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Consider a region of arbitrary shape with multiple cities competing for 13 
multi-class users that are distributed continuously over the region. Within 14 
this region, the road network is represented as a continuum and users 15 
patronize in a two-dimensional continuum transportation system to their 16 
chosen city. A logit-type distribution function is specified to model the 17 
probabilistic destination choices made by the different classes of users. In 18 
this paper, two different congestion-pricing models for this multi-class 19 
and multi-city continuum transportation system are studied. The first 20 
model focused on utility maximization, which determines the optimal toll 21 
rates that maximize the total utility of the system, while the second model 22 
is a cordon-based congestion-pricing model that offers a sub-optimal but 23 
more practical tolling strategy. Both models are solved by finite element 24 
method and a promising Newtonian-based solution algorithm. A 25 
numerical example is given to show the effectiveness of the mathematical 26 
program and solution algorithm. 27 

 28 
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 33 

1. Introduction 34 
Congestion pricing can be used to reduce traffic congestion and raise revenue for the funding 35 
of transportation improvements. The principle underlying congestion pricing is that the 36 
choice behavior of users should be regulated with a view to approaching a system-optimal 37 
travel pattern which maximizes the total benefit of the system as a whole by imposing tolls on 38 
users. This is known as the first-best pricing principle and can be implemented by introducing 39 
a toll that is equal to the user externality, or the difference between the marginal social cost 40 
and the marginal private cost, for each link, such that the user-optimal network traffic flow 41 
condition maximizes the total benefit of the system as a whole.  42 

Owing to the advantages of congestion pricing and the need to regulate traffic at the 43 
planning/policy level, government agencies, practitioners and academia are always interested 44 
in formulating national congestion-pricing schemes, which will affect the entire road system 45 
of the region/country concerned, in a way designed to optimize the performance of the 46 
transportation system (in terms of yardsticks such as travel delay or pollution). The idea of 47 
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national road user charging, or region-wide road user charges, has been studied in a number 1 
of countries such as the United Kingdom (Department for Transport, 2004; Glaister and 2 
Graham, 2005; Cottingham et al., 2007) and, in a European context, in relation to the 3 
Eurovignette system (Commission of the European Community, 1999).  4 

In the literature, the applications of congestion-pricing models have been focused on the 5 
discrete network (Beckmann, 1965; Dafermos and Sparrow, 1971; Smith, 1979; Yang and 6 
Huang, 1998, 2004; Gentile et al., 2005; Zhang et al., 2011), in which the network is modeled 7 
as a set of nodes and links. Although this discrete network approach is relatively simple and 8 
has been well-developed in the literature, it may not be suitable for national congestion-9 
pricing studies due to the scale of the issues to be tackled and the amount of data required to 10 
set up such a model.  11 

In terms of substitutes for the traditional discrete modeling approach, the continuum 12 
modeling approach (Blumenfeld, 1977; Sasaki et al., 1990; Wong, 1998; Wong et al., 1998; 13 
Ho et al., 2006, 2007a), in which the road network is approximated as a continuum such that 14 
users are free to choose their routes in a two-dimensional space (Ho and Wong, 2006), offers 15 
an alternative strategy for tackling traffic equilibrium problems. The fundamental assumption 16 
made is that differences in modeling characteristics, such as travel cost and demand pattern, 17 
as between adjacent areas within a network are relatively small when compared to the degree 18 
of variation over the entire network. Hence, the characteristics of a network, such as flow 19 
intensity, demand, and travel cost, can be represented by smooth mathematical functions 20 
(Vaughan, 1987).  21 

Other similar approaches have also been adopted in modeling a regional traffic system at 22 
the macro level, e.g. the area-speed flow model (May et al., 2000) and macroscopic 23 
fundamental diagrams (Geroliminis and Daganzo, 2008), which operate at a highly 24 
aggregated level (e.g. across a whole city) without considering any directional properties of 25 
network congestion. These approaches and the continuum approach are particularly suitable 26 
for situations in which we are more interested in the general trends and patterns of the 27 
distribution and travel choices of users, and in changes in such variables in response to policy 28 
changes that affect the transportation system at the macroscopic level, rather than the detailed 29 
level. Also, the models based on these macroscopic approaches can be set up using a small 30 
amount of data (compared to network models) to provide an efficient and theoretically sound 31 
approach for various types of regional transportation studies. Compared with the area-speed 32 
flow model and macroscopic fundamental diagrams, the continuum approach, due to its 33 
strength in the directional representation of network congestion, can be used to provide a 34 
more detailed spatial analysis of a large-scale region and estimate geographical responses to a 35 
national road user charging scheme that can supplement the findings of traditional economic 36 
analysis (e.g., Glaister and Graham, 2005; Graham et al., 2009).   37 

