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Revisiting Jiang’s dynamic continuum model for urban cities

Jie Du1, S.C. Wong2, Chi-Wang Shu3, Tao Xiong4, Mengping Zhang5, and Keechoo Choi6

Abstract: Jiang et al. (Transportation Research Part B, 2011, 45(2), 343-363) pro-

posed a predictive continuum dynamic user-optimal (PDUO-C) model to investigate the

dynamic characteristics of traffic flow and the corresponding route-choice behavior of

travelers. Their modeled region is a dense urban city that is arbitrary in shape and has

a single central business district (CBD). However, we argue that the model is not well

posed due to an inconsistency in the route-choice strategy under certain conditions. To

overcome this inconsistency, we revisit the PDUO-C problem, and construct an improved

path-choice strategy. The improved model consists of a conservation law to govern the

density, in which the flow direction is determined by the improved path-choice strategy,

and a Hamilton-Jacobi equation to compute the total travel cost. The simultaneous

satisfaction of both equations can be treated as a fixed-point problem. A self-adaptive

method of successive averages (MSA) is proposed to solve this fixed-point problem. This

method can automatically determine the optimal MSA step size using the least squares

approach. Numerical examples are used to demonstrate the effectiveness of the model

and the solution algorithm.
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1 Introduction

The traffic equilibrium problem has received much attention in recent decades. The

large number of studies devoted to the problem can be generally classified into two

categories: those that have used either discrete or continuum modeling approaches. The

discrete modeling approach is the conventional methodology used for detailed studies of

travel patterns in road network systems, in which each road link within the network is

modeled separately (Lee, 2002). In contrast, the continuum modeling approach takes

the modeling region as a continuum and focuses on the overall behavior of travelers at

the macroscopic level. In the continuum modeling approach, the differences between

adjacent areas within a network are assumed to be relatively small compared with the

variation over the entire area, and hence the characteristics of the network, such as

the flow intensity, density and travel cost, can be represented by smooth mathematical

functions (Vaughan, 1987).

The majority of the studies that have used the continuum modeling approach for

urban cities have been confined to static cases. Studies on the static continuum mod-

eling of traffic equilibrium problems can be broadly divided into two categories: those

that have focused on either specific or arbitrary city configurations. The specific city

configuration study area is approximated by an idealized domain for analysis. A circular

region specification has most commonly been adopted. For example, Blumenfeld and

Weiss (1970), Lam and Newell (1967), Williams and Ortuzar (1976) and Zitron (1978)

assumed the modeling region to be circular. Other specifications such as linear (Tong

and Wong, 1997; Vaughan, 1985; Zhang et al., 2008), bilinear (Buckley, 1979) and rectan-

gular (Dafermos, 1980) specifications have also been considered for various kinds of trip

assignment and distribution problems. In contrast, a continuum model approach with

an arbitrary city configuration can be used for regions of any arbitrary shape, and does

not require paths within the region to run in a predefined travel direction (Blumenfeld,

1977; Taguchi and Iri, 1982; Wong et al., 1998). Extensions of the continuum modeling
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approach have also been proposed for multiple destinations and/or multiple user classes

(Wong, 1998; Ho et al., 2006, 2013; Yin et al., 2013).

As the temporal variation of flow and cost are not considered in the static models,

they cannot be used to examine elements such as travelers’ departure/arrival time choices

or dynamic traffic management and control. Dynamic traffic assignment (DTA) has re-

ceived much attention when addressing these problems in recent decades. An important

component of DTA is the travel choice problem, which models travel behavior. Three

major problems are considered in this component: the dynamic system-optimal (DSO)

problem, which aims to minimize the total travel cost of the system (Chow, 2009; Lo

and Szeto, 2005); the reactive dynamic user-optimal (RDUO) problem, in which trav-

elers choose their route using instantaneous information and change their choice in a

reactive manner (Boyce et al., 1993; Kuwahara and Akamatsu, 2001); and the predictive

dynamic user-optimal (PDUO) problem, in which travelers are assumed to have perfect

information about the modeled domain they can use to choose the route that minimizes

the actual travel cost (Hoogendoorn and Bovy, 2004; Lo and Szeto, 2002; Szeto and Lo,

2004; Tong and Wong, 2000).

However, most of the continuum models for urban cities rely on the static assump-

tion of the demand and supply sides of the transportation system. To improve the

capacity of the continuum model and govern its dynamic changes and practicality in

large-scale/dense networks, Jiang et al. (2011) discussed the formulation of and pro-

posed a solution algorithm for a predictive continuum dynamic user-optimal (PDUO-C)

problem for a large, dense urban city with a single central business district (CBD).

Travelers are continuously distributed across the city and travel to the CBD within the

modeling region for a given time-dependent travel demand. The proposed model consists

of a flow conservation equation to compute the density, and a time-dependent Hamilton-

Jacobi equation and Eikonal equation to compute the travel cost. In this paper, we

show that one of the equations used to compute the travel cost is mathematically un-
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necessary. However, the user-optimal conditions in Jiang et al. (2011) required both of

these equations to be satisfied. The main problem with this inconsistency comes from

the requirements in the path-choice strategy, illustrated as follows.

To overcome this inconsistency, we revisit the PDUO-C problem and propose an im-

proved path-choice strategy. The improved model consists of two PDEs: a conservation

law, which governs the density in the city using the improved path-choice strategy, and a

time-dependent Hamilton-Jacobi equation to compute the total travel cost, which differs

from the equation in Jiang et al. (2011). To solve our model numerically, we adopt the

Lax-Friedrichs scheme, which is a conservative monotone scheme with properties such as

the maximum principle and total variation diminishing (TVD). Unlike other problems

in which the initial conditions of both equations are set at the beginning of the modeling

period, the initial conditions of these two equations in our model are set differently, with

one at the beginning and the other at the end of the modeling period. Therefore, we

cannot solve them together as usual. In fact, this model can be treated as a fixed-point

problem, which can be solved by iteration methods such as the method of successive

averages (MSA) (Bar-Gera and Boyce, 2006; Liu et al., 2009; Nagurney and Zhang,

1996; Polyak, 1990; Robbins and Monro, 1951). Among the various types of MSA, the

MSA with a constant step size (Bar-Gera and Boyce, 2006) is very efficient. However,

this method needs to estimate the optimal step size according to past experience and

decrease it as necessary. Based on a formula proposed by Bar-Gera and Boyce (2006),

we construct a self-adaptive MSA that can automatically determine the optimal step

size using the least squares method without prior information. The numerical results

show that this new constructed self-adaptive MSA is much faster than the conventional

methods.

The remainder of this paper is organized as follows. The description of the PDUO-

C problem is given in the next section. In Section 3, we review the formulation of the

original PDUO-C model in Jiang et al. (2011) and point out the inconsistency. In Section
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4, we discuss the formulation of an improved model. We describe the solution algorithm

in Section 5. In Section 6, we present the numerical results and compare them with the

MSAs for other step sizes. Our conclusions are presented in Section 7.

2 Problem description

Figure 1: The modeling domain

As Figure 1 shows, the modeled region is an urban city denoted by Ω. Let Γo be the

outer boundary of the city, let Γc be the boundary of the compact CBD and let Γi be

the boundary of an obstruction such as a lake, park or undeveloped area where traffic is

not allowed to enter. Thus, the boundary of Ω is Γ = Γo

∪
Γc

∪
Γi. The travelers’ homes

are continuously located along (x, y) ∈ Ω. They travel to the CBD within the modeling

region for a given time-dependent demand.

The variables are denoted as follows.

• ρ(x, y, t) (in veh/km2) is the density of travelers at location (x, y) at time t. Be-

cause we assume that no traveler is allowed to leave the city by crossing the bound-

ary Γo or to enter the obstruction though Γi, we have

ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T, (1)
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where T = [0, tend] (in h) is the modeling period.

• v = (u(x, y, t), v(x, y, t)) is the velocity vector at location (x, y) at time t.

