 372.9 442.8 

Annual social welfare (million $) 10329.8 10358.9 

 

 

 