For congestion-pricing applications, Ho et al. (2005) developed a continuum model for 38 
cities with a single CBD and a single class of users. Three different cases, the first-best case, 39 
the initial-cordon case and the second-best case, were considered in the study and compared 40 
with a no-toll scenario. It was found that while the cordon-based charging scheme would 41 
achieve a level of social welfare comparable to that realized using the distance-based 42 
charging scheme of the first-best case, the cordon-based charging scheme was much easier to 43 
implement and more likely to be socially and politically acceptable (Sumalee et al., 2005).  44 

The current study provides new insights into both congestion pricing at the macroscopic 45 
level and the effectiveness of cordon charging. In any transportation system, users can be 46 
classified into different classes by purpose of trip, vehicle type, income level, etc. Each user 47 
class may have its own criteria for making trips and selecting particular routes, and may be 48 
charged at differing rates. In addition, a common feature of national (or regional) road pricing 49 
schemes is a vehicle-type-based charging structure, i.e., a framework in which private cars 50 
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and heavy good vehicles (HGVs) are subject to different charges. Thus, it is reasonable to 1 
incorporate the concept of multiple user classes into congestion-pricing problems to facilitate 2 
more realistic estimates of flow patterns and more efficient charging mechanisms.  3 

A number of discrete modeling approach studies have incorporated multiple user classes 4 
into the congestion-pricing problem (Bellei et al., 2002; Chen et al., 2004; Huang, 2000, 2004; 5 
Yang and Huang, 2004) and the optimization of cordon locations (Zhang and Yang, 2004; 6 
Sumalee, 2007). Taking a different approach, Ho et al. (2007b) introduced a multi-class 7 
congestion model for a continuum transportation system in a city with a single CBD. In that 8 
study, a social welfare maximization model was set up and solved. It was proven that for a 9 
particular type of transportation cost function, there is an anonymous toll rate that enables all 10 
classes of users to attain a welfare-maximized travel pattern. Based on this anonymous toll 11 
pattern, Ho et al. (2007b) suggested a cordon-based charging scheme that strives to achieve a 12 
balance between simplicity in implementation and congestion-pricing effectiveness. 13 

By considering the strength of the continuum modeling approach in macroscopic studies, 14 
the current study formulates a regional congestion-pricing problem with multiple user classes 15 
and competing cities. For this regional model, we extend the original multi-class congestion-16 
pricing model (Ho et al., 2007b) to a more generalized asymmetrical cost function, which 17 
leads to a discriminatory toll pattern. Moreover, a logit-type demand distribution function is 18 
specified to model the probabilistic destination choice behavior of these multi-class users in 19 
such a polycentric region.  20 

The remainder of this paper is organized as follows. Section 2 defines the notation and 21 
specific equations that are used in this study. Section 3 introduces the formulation of the 22 
multi-class congestion-pricing problem. The cordon-based congestion-charging scheme for 23 
this multi-class multi-destination problem is discussed in section 4. The relationships between 24 
the proposed models and the algorithms presented in sections 3 and 4 are shown in Figure 1. 25 
A numerical example that demonstrates the effectiveness of the proposed models is given in 26 
Section 5.  We conclude the paper in Section 6. 27 

 28 
 29 

2. Definitions and notation 30 
Consider a study region of an arbitrary shape with multiple cities competing for different 31 
classes of users who are continuously distributed over the study region (Figure 2). Each user 32 
within the study region makes a choice of city based on his utility gain in choosing that city, 33 
the total cost of patronizing that city and the toll incurred along the path to that city. The 34 
users will travel from their respective demand locations to the chosen city along the least 35 
costly route. Let M denote the set of vehicle types, such as motorcycles, passenger cars, 36 
trucks, etc., used to identify different classes of users in this study. Let the study region be 37 
represented by  and the boundary by . Further, let the locations of cities be NnOn , , 38 

where N is the set of cities within the region. To avoid singularity among the cities, it is 39 
assumed that each of the cities is of finite size and enclosed by a boundary, cn . The travel 40 

cost per unit distance of travel at location ),( yx  for class m users is denoted by ),( yxcm , 41 

which is location dependent and has the following functional relationship with traffic flows at 42 
that location: 43 