• U(x, y, t) (in km/h) is the speed, which is the norm of the velocity vector, i.e.,

U = |v|, and is determined by the density as

U(x, y, t) = Ufe
−βρ2 , ∀(x, y) ∈ Ω, t ∈ T, (2)

where Uf (x, y) (in km/h) is the free-flow speed and β(x, y) (in km4/veh2) is a

positive scalar related to the road condition.

• F = (f1(x, y, t), f2(x, y, t)) is the flow vector at location (x, y) at time t, which is

defined as

F = ρv, ∀(x, y) ∈ Ω, t ∈ T. (3)

• |F| is the flow intensity, which is the norm of the flow vector F, and is defined as

|F| = ρU, ∀(x, y) ∈ Ω, t ∈ T. (4)

As U is a function of ρ, |F| can also be determined by the density, as shown in

Figure 2. Let us define a critical density ρc. When ρ is between 0 and ρc, it is

called the non-congested condition. When the density is greater than ρc, it is called

the congested condition. |F| increases as ρ increases from 0 to ρc, and decreases

as ρ increases beyond ρc. The maximum flow intensity is achieved at a density

of ρc, which is denoted by Fmax. The flow-density relationship shown in Figure 2

is called the macroscopic fundamental diagram (Daganzo and Geroliminis, 2008;

Geroliminis and Daganzo, 2008). Macroscopic fundamental diagrams (MFDs) re-

cently underwent numerous extensions and refinements to enhance their usefulness

in representing macroscopic characteristics of dense urban road networks (Daganzo

et al., 2011; Gayah and Daganzo, 2011; Geroliminis and Sun, 2011; Geroliminis and

Boyaci, 2012).
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Figure 2: The macroscopic fundamental diagram

• q(x, y, t) (in veh/km2/h) is the travel demand at location (x, y) at time t, which is

a non-negative and time-varying function.

• c(x, y, t) (in $/km) is the local travel cost per unit distance of travel at location

(x, y) at time t, and is defined as

c(x, y, t) = κ(
1

U
+ π(ρ)), ∀(x, y) ∈ Ω, t ∈ T, (5)

where κ is the value of time, κ
U
represents the cost associated with the travel time,

and κπ(ρ) represents other costs that are dependent of the density.

• ϕ(x, y, t) is the total travel cost incurred by a traveler who departs from location

(x, y) at time t to travel to the CBD using the constructed path-choice strategy.

Next, we need to construct a path-choice strategy and a model of this problem to

investigate the relationships between the different variables. Here, we assume that the

road network is very dense and that travelers can move freely around it. We also assume

that travelers have perfect information about traffic conditions over time, and that they

will therefore choose the path that minimizes the actual travel cost (not the instantaneous

travel cost), resulting in a predictive user equilibrium for a dynamic system.
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3 Inconsistency of the original PDUO-C model

3.1 Original model

Jiang et al. (2011) constructed a PDUO-C model to solve the problem mentioned previ-

ously. In their path-choice strategy, the following two conditions are required:

(u, v, 1) ∥ −(ϕx, ϕy, ϕt) (6)

and

|∇ϕ| = cU√
U2 + 1

, (7)

where ∥ means that two vectors are parallel and ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂t
). It has been proved

that under these two conditions, travelers choose their path to the CBD in a dynamic

predictive user-optimal manner.

The model proposed by Jiang et al. (2011) can be solved by
ρt +∇ · F = q, ∀(x, y) ∈ Ω, t ∈ T,

F = −ρU ∇ϕ
|∇ϕ| , ∀(x, y) ∈ Ω, t ∈ T,

|∇ϕ| = cU2

U2+1
, ∀(x, y) ∈ Ω, t ∈ T,

ϕt +
1
U
|∇ϕ| = 0, ∀(x, y) ∈ Ω, t ∈ T,

(8)

subject to the initial boundary conditions
ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,
ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T,

ϕ = ϕCBD, ∀(x, y) ∈ Γc, t ∈ T,
(9)

where ∇ = ( ∂
∂x
, ∂
∂y
).

3.2 The inconsistency

We first illustrate that Equation (6) (i.e., Equation (10) in the Jiang et al. paper) in the

path-choice strategy is inappropriate under certain conditions. Consider a steady state

problem, in which the cost ϕ is time independent, i.e., ϕt = 0. In this case, Equation (6)

becomes (u, v, 1) ∥ (ϕx, ϕy, 0), which is obviously undesirable.

The last equation of the model in Equation (8) is derived from an deficient path-

choice strategy. We can easily see that the units of the two terms in this equation are

inconsistent.
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Due to the inconsistency in the path-choice strategy, the whole model (8) is ill-posed

mathematically. Note that the first three equations in (8) already represent a well-posed

problem if proper initial boundary conditions are given. Hence, the last equation is

redundant. We now verify that there exists a solution (ρ, ϕ) that satisfies the first three

equations, but not the last. Again, consider the steady state problem, in which the

density ρ(x, y, t) = ρ0, the speed U(x, y, t) = U0 and the local cost c(x, y, t) = c0 are all

positive constants. Take our domain to be a region of arbitrary configurations with a

CBD in the center. The boundary of the CBD (i.e., Γc) is a circle located at (0, 0) with

a diameter of 1. Given a traffic demand q(x, y, t) = − ρ0U0√
x2+y2

, we can easily verify that

ϕ(x, y, t) =
C0U2

0

U2
0+1

(
√

x2 + y2−1) satisfies the first three equations. However, we can show

that

ϕt +
1

U
|∇ϕ| = C0U0

U2
0 + 1

> 0, (10)

which contradicts the last equation in (8).

4 An improved model

As there is an inconsistency in the original PDUO-C model, an improved model is needed

to solve the PDUO-C problem. In Section 4.1, we construct a path-choice strategy for

the case in which the only cost is the travel time. A general path-choice strategy for

a general local cost function is presented in Section 4.2, and Section 4.3 describes the

relationship between them. The initial boundary conditions and the complete system of

our new model are discussed in Section 4.4.

4.1 The derivation of the path-choice strategy in the special
case that the cost is the time

First, let us consider the case in which the cost is the travel time in the domain. The

path-choice strategy in this paper is discussed in the time-space domain, which is shown

in Figure 3. We use the x-y plane to represent the space domain in which the vehicles
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Figure 3: The 3D trajectory of a vehicle

drive. The vertical axis represents the time. Let the coordinate of point A in the x-

y plane be (x,y). The curve that passes point (x,y,t) represents the 3D trajectory of a

vehicle passing point A at time t and heading toward the CBD in the time-space domain.

Definition 1 (The departure time): Suppose the speed vector in the time-space do-

main is known and denoted by
(
u(x, y, t), v(x, y, t)

)
. We denote z(x, y, tD) as the depar-

ture time at point (x, y), such that a vehicle can arrive at the CBD at time tD along the

speed trajectory.

Let us now consider the derivation of the equation to compute z(x, y, tD). Given a

time tD, we can view z(x, y, tD) as a surface in the time-space domain. On this surface,

a vehicle can reach the CBD at time tD when moving along the given speed trajectory.

We define a path on this surface as (x(t), y(t), t) with the parameter t, and the position

of the CBD is (x(tD), y(tD)). We clearly have

z(x(t), y(t), tD) = t. (11)

Hence, along this path, we have

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= 1. (12)

As dx
dt

= u(x, y, t) = u(x, y, z(x, y, tD)) and dy
dt

= v(x, y, t) = v(x, y, z(x, y, tD)), we can
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then obtain the following equation to compute z(x, y, tD):{ ∂z(x,y,tD)
∂x

u(x, y, z(x, y, tD)) +
∂z(x,y,tD)

∂y
v(x, y, z(x, y, tD)) = 1,

z(CBD, tD) = tD.
(13)

For each tD, the initial condition is set at time tD, and we can solve this equation

outwards from the CBD, by backtracking in time.