 ( , ) ( , ) ( , ) ( , ) , ( , ) ,m m mr rs
r M s N

c x y a x y b x y x y x y m M
 

     f , (1) 44 

where ),( yxam  and ),( yxbmr , which are strictly positive scalar functions of the cost-flow 45 

relationship that reflects the local characteristics of the streets at location ),( yx , are 46 
respectively the free-flow travel cost of class m users and the congestion-related parameter of 47 
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class r users on class m. As ),( yxbmr  is not necessarily equal to ),( yxbrm , the asymmetric  1 

congestion effect between different vehicle types can be modeled. 2 
 ),(),,(),( yxfyxfyx ymnxmnmn f  is the flow vector of class m users who are heading to city 3 

n, and ),( yxfxmn  and ),( yxf ymn  are the corresponding flow in the x and y directions, 4 

respectively. The flow vector ),( yxmnf  indicates the class m users’ movement direction at 5 

location ),( yx  when heading to city n in the two-dimensional plane, and 6 

 ),(),(),( 22 yxfyxfyx ymnxmnmn f  (2) 7 

is the corresponding flow intensity which measures in a unit time the number of class m users 8 
who cross a small segment of unit width perpendicular to the flow direction when heading to 9 
city n. Equation (1) represents an isotropic cost function because it depends only on flow 10 
intensity and not on flow direction. The congestion component includes the flow intensities 11 
for all classes of users because all users share the same road space. Each user creates an 12 
additional delay cost to all other users as he makes the road more congested.  13 

For each class of users, they have the choice of traveling to any of the cities within the 14 
modeling region, as well as the choice of non-travel. In order to demonstrate the flexibility of 15 
the proposed model, the stochastic choice of travel, which is the most general case, is adopted 16 
for the model formulation. The probabilities of these choices being made depend on the 17 
utility gain, the total transportation cost and the total toll paid to travel from the user’s 18 
demand location to each of the cities, and are governed by a logit-type distribution. The 19 
demand distributed to any of these choices (including the choice of all cities and the choice of 20 
non-travel) can be expressed as: 21 

 
  
   MmNsnyx

uU

uU
yxqyxq

s
msmsm

nmnmm
mnm 







,
~

,~,),(,
exp

exp
),(),(

~~
~




, (3) 22 

where Nn
~~  and N

~
 is the enlarged set of N that includes the choice of non-travel; ),(~ yxq nm  23 

is the demand of class m users at location ),( yx  who make a choice n~ ; ),( yxqm  is the 24 

fixed total demand of class m users; nmU ~  is the utility gain for class m users making a choice 25 

n~ ; ),(~ yxu nm  is the total travel cost (including the toll, if any) for a class m user at his 26 

demand location ),( yx  of making a choice n~  ( 0),(~ yxu nm if the user chooses not to 27 

travel); and m  is a scalar sensitivity parameter of the distribution function for class m users. 28 

A large value of m  indicates that users are more sensitive to the utility gain in making their 29 

choice. The system reduces to a deterministic choice model if the value of m  is very large. 30 

For each combination of user class and city, the following flow conservation equation should 31 
be satisfied: 32 

 MmNnyxyxqyx mnmn  ,,),(,0),(),(f . (4) 33 

Assuming no flow across the boundary of the study area, we have the following boundary 34 
condition: 35 

 ( , ) 0, ( , ) , ,mn x y x y n N m M    f . (5) 36 

However, it is not difficult to extend the model to represent a given demand pattern that 37 
enters or leaves the region at the boundary. In such a case, we need only replace the above 38 
constraint with  yxgyxyx mnmn ,),(),( nf , where  yxgmn ,  is the demand function and 39 
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),( yxn  is the unit normal vector pointing away from the modeled region at the boundary 1 
point ),( yx . Please be noted that for reducing the notational burden, the argument (x,y) 2 
for various variables are suppressed in the subsequence sections. 3 