In the preceding equation, for each given tD and the speed vector v =
(
u(x, y, t), v(x, y, t)

)
,

the corresponding ∇z = (zx, zy) needs not be parallel to v =
(
u, v

)
. However, in the

following theorem, we illustrate our path-choice strategy.

Theorem 1: If we choose the speed vector v such that the resulting ∇z is always parallel

to v and has the same direction, then the dynamic predictive user equilibrium in terms

of total travel time to the CBD is satisfied.

Proof : See Appendix A.

With the condition that ∇z ∥ v, we can simplify Equation (13) as{
|∇z| = 1/U,
z(CBD, tD) = tD.

(14)

4.2 The derivation of the path-choice formula with a more gen-
eral cost

So far, we have used the total travel time to represent the cost. We must now construct

a more general path-choice strategy for a general local cost function in the time-space

domain.

If the speed vector
(
u(x, y, t), v(x, y, t)

)
in the time-space domain is known, then the

cost potential function ϕ(x, y, t) can be determined (discussed in more detail later) and

(ϕx, ϕy) can be obtained. (u, v) can be arbitrary, and need not be parallel with (ϕx, ϕy).

However, in the following theorem, we show that if we choose the vector (u, v) such that

the resulting −(ϕx, ϕy) is parallel to (u, v), then the dynamic user equilibrium is satisfied.

Theorem 2: If (u, v) ∥ (−ϕx,−ϕy), then the predictive dynamic user equilibrium prin-

ciple is satisfied.
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Proof : See Appendix B.

We compute ϕ(x, y, t) when the speed vector in the time-space domain is given. In

fact, we only need to choose the vector (u, v) such that the resulting −(ϕx, ϕy) is parallel

to (u, v). We define a path along this given speed vector as (x(t), y(t), t) with parameter

t. Along this path, we have

dϕ

dt
= ϕx

dx(t)

dt
+ ϕy

dy(t)

dt
+ ϕt

= ϕxu+ ϕyv + ϕt

= −|∇ϕ|U + ϕt. (15)

By the definition of the derivative, we also have

dϕ

dt
= lim

∆t→0

ϕ
(
x(t+∆t), y(t+∆t), t+∆t

)
− ϕ

(
x(t), y(t), t

)
∆t

= −U(x(t), y(t), t) lim
∆t→0

ϕ
(
x(t), y(t), t

)
− ϕ

(
x(t+∆t), y(t+∆t), t+∆t

)
∆tU(x(t), y(t), t)

= −U(x, y, t)c(x, y, t). (16)

By combining Equations (15) and (16) , we obtain the equation to solve ϕ:

1

U
ϕt − |∇ϕ| = −c, (17)

which is a Hamilton-Jacobi equation.

4.3 The relationship between the special case and the general
case

In Section 4.1, we considered the case in which the cost is the travel time in the domain.

An important question is whether this is a special case of the general strategy in Section

4.2. If the answer is yes, we will have more confidence in our new model.

In Section 4.1, we denoted z(x, y, tD) as the departure time from point (x, y) such

that the vehicle can arrive at the CBD at time tD. Thus, in the special case in which

the cost ϕ(x, y, t) is the travel time from point (x, y, t) to the CBD, we have

ϕ
(
x, y, z(x, y, tD)

)
= tD − z(x, y, tD). (18)
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We can then obtain {
ϕx + ϕt · zx = −zx,
ϕy + ϕt · zy = −zy,

(19)

i.e., {
ϕx = −(ϕt + 1)zx,
ϕy = −(ϕt + 1)zy.

(20)

Before we continue, let us consider the following theorem.

Theorem 3: In the case that the cost ϕ(x, y, t) is the travel time in the domain, we have

ϕt ≥ −1.

Proof : See Appendix C.

Using Equation (20) and Theorem 3, we can obtain −(ϕx, ϕy) ∥ (zx, zy). Hence, the

requirement of (u, v) ∥ −(ϕx, ϕy) in Section 4.2 and the requirement of (u, v) ∥ (zx, zy)

in Section 4.1 are the same.

In Section 4.2, the formula to compute ϕ is

1

U
ϕt − |∇ϕ| = −c. (21)

In the case that the travel cost is the travel time in the domain, the local cost is in fact

the travel time per unit distance of movement, i.e.,

c(x, y, t) = 1/U(x, y, t). (22)

Using Equations (20) and (22) and Theorem 3, we can simplify Equation (21) and obtain

|∇z| = 1

U
, (23)

which is the same as the formula in Section 4.1.

4.4 The complete model and the discussion of initial boundary
conditions

So far, we have constructed a general path-choice strategy. In this section, we present

some proper equations and their initial boundary conditions to construct a complete

model using this new path-choice strategy.
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4.4.1 The conservation law and its initial boundary conditions

Similar to flow conservation in fluid dynamics, the density ρ(x, y, t) is governed by the

following flow conservation law:

ρt +∇ · F = q, ∀(x, y) ∈ Ω, t ∈ T, (24)

where ρt =
∂ρ
∂t

and ∇ = ( ∂
∂x
, ∂
∂y
). Using the path-choice strategy in Section 4.2, we know

that if we choose the vector v = (u, v) such that the resulting −(ϕx, ϕy) is parallel to

(u, v), then the dynamic user equilibrium is satisfied. Hence, we have

F = ρv = −ρU
∇ϕ

|∇ϕ|
. (25)

Assuming that no vehicle is allowed to enter the obstruction through the boundary

Γi or leave the city through Γo, we have the boundary condition

ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T. (26)

We set the initial time as t = 0 and let ρ0(x, y) be the density of traffic at location

(x, y) at the beginning of the modeling period. As such, the initial condition is

ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω. (27)

4.4.2 The Hamilton-Jacobi equation and its initial boundary conditions

To solve the aforementioned conservation law, we must determine the travel cost ϕ to

compute the flow vector in Equation (25). The travel cost can be solved by the Hamilton-

Jacobi equation, which is presented in Section 4.2:

1

U
ϕt − |∇ϕ| = −c, ∀(x, y) ∈ Ω, t ∈ T. (28)

Let

ϕ(x, y, t) = ϕCBD, ∀(x, y) ∈ Γc, t ∈ T, (29)

which represents the boundary value of ϕ on Γc and can be interpreted as the cost to

the traveler of entering the CBD.
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There is still the problem of how to set the initial condition. Note that the travel cost

to the CBD only depends on the events that will occur in the future, and has nothing

to do with events that happened in the past. Hence, it seems reasonable to solve the

Hamilton-Jacobi equation along the negative time direction, and thus we set the initial

time at t = tend. Here, we assume that all travelers have entered the CBD and that

there is no traffic in the city at t = tend. This can be considered as a static state, and

the travel cost to the CBD is the instantaneous cost. Following Huang et al. (2009), we

use a 2D Eikonal equation to solve the initial values ϕ0(x, y):{
|∇ϕ0(x, y)| = c(x, y, tend) ∀(x, y) ∈ Ω,
ϕ0(x, y) = ϕCBD, ∀(x, y) ∈ Γc.

(30)

4.4.3 The complete model

We can write our model in two parts.

The CL part is
ρt +∇ · F = q, ∀(x, y) ∈ Ω, t ∈ T,

F = −ρU ∇ϕ
|∇ϕ| , ∀(x, y) ∈ Ω, t ∈ T,

ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T,

ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω.

(31)

The HJ part is
1
U
ϕt − |∇ϕ| = −c, ∀(x, y) ∈ Ω, t ∈ T,

ϕ(x, y, t) = ϕCBD, ∀(x, y) ∈ Γc, t ∈ T,
ϕ(x, y, tend) = ϕ0(x, y), ∀(x, y) ∈ Ω,

(32)

where the initial value ϕ0(x, y) is computed by a 2D Eikonal equation:{
|∇ϕ0(x, y)| = c(x, y, tend), ∀(x, y) ∈ Ω,
ϕ0(x, y) = ϕCBD, ∀(x, y) ∈ Γc.