For the continuum modeling approach, as discussed in previously paragraphs, is capable 4 
of providing a detailed analysis of the traffic conditions with relatively small number of 5 
control variables. Such characteristics of the continuum model make it more suitable than the 6 
discrete network in national-scale models. One of the major concerns in using continuum 7 
model for national-scale model is its suitability in modeling the sparse rural area network. 8 
This issue can be addressed in two ways. First, for areas that are totally not accessible by 9 
traffic (e.g. lakes and mountains), we can set a boundary that restricts traffic from entering 10 
these areas in the continuum network (Ho et al., 2005). Second, for areas with sparse rural 11 
roads with low capacities, which normally will not be used for the inter-regional travel, 12 
additional travel cost penalty can be added to the unit transportation cost function (Equation 1) 13 
to increase the travel cost across these areas. As a result, traffic will be diverted to the inter-14 
regional highways with a comparatively low and reasonable travel cost. 15 
 16 
3. Utility maximization (first-best solution) 17 
This section aims to find the optimal toll rate pattern such that the utility of the system as a 18 
whole is maximized. To find this optimal toll rate, the direct utility function of the 19 
representative traveler for this multi-class continuum transportation system with multiple 20 
cities is first derived (Appendix A). Based on this utility function, the total utility of the 21 
system is found and maximized in section 3.1 to ascertain the optimal toll rate. Section 3.2 22 
gives the algorithm used to solve the utility maximization problem. The relationship between 23 
the relevant models is illustrated in Figure 1. 24 

 25 
3.1. Formulation of the utility maximization model 26 
The multi-class congestion-pricing problem with a logit-type distribution is formulated as a 27 
utility maximization problem (details could be found in Appendix A). The problem can be 28 
formulated as the following mathematical program for maximizing the total system utility, 29 
 ,U f q : 30 

 
 







 


d

ln
1

ln
1

,
~

Maximize
~

~~
~

~~
,

m n
mnm

m n
nmnm

mm
mm

mm n
nmnm

c

qqqqUqU

f

qf
qf   (6a) 31 

subject to  0 , , ,mn mnq m M n N x y      f , (6b) 32 

    yxNnMmqq
n

nmm ,,
~~,0

~
~ , (6c) 33 

    yxNnMmmn ,,,0f . (6d) 34 

Consider the Lagrangian for the above maximization problem: 35 

 

 

1 1
ln ln

d d

mn mn m m mn mn m mn
m n m m n m nm m

mn mn m m mn mn mnmn
m n m n m n

L q U q q q q c

u q q q

 







    

         
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


 36 



6 H.W. Ho et al. 

As it could be proven (in the later part of this section) that the Lagrangian multipliers of 1 
constraints (6b) are equivalent to the corresponding total travel costs at the optimal solution 2 
of the maximization problem (6), mnu , which defines the total travel cost for class m users 3 

making a choice n, is used to denote the Lagrangian multiplier of Equation (6b) in order to 4 
reduce the notational burden. Applying the variational principle to the Lagrangian, we have: 5 

 

   



 
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 


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
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

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m n
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m n
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1
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fwwf

f

f
f

ff

f

ff





 6 

 7 
Rearranging and applying the divergence theorem, we have: 8 

 

 

 

1 1
δ ln δ δ

δ δ d

δ d δ d δ d
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 9 

Given that nmq ~δ , mnuδ  and mvδ  are arbitrary functions in , mnfδ  is an arbitrary function in 10 

c ,  mnwδ  is an arbitrary function in , and mnfδ  vanishes in , at L = 0, it follows that 11 

    yxNnMmvuqU mnm
m

nm
m

nm ,,
~~,0

1
ln

1
~~~


 (7) 12 

     







 yxNnMmubba mn

mn

mn

o p
opommom ,,,0

f

f
f  (8) 13 

    yxNnMmqmnmn ,,,0f  (9) 14 

    yxNnMmqq
n

nmm ,,
~~,0

~
~  (10) 15 

  0 , , ,mn cnu m M n N x y      (11) 16 

    yxNnMmmn ,,,0f  (12) 17 

From Equation (8), we can observe that the flow vector is directly opposite to the gradient of 18 
the Lagrange multiplier mnu , i.e. 19 

 mnmn u //f  wherever 0mn f , (13) 20 

where ‘//’ means that the two vectors are in the same direction and 21 
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  
o p

opom
o p

opmommn bbau ff  (14) 1 

Now, let us specify a modified cost function 2 

  
o p

opom
o p

opmomm bbac ff  (15) 3 

within the modeled region. For any route p used by a class m user to travel from the demand 4 
location (H) to city n (On), if we integrate the modified cost along this path, the total cost 5 
incurred by the user can be obtained as  6 

      HHOd n mnmnmnp mnp
mn

mn
mp mmnp uuuucscC   dsds

f

f
 (16) 7 

using equations (8, 11 and 15) and based on the fact that /mn mnf f  is a unit vector that is 8 

parallel to ds along the path. Therefore, the total modified cost is independent of the path 9 
used and )H(mnmnp uC  . In contrast, for any unused path p’ between a user’s demand 10 

location H in  and the chosen city n, the total cost incurred by the user is 11 

      HHOd n'''' mnmnmnp mnp
mn

mn
mp mmnp uuuucscC   dsds

f

f
 (17) 12 

using equations (8, 11 and 15). Hence, )H(' mnmnp uC  . The inequality in the above derivation 13 

is due to the fact that for some segments along the path p’, the normal vectors /mn mnf f  and 14 

ds are not parallel and hence  d /mn mns  f f ds  for these segments of path p’. Therefore, for 15 

any unused path, the total modified cost is greater than or equal to that of any of the used 16 
paths. In this way, the model guarantees that the user will choose his/her route in the region 17 
in a user-optimal manner with respect to the modified cost functions. Moreover, the 18 
Lagrangian multiplier ),( yxumn  can be interpreted as the minimum total modified cost 19 

incurred by class m users in traveling from a location ),( yx  to city n. 20 
Comparing the modified cost function defined in Equation (15) with the travel cost 21 

function defined in Equation (1), it can be observed that the modified cost function consists 22 
of the following two components: 23 


o p

opmom ba f  = the actual cost per unit distance experienced by a class m user 24 

traveling at ),( yx ; 25 


o p

opomb f  = the user externality, which is the cost per unit distance that a 26 

marginal class m user imposes on other classes of users that are 27 
already traveling at ),( yx . 28 

This means that if the travel cost of class m users is modified by charging a toll rate of 29 

  ),(,,, yxNpMob
o p

opomm f , (18) 30 

per unit distance of travel in the modeled region, the flow pattern corresponding to utility 31 
maximization will be in user equilibrium. In contrast to Ho et al. (2007b), which a single 32 
anonymous toll rate is found for all classes of users, Equation (18) shows that (due to the 33 
consideration of asymmetrical cost function in this paper) discriminatory toll rates for 34 
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different classes of users are necessary for achieving the first-best solution. With the 1 
advances made in intelligent transportation systems, charging for this component is now 2 
feasible using global positioning system (GPS) technology, in which every unit of movement 3 
at location ),( yx  in the modeled region can be charged at an amount equivalent to ),( yxτm , 4 

as shown in Equation (18). Rearranging Equation (7), we have: 5 

        1expexp1exp ~~~~~  mmnmnmmmnmnmmnm vuUvuUq   (19) 6 

Substituting Equation (19) into Equation (10), we have: 7 
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Substituting Equation (20) back into Equation (19), we have: 9 
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 (21) 10 

As nmq ~  is only dependent on the exponential functions and a positively defined quantity qm, 11 

the non-negativity constraint of nmq ~ , Equation (A-14c), will be satisfied. Equation (21) shows 12 

that there is a stochastic distribution of demand for users among their choices, N
~

. 13 
 14 

3.2. A solution algorithm for the utility maximization model 15 
Similar to Wong (1998), the finite element method (FEM) is used to approximate the 16 
continuum nature of the utility maximization problem stated in Equation (6) (Zienkiewicz 17 
and Taylor, 1989). Expanding the Lagrangian (L) of this maximization problem with Taylor 18 