(33)

Here, ρ(x, y, t) is governed by the conservation law, and ϕ(x, y, t) is computed using the

Hamilton-Jacobi equation. Note that whereas the initial time in the conservation law is

set as t = 0, the initial time in the Hamilton-Jacobi equation is t = tend.
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5 Solution algorithm

In this section, we describe the solution algorithms used in the improved model, such

as the Lax-Friedrichs scheme used to solve the conservation law Equation (31) and

Hamilton-Jacobi Equation (32), the fast sweeping method used to solve the Eikonal

Equation (33) and the self-adaptive MSA used to solve the fixed-point problem.

5.1 Lax-Friedrichs scheme used to solve the conservation law

In this subsection, we assume that the cost potential function ϕ(x, y, t) is known for all

(x, y) ∈ Ω and t ∈ T , and focus on the numerical method to solve the conservation law:
ρt +∇ · F = q, ∀(x, y) ∈ Ω, t ∈ T,

F = −ρU ∇ϕ
|∇ϕ| , ∀(x, y) ∈ Ω, t ∈ T,

ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T,

ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω.

(34)

We use the conservative difference scheme to approximate the point values ρni,j ≈

ρ(xi, yj, t
n):

ρn+1
i,j = ρni,j −

∆t

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j)−

∆t

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
) + qi,j∆t, (35)

where qi,j = q(xi, yj, t
n) is the given demand at location (xi, yj) at time tn; ∆x and

∆y are the mesh sizes in the x and y directions, respectively and f̂i+ 1
2
,j and ĝi,j+ 1

2
are

numerical fluxes in the x and y directions, respectively. Here, we use the Lax-Friedrichs

flux, which is a monotone flux:

f̂i+ 1
2
,j =

1

2
[f(ρni,j) + f(ρni+1,j)− αf (ρ

n
i+1,j − ρni,j)] (36)

ĝi,j+ 1
2
=

1

2
[g(ρni,j) + g(ρni,j+1)− αg(ρ

n
i,j+1 − ρni,j)], (37)

where αf = max |f ′(ρ)| and αg = max |g′(ρ)|.

16



5.2 Lax-Friedrichs scheme used to solve the time-dependent
Hamilton-Jacobi equation

In this subsection, we suppose that the density ρ(x, y, t) is known for all (x, y) ∈ Ω and

t ∈ T , and focus on the numerical method to solve the Hamilton-Jacobi equation:
1
U
ϕt − |∇ϕ| = −c, ∀(x, y) ∈ Ω, t ∈ T,

ϕ(x, y, t) = ϕCBD, ∀(x, y) ∈ Γc, t ∈ T,
ϕ(x, y, tend) = ϕ0(x, y), ∀(x, y) ∈ Ω.

(38)

Note that the initial time is t = tend and that the initial value ϕ0(x, y) is computed by the

Eikonal Equation (33). We give the numerical method for solving the Eikonal equation

in Appendix D, and in this subsection we assume that ϕ0(x, y) is known.

As the initial time is t = tend, we define

τ = tend − t, Φ(x, y, τ) = ϕ(x, y, tend − τ), (39)

and thus we rewrite the time-dependent HJ equation into the usual form:
1
U
Φτ + |∇Φ| = c, ∀(x, y) ∈ Ω, τ ∈ T,

Φ(x, y, τ) = ϕCBD, ∀(x, y) ∈ Γc, τ ∈ T,
Φ(x, y, 0) = ϕ0(x, y), ∀(x, y) ∈ Ω.

(40)

When we define

H(Φx,Φy) = U(|∇Φ| − c), (41)

then the scheme to solve Φτ +H(Φx,Φy) = 0 is

Φn+1
i,j = Φn

i,j −∆tĤ((Φx)
−
i,j, (Φx)

+
i,j, (Φy)

−
i,j, (Φy)

+
i,j), (42)

with

(Φx)
−
i,j =

Φi,j − Φi−1,j

∆x
, (Φx)

+
i,j =

Φi+1,j − Φi,j

∆x
, (43)

(Φy)
−
i,j =

Φi,j − Φi,j−1

∆y
, (Φy)

+
i,j =

Φi,j+1 − Φi,j

∆y
, (44)

where Ĥ is a Lipschitz continuous monotone flux consistent with H. Here, we use the

global Lax-Friedrichs flux:

Ĥ(u−, u+, v−, v+) = H(
u− + u+

2
,
v− + v+

2
)− 1

2
αx(u+ − u−)− 1

2
αy(v+ − v−), (45)
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where αx and αy are the viscosity constants and are defined as

αx = max
A≤u≤B,C≤v≤D

|H1(u, v)|, αy = max
A≤u≤B,C≤v≤D

|H2(u, v)|. (46)

H1 (H2) is the partial derivative of H in terms of Φx (Φy), [A,B] is the value range of

u± and [C,D] is the value range of v±.

5.3 Fixed-point problem and MSA

Note that the two parts of the model are closely interconnected. When computing the

density ρ by solving the CL (31), we must know the total cost ϕ of getting to the CBD

from every point, and thus we can decide on the flow direction needed to compute the

density at the next time level. When computing the cost ϕ by solving the HJ (32), we

need the density information to obtain the local cost. However, neither ρ nor ϕ is known

in advance, and these two equations cannot be solved together as they have different

initial times. As mentioned in the introduction, this model is in fact a fixed-point

problem that can be solved by the MSA. We illustrate this in detail in this subsection.

Define the vector of the numerical solutions at each grid point and each time level as

ρ⃗ = {ρni,j, i = 1, · · · , Nx, j = 1, · · · , Ny, n = 1, · · · , Nt} (47)

ϕ⃗ = {ϕn
i,j, i = 1, · · · , Nx, j = 1, · · · , Ny, n = 1, · · · , Nt}, (48)

where Nx, Ny and Nt are the numbers of grid points in x, y and t, respectively. Let us

now give the definition for one iteration, which contains two steps, as shown in Figure

4.

Step 1. With a given vector ϕ⃗old, we solve the CL (31) from t = 0 to t = tend using

the Lax-Friedrichs scheme described in Section 5.1, and thus obtain the vector ρ⃗. We

denote this step as

ρ⃗ = g(ϕ⃗old). (49)

Step 2. Solve the HJ Equation (32) from t = tend to t = 0 using the Lax-Friedrichs

scheme described in Section 5.2 to obtain an updated vector ϕ⃗new. We denote this step
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Figure 4: Definition of one iteration

as

ϕ⃗new = h(ρ⃗). (50)

We consider Steps 1 and 2 as one iteration and denote it as

ϕ⃗new = h(g(ϕ⃗old)) = f(ϕ⃗old). (51)

With the definition of one iteration and the function f , the model translates to a fixed-

point problem

ϕ⃗ = f(ϕ⃗), (52)

which can be solved by the MSA.

The MSA was first introduced by Robbins and Monro (1951) to solve the fixed-point

problem. A general MSA is an iterative process. If we denote the solution before the kth

iteration as ϕ⃗k, then computing the MSA to obtain ϕ⃗k+1 involves the following steps:

Step 1. Solve a temporary solution y⃗k = f(ϕ⃗k) during the kth iteration.

Step 2. Choose a step size λk and use the following equation to obtain ϕ⃗k+1:

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λk · y⃗k, k = 1, 2, · · · (53)

Convergence is declared if

∥ϕ⃗k+1 − ϕ⃗k∥ ≤ δ, (54)
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where δ is a given convergence threshold value. We use δ = 10−2 and L2 as the norm in

our computation.