series and neglecting the higher order term, we have: 19 

    kkkk ΨRΨHΨΨ 1
1


   (22) 20 

where  , , ,k mn mnu m M n N   Ψ f  is the solution vector at iteration k;  kΨR  and 21 

 kΨH are respectively the residual vector and Hessian matrix of the Lagrangian in iteration k. 22 

Based on this iterative equation and the golden section method (Sheffi, 1985) for determining 23 
the step size , the solution procedure for this utility maximization problem can be set as 24 
follows. 25 
 26 
Solution Procedure A 27 
Step A1: Find an initial solution 0Ψ . Set k = 0. 28 

Step A2: Evaluate  kR Ψ  and  kH Ψ . 29 

Step A3: Apply the golden section method to determine the step size *  which minimizes 30 

the norm of the residual vector     1

k k k R Ψ H Ψ R Ψ . Then, set  31 

    1*
1k k k k 
  Ψ Ψ H Ψ R Ψ . 32 

Step A4: If the relative error 1 / ,k k k Ψ Ψ Ψ  is less than an acceptable error , then 33 

terminate, and 1kΨ  is the solution. 34 
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Step A5: If the relative error exceeds the acceptable error  then replace kΨ  with 1kΨ . Set k 1 

= k + 1 and go to Step A2. 2 
 3 

4. The cordon-based congestion-pricing problem  4 
If a distance-based charging technology (e.g. a GPS-based charging system) is not available, 5 
the first-best scheme cannot be practically implemented. Moreover, it is not socially 6 
acceptable to change the charging rate continuously for those traveling in the modeled region. 7 
It is more practical to formulate a multi-layer cordon-based charging scheme in which each 8 
layer is charged a fixed toll. In this scheme, the whole modeled region is divided into a small 9 
number of sub-regions that are separated by well-defined cordons. In section 4.1, the cordons 10 
and the corresponding cordon tolls are defined on the basis of the optimal toll rate found by 11 
solving the utility maximization problem given in section 3.1. For the set of given cordons 12 
and cordon tolls, section 4.2 develops a cordon-based congestion pricing model which is 13 
solved using the solution algorithm introduced in section 4.3 to account for the user behavior 14 
in the presence of such a charging scheme. Taking into account the given cordons and the 15 
reactions of users, section 4.4 formulates an optimization model that allows for the optimal 16 
cordon toll, i.e. the toll that maximizes total system utility, to be ascertained. The 17 
relationships of these models and algorithms with the model introduced in the previous 18 
section are summarized in Figure 1. 19 
 20 
4.1. Definition of cordons and cordon tolls 21 
For the multi-layer cordon-based charging scheme, we need to determine the total toll that a 22 
user has to pay when traveling from his/her home location to the city boundary. Although the 23 
minimum total modified cost, ),( yxumn , can be obtained by solving mathematical program 24 

(6), the total travel cost and toll cannot be readily ascertained from the solution. To separate 25 
the total travel cost, ),( yxumn , and the toll paid from the function ),( yxumn , we define a toll 26 

function, ),( yxTmn , which measures the total toll that a class m user has to pay when 27 

traveling from location ),( yx  to the boundary of city n. Clearly, we have  *** / mnmnmmn τT ff , 28 

where  yTxTT mnmnmn  /,/  is the gradient of the function ),( yxTmn . *
mnf  and *

mτ  are 29 

respectively the solutions of the flow vector and toll rate, which are determined by solving 30 

mathematical program (6), and ** / mnmn ff  is the normal vector of the optimal flow pattern. To 31 

solve this partial differential equation, we reformulate it as a least square problem as follows: 32 

    
 dMinimize

2

*

*
*

m n mn

mn
mmnTZ

f

f
T

T
  (23a) 33 

 0, , , ( , )mn cnT m M n N x y        (23b) 34 

This is a post-analysis of the optimal solution obtained from mathematical problem (6). 35 
Based on the total toll ),( yxTmn  determined from this post-analysis, we can (for each 36 

combination of m and n) construct Jmn+1 iso-toll contours,  0 1, , , J
mn mn mn mnW W WW   with 37 

 0 1, , , J
mn mn mn mnT T TT   as the corresponding toll levels of the constructed cordons, in the 38 

modeled region. Note that 0
mn cnW   , which is also the boundary of city n, has a toll level 39 

00 mnT . For the two consecutive iso-toll contours of levels j
mnT  and 1j

mnT  (with j
mn

j
mn TT 1  40 
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and  0, mnj J ), which are considered to be the charging cordons, the area embraced by 1 

these two contours  forms a layer in which any class m user who patronizes city n and enters 2 
this layer is charged a fixed toll of 1 1ˆ j j j

mn mn mnT T    . This means that 1ˆ j
mn   is the fixed toll 3 

charged on all class m users, who are heading to city n, as they cross the 1j
mnW   cordon. 4 

Although this cordon-based charging scheme is more realistic than a point-wise charging 5 
scheme, it remains impractical given that not all users have to be charged whenever they pass 6 
through a cordon. For example, for a class 1 user traveling to city 1, based on this scheme, he 7 
will not be charged when he passes the 1

12W  cordon, as this cordon is set up for this class of 8 

users when they travel to city 2. Thus, to improve the practicality of the charging scheme, a 9 
new set of J’ cordons,  '21 ,,, J Λ , which are applicable to all classes of users, are 10 

selected from the set of previously established cordons,  , ,mn m M n N   W W . Let i
mτ

~  11 

be the toll for class m users who cross the i  cordon and is defined based on the total toll 12 
pattern  , ,mn m M n N   T T . The set of fixed tolls  ',,~~ JjMmτ j

m τ  and the 13 

corresponding cordon  '21 ,,, J Λ  then define the cordon-based charging scheme.  14 
 15 

4.2. Formulation of a cordon-based congestion-charging model 16 
Based on the cordon set Λ  and the corresponding charging scheme τ~  defined in the 17 
previous section, the cordon-based congestion-pricing model, which gives users’ responses to 18 
such cordon set and charging scheme, is set up. Compared with the cordon-based model 19 
introduced in Ho et al. (2005), the cordon-based model introduced in this paper is more 20 
complicated, as the cordon-toll charged in this model, while path-dependent, is not location-21 
dependent. Thus, a fixed-point model is introduced to solve this path-dependent cordon-toll 22 
problem. Two sub-models, named the toll determination sub-model and the flow pattern 23 
determination sub-model, are included in this fixed-point problem. In the toll determination 24 
sub-model, the paths chosen by system users are traced graphically from their home locations 25 
to their chosen cities based on the given flow pattern. Based on these traced paths, the total 26 

toll ( mnT
~

) for the system users is determined by adding together the fixed tolls ( j
mτ

~ ) for all the 27 

cordons crossed along the users’ paths. This sub-model can be represented in the following 28 
abstract form: 29 

  FT P~
 (24) 30 

where  , ,mnT m M n N   T   is the toll calculated on the basis of this cordon-based 31 

charging scheme, and  , ,mn m M n N   F f  is the corresponding flow pattern. On the 32 

other side of the fixed-point problem, the flow pattern determination sub-model is aimed at 33 

finding the user equilibrium flow pattern F for a given toll pattern T
~

. This user equilibrium 34 
flow pattern can be obtained by solving the following set of differential equations: 35 
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 (25b) 37 

    yxNnMmmn ,,,0f  (25c) 38 
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  0 , , ,mn cnu m M n N x y      (25d) 1 

where umn, as defined in Section 4.1, is the total travel cost (excluding tolls); nmT ~
~

 is the total 2 

toll that a class m user has to pay for making choice n~  and is kept constant in this sub-model. 3 

nmT ~
~

 is equal to mnT
~

, which is the solution of the toll determination sub-model, for users 4 

choose to travel to any of the cities. Note that nmT ~
~

 is equal to zero where users choose not to 5 

travel. The fraction in Equation (25b) is the modified demand distribution function based on 6 

this total toll ( nmT ~
~

). Similar to Equation (16) and (17), the total cost incurred by a class m 7 

user for any used route p or unused route p’ in traveling from the demand location (H) to city 8 
n (On) can be defined as: 9 

  Hd
~

mnp mnp
mn

mn
mp mmnp uucscC   dsds

f

f
 10 

  Hd
~

'''' mnp mnp
mn

mn
mp mmnp uucscC   dsds

f

f
 11 

Therefore, mnpmnp CC
~~

'  , indicating that this set of differential equations satisfies the user 12 

equilibrium condition in path selection. Similar to the toll determination sub-model, this flow 13 
pattern determination sub-model can be represented in the following abstract form: 14 

  TF
~

S  (26) 15 

Combining Equation (24) and (26), the cordon-based congestion-charging problem can be 16 
formulated as the following fixed-point problem: 17 

   FF PS  (27) 18 

Solving the fixed-point problem (27), the flow pattern F that satisfies the user 19 
equilibrium condition (the flow pattern determination sub-model) and takes into account the 20 
cordon toll charged (the toll determination sub-model) can be found. Using this flow pattern 21 
F and the total no-toll travel cost umn, which is found from the flow pattern, the solution  for 22 