The selection of the step size sequence {λk} is important to guaranteeing the con-

vergence and efficiency of this method. In the conventional MSA, Robbins and Monro

(1951) suggested a predetermined step size sequence of {λk = 1/k}. Performing the

MSA with this step size sequence has two main weaknesses: i) the step sizes for the first

few iterations are very large, which may amplify the error and require more iterations

to reduce it, and ii) the step sizes become too small after a large number of iterations,

such that the weight of yk is too small in the computation of xk+1 and the convergence

speed is extremely slow. Hence, the conventional MSA often requires a large number of

iterations to reach a convergent solution. To overcome these two weaknesses, some other

methods consider the information generated from the iteration procedure and adjust the

step size accordingly. For example, Liu et al. (2009) constructed a self-regulated aver-

aging method by slowing down the decrease in {λk} when current iterations converged

and speeding up the decrease in {λk} when the solutions diverged. While this method is

much faster than the conventional MSA, the convergence speed still becomes extremely

slow as long as the step sizes continue decreasing.

Bar-Gera and Boyce (2006) constructs a type of MSA with a constant step size

sequence, efficiently solving travel forecasting problems. It assumes that f is smooth,

and derives the following formula:

∥ϕ⃗k+1 − f(ϕ⃗k+1)∥2

∥ϕ⃗k − f(ϕ⃗k)∥2
→ r∗(λ), (55)

where λ is the constant step size and r∗(λ) is a convex quadratic function that is pointing

up. In addition, r∗(0) = 1 and ∂r∗

∂λ
(0) < 0. Any constant step size such that r∗(λ) < 1

results in convergence. There specially exists an optimal constant step size 0 < λ∗ ≤ 1

such that r∗(λ∗) = minλ r
∗(λ). However, because the constant step size is related to

the properties of f(ϕ⃗), some prior information is required to determine the step size.

Bar-Gera and Boyce (2006) did not offer a general method for determining the optimal
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constant step size for different problems.

In the next subsection, we construct a self-adaptive MSA based on Equation (55)

derived by Bar-Gera and Boyce (2006), and automatically determine the optimal step

size for the MSA using the least squares method without prior information.

5.4 A self-adaptive MSA

Based on Formula (55), we can use the least squares method to fit the curve r∗(λ), and

set the minimum point λ∗ as the updated step size. The procedure for determining the

optimal step size used in the self-adaptive MSA is as follows.

1. For the first several iterations, we use the predetermined step sizes

λ1 = 1.0, λ2 = 0.4, λ3 = 0.3, λ4 = 0.2, λ5 = 0.15, λ6 = 0.1, λ7 = 0.05. (56)

2. After the kth iteration (k > 2), we record the step size λk−1 used before this

iteration and the resulting ratio of the error

rk−1 =
∥ϕ⃗k − f(ϕ⃗k)∥2

∥ϕ⃗k−1 − f(ϕ⃗k−1)∥2
, (57)

thus constituting a discrete point (λk−1, rk−1) to fit the curve r∗(λ).

3. For the n+ 1(n ≥ 7) step size, we use the least squares method to fit the discrete

points (λk, rk), k = 1, · · · , n and obtain the fitted quadratic curve r∗(λ). Define

the new step size λn+1 as the minimum point of r∗(λ), i.e., r∗(λn+1) = minλ r
∗(λ).

4. If the new step size is invalid, such that λn+1 ≤ 0 or λn+1 ≥ 1, then we abandon it

and set λn+1 = 0.5λn.

There are several points to note about the self-adaptive MSA.

• The quadratic curve r∗(λ) must pass though the point (0, 1), i.e.,

r∗(0) = 1, (58)

and as such only two parameters must be determined to fit the curve.
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• Because the accuracy of the discrete points (λk, rk) is low for the first several

iterations due to the nonlinearity of f , we do not use the least squares method

until the eighth step.

• We distribute the first several step sizes λk, k = 2, · · · , 7 on the interval [0, 0.4] to

avoid concentrating the step size distribution into too narrow a range, which may

lead to a poor least squares estimate.

• The descent speed of λk, k = 1, · · · , 7 is much faster than the conventional step size

λk = 1/k (Robbins and Monro, 1951) and hence avoids too large an amplification

of the error.

• λn+1 = 0.5λn is reset when λn+1 ≤ 0 or λn+1 ≥ 1 to avoid trying the same non-

optimal step size repeatedly, which would not produce a better estimate of the

quadratic curve. A small step size can also guarantee convergence.

• The self-adaptive MSA uses the information from the iterations and adjusts the

step size accordingly. The step size may be inaccurate at the beginning, but be-

comes increasingly accurate as the number of iterations, k, increases. The numeri-

cal result shows that the step size is almost a constant after a number of iterations.

5.5 Solution procedure

The question of how to set the initial value for the self-adaptive MSA remains. To

start, let us compute the density along the positive time direction. While we have no

information about the actual total cost of traveling to the CBD, we can compute the

instantaneous total cost to the destination at each time level by solving a 2D Eikonal

equation, and use the route strategy that satisfies the reactive dynamic user equilibrium

principle (Huang et al., 2009). Hence, we can compute the density ρ(x, y, t) by solving
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Figure 5: Solution procedure

the following model:
ρt +∇ · F = q, ∀(x, y) ∈ Ω, t ∈ T,

F = −ρU ∇ϕ
|∇ϕ| , ∀(x, y) ∈ Ω, t ∈ T,

|∇ϕ| = c(x, y, t), ∀(x, y) ∈ Ω, t ∈ T,

(59)

subject to the initial boundary conditions
ρ(x, y, t) = 0, ∀(x, y) ∈ Γo

∪
Γi, t ∈ T,

ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,
ϕ(x, y, t) = ϕCBD, ∀(x, y) ∈ Γc, t ∈ T.

(60)

We then obtain the density vector based on the reactive dynamic user equilibrium prin-

ciple and denote it as ρ⃗1. We can compute the actual total cost to the CBD by solving

HJ Equation (32), which requires backtracking in time to obtain y⃗1 = h(ρ⃗1), and set

ϕ⃗2 = y⃗1.

The solution procedure is as follows.

1. Compute the density ρ⃗1 from t = 0 to t = tend using Equation (59). Computing

the actual total cost

y⃗1 = h(ρ⃗1) (61)

from t = tend to t = 0 by solving the HJ Equation (32), we obtain ϕ⃗2 = (1−λ1)ϕ⃗
1+

λ1y⃗
1 = y⃗1.
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2. Use the kth solution vector ϕ⃗k to complete the kth iteration, k = 2, · · · , i.e.,{
ρ⃗k = g(ϕ⃗k),

y⃗k = h(ρ⃗k) = f(ϕ⃗k).
(62)

3. Compute the step size λk(k > 7) using the method described in Section 5.4. The

step sizes λk, k = 1, · · · , 7 are predetermined.

4. Compute the (k + 1)th solution vector

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λk · y⃗k. (63)

5. Stop the iteration process when (54) is satisfied.

6 Numerical examples

To demonstrate the effectiveness of the improved model and the proposed algorithm, we

present a numerical example in this section and compare the result with the conventional

MSA (Robbins and Monro, 1951) and the self-regulated averaging method (Liu et al.,

2009).

6.1 Problem setting

As shown in Figure 6, we consider a rectangular domain that is 35 km long and 25 km

wide in the numerical computation. The center of the compact CBD is located at (10

km, 10 km), and a lake is located at (25 km, 15 km). We assume that there is no traffic

at the beginning or the end of the modeling period (i.e., ρ0(x, y) = 0,∀(x, y) ∈ Ω), and

that no cost is incurred by entering the CBD (ϕCBD = 0,∀(x, y) ∈ Γc, t ∈ T ). We set

tend = 6, and so the modeling period is T = [0h, 6h]. The traffic demand function q is

defined as

q(x, y, t) = qmax[1− γ1d(x, y)]g(t), (64)

where qmax = 240veh/km2/h is the maximum demand, γ1 = 0.01km−1 is a positive

scalar and d(x, y) =
√

(x− 10)2 + (y − 10)2 is the distance from location (x, y) to the
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Figure 6: The modeling domain

center of the CBD. The factor [1−γ1d(x, y)] is used to express the higher traffic demand

generated in the domain closer to the CBD, where more of the population is located.

g(t) is a non-negative and time-varying function defined by

g(t) =


t, t ∈ [0h, 1h],
1, t ∈ [1h, 2h],
−4

5
(t− 3) + 1

5
, t ∈ [2h, 3h],

1
5
, t ∈ [3h, 5h],

0, t ∈ [5h, 6h].

(65)

The speed function is defined as U(x, y, t) = Ufe
−βρ2 , in which β = 2 × 10−6km4/veh2

and Uf (x, y) is the free-flow speed given by

Uf (x, y) = Umax[1 + γ2d(x, y)], (66)

where Umax = 56km/h is the maximum speed and γ2 = 4 × 10−3km−1. The factor

[1 + γ2d(x, y)] is used to express the faster free-flow speed in the domain far from the

CBD, where there are fewer junctions. With this definition, we can compute the critical

density of ρc as 500 veh/km2. The local travel cost per unit of distance is defined as

c(x, y, t) = κ( 1
U
+ π(ρ)), where κ = 90$/h and π(ρ) = 10−8ρ2. Because we assume that

the capacity of the CBD is large enough to accommodate all of the travelers in the city,

|F| should maintain the maximum flow intensity Fmax at the CBD boundary under the
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congested condition.

We now use the composed algorithm described in the previous section to perform the

numerical simulation. A uniform mesh with an Nx × Ny grid is used. The mesh grids

inside the CBD and the mesh grids inside the lake are not computed. The numerical

boundary conditions are summarized as follows.

1. On the solid wall boundaries, i.e., the outer boundary of the city, Γo, and the

boundary of the obstruction, Γi, we let the normal numerical flux be 0. We set

ρ = 0 at the ghost points inside the wall. In the Hamilton-Jacobi equation, the

numerical boundary values of ϕ are obtained by extrapolation from inside the

computational domain. In the Eikonal equation, we set ϕ = 1012 at the ghost

points.

2. On the boundary of the compact CBD, i.e., Γc, we set ϕ = 0 in both the HJ

equation and the Eikonal equation. The boundary conditions for ρ inside the

CBD are obtained by extrapolation from the grids outside the CBD. To maintain

the maximum flow intensity |F| = Fmax on the boundary of the CBD under the

congested condition, we set U(x, y, t) = Uf inside the CBD.

6.2 Numerical results

We now present the numerical results. To verify the convergence of the composed al-

gorithm, we test three grids (grid 1: 140 × 100; grid 2: 280 × 200; grid 3: 420 × 300).

Note that there are two kinds of convergence to be verified: the convergence of the

self-adaptive MSA under each grid, and the convergence among different grids.

Let us consider the first kind of convergence. To demonstrate the effectiveness of

our self-adaptive MSA, we plot the discrete points (λk, rk), k = 2, · · · , 21 and the fitted

quadratic curve r∗(λ) under grid 2 in Figure 7. From the figure, we can see that after

the first several iterations using the predetermined step sizes, the self-adaptive MSA is

able to find the optimal step size and adjust it within a small range. Figure 8 compares
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the step sizes of our method with the conventional MSA with the step size {λk = 1/k}

(Robbins and Monro, 1951) and the self-regulated averaging method (Liu et al., 2009).

Figure 9 compares the errors produced by these methods. For the first several iterations,

the step size in the self-adaptive MSA decreases faster than in the conventional MSA and

the self-regulated averaging method, thus avoiding too large an amplification of the error.

After a number of iterations, the step size of the self-adaptive MSA is almost a constant,

which can be viewed as the optimal step size. Under this optimal step size, the error

continues to decrease at a reasonable speed. However, the step sizes of the other two

methods become increasingly smaller as the number of iterations increases, and the error

reduction becomes extremely slow. The number of iterations for the MSA with different

step size sequences are compared in Table 1. The table shows that the self-adaptive MSA

is much faster than the conventional MSA and the self-regulated averaging method.

λ
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Figure 7: The discrete points and the fitted curve

We now consider the second type of convergence. The density curves at time t = 2

along different lines are plotted in Figure 10, which shows good convergence among

different grids. Grid 2 is adopted for further discussion.
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Figure 8: The step sizes of the different methods

Figure 11 shows the temporal and spatial distributions of the density ρ within the

modeling region. As shown in Sub-figure 11(a), the density is low at the beginning and

the traffic is in the non-congested condition. As the traffic demand grows, the northeast

region of the CBD boundary reaches the critical density of ρc = 500 before all parts of

the CBD boundary become congested, and the density in the eastern region is especially

high (see Sub-figure 11(c)). Although the demand starts to decrease from t = 2, the areas

around the CBD are still in the congested condition at t = 2.5 due to the limitation on

the maximum flow intensity into the CBD (Sub-figure 11(d)). As the demand decreases

further, all parts of the city return to the non-congested condition (Sub-figures 11(e) and

11(f)). Finally, all of the travelers have entered the CBD, and there is no traffic in the

Conventional MSA* Self-regulated averaging method Self-adaptive MSA
140× 100 > 3000 295 87
280× 200 > 3000 630 180
420× 300 > 3000 972 235
* In the conventional MSA, the L2 norm error is still larger than 10−2 after 3,000 itera-
tions.

Table 1: Iteration numbers for the MSA with different step sizes
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Figure 9: The errors of the different methods

city at tend = 6.

Figure 12 illustrates the contours of the total cost potential function ϕ at various

times. At the beginning of the modeling period, when the density is very low and traffic

is in a free-flow state, the cost potential contours are a series of concentric circles located

around the CBD. As the traffic demand grows, the total cost potential increases and

the contours become more dense. As the spaces between the contours become smaller,

the local cost of moving one distance unit increases, as shown in Sub-figure 12(b). In

Sub-figures 12(c) and 12(d), the density on the eastern side of the CBD is very high

and the travel cost increases rapidly, resulting in a denser set of cost potential contours

in this region. As the traffic demand decreases, the distributions of the cost potential

function return to their former conditions, as shown in Sub-figures 12(e) and 12(f).

Figure 13 shows the plot of the flow vector, which illustrates the results of the path

choice. We can see that the travelers pass around the lake if they come from the east.

At the beginning and end of the modeling period, as the density is low, vehicles move

toward the CBD in almost straight lines. As the density of the eastern region around

29



y

de
n

si
ty

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

140 100
280 200
420 300

(a) x = 3

y

de
n

si
ty

0 5 10 15 20 25
0

200

400

600

800

1000

1200

140 100
280 200
420 300

(b) x = 12

y

de
n

si
ty

0 5 10 15 20 25
0

50

100

150

200

140 100
280 200
420 300

(c) x = 16

y

de
n

si
ty

0 5 10 15 20 25

3

4

5

6

7

8

9

10

11

12

13

14

15

140 100
280 200
420 300

(d) x = 32

x

de
n

si
ty

0 5 10 15 20 25 30 35
0

20

40

60

80

140 100
280 200
420 300

(e) y = 3

x

de
n

si
ty

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

140 100
280 200
420 300

(f) y = 12

x

de
n

si
ty

0 5 10 15 20 25 30 35
0

50

100

150
140 100
280 200
420 300

(g) y = 16

x

de
n

si
ty

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

140 100
280 200
420 300

(h) y = 22

Figure 10: Convergence curves of the density at time t = 2.0
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Figure 11: Density plot
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Figure 12: Cost potential plot

32



the CBD becomes high, vehicles choose a curved trajectory to avoid this region. This

demonstrates the capability of the proposed PDUO-C model in modeling how travelers

alter their preferred routes in response to dynamic changes in the network conditions to

minimize their cost potentials.

Consider the total inflow to the CBD through Γc, defined as

fCBD(t) =

∮
Γc

(F · n)(x, y, t)ds, (67)

where n is the unit normal vector pointing toward the CBD, and the total demand over

the whole domain is defined as

qΩ(t) =

∫ ∫
Ω

q(x, y, t)dxdy. (68)

Figure 14 shows the relationship between fCBD(t) and qΩ(t). The numerical data show

that the areas under these two curves are the same, which demonstrates that all of the

traffic has entered the CBD by the end of the modeling period. The curve for the total

inflow fCBD(t) is always lagging behind the curve for the total demand qΩ(t). The number

of vehicles in the city increases when qΩ(t) is larger than fCBD(t), and decreases when

fCBD(t) is larger than qΩ(t). As the demand qΩ(t) grows linearly in [0h, 1h] and maintains

the maximum value in [1h, 2h], the inflow to the CBD fCBD(t) increases rapidly. When

the density around the CBD is greater than the critical density ρc (Figure 11), fCBD(t)

reaches the maximum value and does not increase further, indicating the congested

condition. The inflow to the CBD maintains this maximum value, and does not decrease

until the density around the CBD decreases below ρc. When the traffic demand starts to

decrease from t = 2, it takes a while to return to the non-congested condition, and the

inflow then begins to fall. Note that the total demand maintains a constant (> 0) for a

while before dropping to 0, and that the inflow decreases to the same constant after a

short delay. The traffic demand falls to 0 after t = 5h, and the flow intensity decreases

to 0 thereafter.
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Figure 13: Flow vector plot
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7 Conclusions

Due to the inconsistency in the original predictive continuum dynamic user-optimal

(PDUO-C) model (Jiang et al., 2011), we revisit this problem and construct an improved

path-choice strategy, starting with the special case in which the travel cost is the travel

time. The path-choice strategy with a general travel cost is formulated using a different

method and is proven to be an extension of the special case. The density of travelers

is governed by a conservation law (CL), in which the flow direction is determined by

the improved path-choice strategy constructed in this paper. A Hamilton-Jacobi (HJ)

equation is derived to compute the travel cost. As the CL and HJ parts must be solved

along different directions of time, they cannot be solved together as usual. The model is

a fixed-point problem that can be solved using the method of successive averages (MSA).

We construct a self-adaptive MSA to solve this fixed-point problem. This method can

automatically determine the optimal MSA step size using the least squares method

without prior information. The numerical results show that this new self-adaptive MSA

is much faster than the conventional methods. The self-adaptive MSA can also be
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adopted for other travel forecasting problems.

It is worth noting that the problem of heterogeneous configurations with different

MFDs has recently received much attention. For example, Geroliminis and Sun (2011)

identified the spatial distribution of vehicle density in the network as one of the key com-

ponents affecting the scatter of an MFD and its shape. While examining the existence

of MFDs and the feasibility of simple control strategies to improve network performance

in heterogeneously congested networks, Ji and Geroliminis (2012) recently addressed the

question of how to decompose road networks into subnetworks so that each subnetwork

has a well-defined MFD. The dynamic continuum model presented in this paper offers an

alternative approach to the study of this interesting problem. The speed-density relation-

ship in Equation (2) is location dependent, which means that the MFD parameters can

vary geographically in representing heterogeneous configurations of dense road networks.

Therefore, the dynamic continuum model can be applied to the case of heterogeneous

regions effectively.

The formulation in this paper is only for the region with a single CBD. In the case of

multiple CBDs, the flows would interact in the city, and thus the model would become

more complicated. To study this problem, we have to understand the directional effects

of how different copies of flows, one for each CBD, interact when they cross each other

at the city domain, analogous to previous work on pedestrian flows (Wong et al., 2010;

Xiong et al., 2011). This would make for an interesting future study.

In this paper, we develop a numerical scheme based on a rectangular grid. It would

be useful to extend the numerical scheme based on a triangular grid system, which is

more flexible for tackling complicated geometry. Extensions such as a polycentric city

with multiple CBDs and a combined departure time and assignment could be developed

in future studies.
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Appendix A. The detailed proof of Theorem 1

Theorem 1: If we choose the speed vector v such that the resulting ∇z is always parallel

to v and has the same direction, then the dynamic predictive user equilibrium in terms

of total travel time to the CBD is satisfied.

Proof : If ∇z ∥ v, then we have

∇z · v = |∇z||v| = |∇z|U, (A.1)

where U =
√
u2 + v2 is the given isotropic speed in the time-space domain. Using

Equation (13), we can obtain

|∇z|U = 1, (A.2)

and hence

|∇z(x, y, tD)| = 1/U(x, y, z(x, y, tD)). (A.3)

Next, consider Figure A.1, in which the larger circle has a radius ∆tU , which is the

boundary of distance movement in ∆t time, as the isotropic speed is U . Here, we assume

that ∆t is small enough such that z(x, y, tD) can be treated as a linear function of x and

y in such a small area. The dotted curve represents the “used” path from (x, y) to the

CBD based on the parallel condition ∇z ∥ v. The total travel time along this “used”

path becomes the difference between the departure time z(x, y, tD) from (x, y, z(x, y, tD))

and the arrival time tD at the CBD, and thus

ϕ(x, y, z(x, y, tD)) = tD − z(x, y, tD). (A.4)

We need to show that for any path from (x, y, z(x, y, tD)) that deviates from this

“used” path (3D trajectory), the arrival time will be no earlier than tD, i.e., the total

travel time will be no less than ϕ(x, y, z(x, y, tD)). We can prove this using the following

two steps.

Step 1. Let us first consider an “unused” path that deviates from the “used” path only

in the first ∆t time and then reverts back to the “used” path. As shown in Figure A.1, we
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Figure A.1: The “used” and “unused” paths

consider the path that moves away from the starting point with a vector ∆tṽ = ∆t(ũ, ṽ),

where |ṽ| = U is the isotropic speed, followed by the dashed curve that represents the 3D

“used” trajectory from (x̃, ỹ) to the CBD, where (x̃, ỹ) is the position at which the vehicle

arrives at the dotted circle boundary in ∆t time with the vector ∆tṽ. As ṽ = (ũ, ṽ) is

not parallel with ∇z = (zx, zy), by defining the angle between v and ṽ as θ, we can show

that the change in z at point (x, y, z(x, y, tD) along the movement vector ∆tṽ is

z(x̃, ỹ, tD)− z(x, y, tD)

= ∇z ·∆tṽ

= |∇z||ṽ| cos θ∆t = |∇z|U cos θ∆t

≤ |∇z|U∆t. (A.5)

Here, the first equal sign comes from the assumption that z(x, y, tD) is a linear function

of x and y in this small area. Even without this assumption, as ∆t is small enough, the

nonlinear item in the Taylor expansion is the high order infinitesimal, which makes no

difference to our discussion and can be neglected. Using Equation (A.3 ), we have

z(x̃, ỹ, tD)− z(x, y, tD) ≤
∆t

U
U = ∆t, (A.6)

i.e.,

z(x, y, tD) + ∆t ≥ z(x̃, ỹ, tD). (A.7)

This means that the arrival time at (x̃, ỹ) along this “unused” path, i.e., z(x, y, tD)+∆t,
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will not be earlier than the departure time from (x̃, ỹ) that is required to reach the CBD

at time tD, i.e., z(x̃, ỹ, tD). The central question is whether a vehicle that departs from

(x̃, ỹ) at a later time could arrive at the CBD earlier than tD, even if the vehicle follows

the “used” path for the reminder of the journey. We can show that this is not possible

by contradiction.

Figure A.2: Two “used” paths from (x̃, ỹ) to the CBD

To illustrate this, consider Figure A.2. Suppose that it is possible to arrive at the

CBD at an earlier time t̃D, as shown by the dotted-dashed line, even if the vehicle departs

later. As z(x, y, tD) is a closed surface emanating from (CBD, tD), the dotted-dashed

curve that leaves (x̃, ỹ) at time z(x, y, tD) + ∆t ≥ z(x̃, ỹ, tD) and arrives at the CBD at

t̃D < tD must cut through the closed surface z(x, y, tD) somewhere at (x̂, ŷ, z(x̂, ŷ, tD)).

However, by definition, if a vehicle departs from this time-space point, it can reach the

CBD at both tD and t̃D, which is impossible.

Therefore, if the vehicle moves in any direction other than v = (u, v) in the first ∆t

time, it will not arrive at the CBD earlier than tD, resulting in a total travel time of no

less than ϕ(x, y, z(x, y, tD)) along the used path.

Step 2. Now let us consider the more general case. In step 1, if a vehicle moves along

44



ṽ = (ũ, ṽ) in the first ∆t time, it will arrive at the CBD at time t̃D ≥ tD. However, if

it does not revert back to the “used” path in the next step and continues to move in a

direction other than the speed vector, then by the same token it will arrive even later at

˜̃tD ≥ t̃D ≥ tD. Therefore, for any “unused” path, the total travel time must be no less

than that of the “used” path.

Appendix B. The detailed proof of Theorem 2

Theorem 2: If (u, v) ∥ (−ϕx,−ϕy), then the predictive dynamic user equilibrium prin-

ciple is satisfied.

Proof : Recall from the definition in the problem description section that ϕ(x, y, t) is

the total travel cost incurred by a traveler who departs from location (x, y) at time t to

travel to the CBD using the constructed path-choice strategy. This requires traveling

along the path that satisfies (u, v) ∥ (−ϕx,−ϕy), i.e., the “used” path. We need to show

that for any “unused” path from O(x0, y0, t0) that deviates from the “used” path, the

total cost must be no less than ϕ(x0, y0, t0). We can prove this using the following two

steps.

Step 1. We first consider the “unused” path that deviates from the “used” path only

at the initial ∆t time and reverts back to the “used” path thereafter. Again, we assume

that ∆t is small enough such that we can neglect the high order infinitesimal in the

Taylor expansion. Consider Figure B.1, in which the circle has a radius ∆tU , i.e., the

boundary of moving ∆t time from location O(x0, y0, t0). A(x, y) is the position at which

the vehicle arrives along the “used” path with a vector ∆t(u, v) based on the parallel

condition (u, v) ∥ (−ϕx,−ϕy), where U =
√
u2 + v2 is the given isotropic speed in the

time-space domain. Ã(x̃, ỹ) is the position at which the vehicle arrives along the “unused”

path with a vector ∆t(ũ, ṽ). The arrival times at A and Ã are obviously both t0 + ∆t.
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Figure B.1: The “used” and “unused” paths

We can show that the change in ϕ along the “used” path is

ϕ(x, y, t0 +∆t)− ϕ(x0, y0, t0)

= (ϕx, ϕy, ϕt) · (u, v, 1)∆t

= ∆t[(ϕx, ϕy) · (u, v) + ϕt]

= ∆t(−|∇ϕ|U + ϕt). (B.1)

The change in ϕ along the “unused” path is

ϕ(x̃, ỹ, t0 +∆t)− ϕ(x0, y0, t0)

= (ϕx, ϕy, ϕt) · (ũ, ṽ, 1)∆t

= ∆t[(ϕx, ϕy) · (ũ, ṽ) + ϕt]

= ∆t(−|∇ϕ|U cos θ + ϕt)

≥ ∆t(−|∇ϕ|U + ϕt). (B.2)

Hence, we have

ϕ(x̃, ỹ, t0 +∆t)− ϕ(x0, y0, t0) ≥ ϕ(x, y, t0 +∆t)− ϕ(x0, y0, t0), (B.3)

ϕ(x̃, ỹ, t0 +∆t) ≥ ϕ(x, y, t0 +∆t). (B.4)
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Note that the travel costs from point O(x0, y0, t0) to A and Ã are both ∆tUc(x, y, t). We

clearly have

ϕ(x0, y0, t0) = ∆tUc(x0, y0, t0) + ϕ(x, y, t0 +∆t), (B.5)

and the cost along the “unused” path that deviates from the “used” path only in the

first ∆t period is

ϕ̃ = ∆tUc(x0, y0, t0) + ϕ(x̃, ỹ, t0 +∆t). (B.6)

As ϕ(x̃, ỹ, t0 +∆t) ≥ ϕ(x, y, t0 +∆t), the total cost along the “unused” path must be no

less than ϕ(x0, y0, t0).

Step 2. In the aforementioned case, if a vehicle moves along (ũ, ṽ) in the first ∆t period,

it will arrive at the CBD with the cost ϕ̃ ≥ ϕ(x0, y0, t0). However, if it does not revert

back to the “used” path in the next step and continues to move in a direction other than

that of the speed vector, then by the same token it will arrive at the CBD with a cost

˜̃ϕ ≥ ϕ̃ ≥ ϕ(x0, y0, t0). Therefore, for any “unused” path, the total cost must be no less

than that of the “used” path.

Appendix C. The detailed proof of Theorem 3

Theorem 3: In the case that the cost ϕ(x, y, t) is the travel time in the domain, we have

ϕt ≥ −1.

Proof : The proof is similar to the proof of the dynamic user equilibrium principle in

Theorem 1. As shown in Figure C.1, suppose a vehicle can arrive at the CBD at time tD

along the “used” path from point (x, y, t0), and can arrive at the CBD at time t̂D along

the “used” path from (x, y, t0+∆t). From Section 4.1, we know that if a vehicle departs

from (x, y) at a later time, it will arrive at the CBD later, so we have{
t̂D ≥ tD, if ∆t ≥ 0,
t̂D ≤ tD, if ∆t < 0.

(C.1)
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Figure C.1: Two “used” paths

Now we can estimate the value of ϕt as follows:

ϕt = lim
∆t→0

ϕ(x, y, t0 +∆t)− ϕ(x, y, t0)

∆t

= lim
∆t→0

[t̂D − (t0 +∆t)]− [tD − t0]

∆t

= lim
∆t→0

t̂D − tD
∆t

− 1. (C.2)

Using Equation (C.1 ), we get ϕt ≥ −1.

Appendix D. Fast sweeping method to solve the Eikonal

equation

Before solving the HJ equation, we need the initial value for ϕ0(x, y) to start the numer-

ical computation, which is computed using an Eikonal equation:{
|∇ϕ0(x, y)| = c(x, y, tend), ∀(x, y) ∈ Ω,
ϕ0(x, y) = ϕCBD, ∀(x, y) ∈ Γc,

(D.1)

where c(x, y, t) = 90( 1
U
+ 10−8ρ2) and U(x, y, t) = Ufe

−βρ2 .

The Eikonal equation is in fact a special steady-state Hamilton-Jacobi equation. We

use the first-order Godunov fast sweeping method (Zhao, 2005) to solve it. We first
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assign the exact boundary values ϕ0(x, y) = ϕCBD to Γc. Large values such as 106 are

assigned as the initial guess values at all other grid points. The following Gauss-Seidel

iterations with four alternating direction sweepings are performed:

(1) i = 1 : Nx, j = 1 : Ny; (2) i = Nx : 1, j = 1 : Ny;

(3) i = Nx : 1, j = Ny : 1; (4) i = 1 : Nx, j = Ny : 1,

where i and j are the grid indexes in x and y, respectively. Nx and Ny are the number

of grid points in x and y, respectively. When we loop to the point (i, j), the following

formula is used to update the solution:

ϕnew
i,j =

{
min(ϕxmin

i,j , ϕymin
i,j ) + ci,jh, if |ϕxmin

i,j − ϕymin
i,j | ≥ ci,jh,

ϕxmin
i,j +ϕymin

i,j +(2c2i,jh
2−(ϕxmin

i,j −ϕymin
i,j )2)

1
2

2
, otherwise,

(D.2)

where ci,j = c(xi, yj, tend), ϕ
xmin
i,j and ϕymin

i,j are defined as{
ϕxmin
i,j = min(ϕi−1,j, ϕi+1,j),

ϕymin
i,j = min(ϕi,j−1, ϕi,j+1).

(D.3)

Convergence is declared if

∥ϕnew − ϕold∥ ≤ δ, (D.4)

where δ is a given convergence threshold value. We use δ = 10−9 and L1 as the norm in

our computation.

49