this cordon-based congestion-pricing problem can be determined. 23 

 24 
4.3. A solution algorithm for the cordon-based congestion-charging model 25 
In the toll determination sub-model, the total toll ( T ) can be found by tracing the chosen path, 26 
which is defined by the flow pattern (F), from the demand location to the destination. For the 27 
flow pattern determination sub-model, the finite element method (FEM) is used to 28 
approximate the continuous variables in the modeled region (Zienkiewicz and Taylor, 1989). 29 
As there is no explicit objective function for this multi-class cordon-based congestion-30 
charging problem, the mixed finite element procedure used in Wong (1998) cannot be applied 31 
directly. Hence, we adopt the Galerkin formulation of the weighted residual technique 32 
(Cheung et al., 1996; Zienkiewicz and Taylor, 1989) in which differential equations (25a) and 33 
(25b) are transformed into the following equivalent integral expressions: 34 
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  (29) 3 

where ),( yx  is the trial (or weight) function in the weighted residual technique. Boundary 4 
conditions (25c) and (25d) are enforced by taking a zero weight function (Cheung et al., 5 
1996). In the Galerkin formulation, the local interpolation function of the finite element is 6 
used as the trial function. The modeling area is first discretized into a finite element mesh 7 
(see Figure 3 for an example) in which the Galerkin formulation is applied at the element 8 
level. The governing equations at a particular finite element node s are given as follows: 9 
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  (30) 11 

where e  denotes the domain of the finite element e; sE  is the set of finite elements that 12 

connects node s; ),( yxNs  is the local interpolation function of the finite element that 13 

corresponds to node s; s
mnr  is the nodal residual vector for class m users traveling to city n at 14 

node s, which represents how far governing equations (25a) and (25b) are satisfied locally 15 
around node s; and  , ,Φ F T u , where  , ,mnu m M n N   u , is the solution vector of 16 

the problem. For the global satisfaction of governing equations (25), we require that 17 
     0ΦrΦR  s

mnCol . For this flow pattern determination sub-model, we apply the typical 18 

Newton-Raphson algorithm with a line search to solve the problem, in which we derive the 19 
iterative equation 20 

    kkkk ΦRΦJΦΦ 1
1


    (31) 21 

where  kΦJ  is the Jacobian matrix of vector  kΦR  in iteration k and  is the step size (to 22 

be determined using the golden section method). By adding a step for solving the toll 23 
determination sub-model in the Newton-Raphson algorithm adopted for the flow pattern 24 
determination sub-model, both sub-models, thus the fixed-point problem, could be solved 25 
simultaneously. The solution procedure for this fixed-point cordon-based congestion-pricing 26 
problem can be set as follows: 27 

 28 
Solution Procedure B 29 
Step B1: Find an initial solution 0Φ . Set k = 0. 30 

Step B2: With the solution kΦ , solve the total toll kT
~

 using the toll determination sub-31 

model (24) 32 
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Step B3: Evaluate  kΦR  and  kΦJ . 1 

Step B4: Apply the golden section method to determine the step size *  which minimizes 2 

the norm of the residual vector     1

k k k R Φ J Φ R Φ . Then, set  3 

    kkkk ΦRΦJΦΦ 1*
1


   . 4 

Step B5: If the relative error ,/1 kkk ΦΦΦ   is less than an acceptable error , then 5 

terminate, and 1kΦ  is the solution. 6 

Step B6: If the relative error exceeds the acceptable error  then replace kΦ  with 1kΦ . Set k 7 

= k + 1 and go to Step B2. 8 
The no-toll scenario considered in the numerical example, which is a special case of the 9 
cordon-based congestion-charging model with 0mnT  , will also adopt the above solution 10 

algorithm but skip the toll determination step (Step B2). 11 
 12 
4.4. The second-best solution 13 
When setting up a cordon-based congestion-pricing scheme, two critical issues that have to 14 
be addressed are the location of the cordons and their corresponding toll levels. Section 4.2 15 
introduces a method for fixing the location of charging cordons from the first-best solution. 16 
However, the fixed tolls always undercharge users because they are bounded by the first-best 17 
level of toll charges. To fine tune the cordon-based charging levels, given the cordons set 18 
used in the above procedure remain unchanged, we can derive the second-best congestion 19 
charging scheme by further optimizing the toll values using the following bi-level 20 
mathematical program. The upper-level subprogram is designed to maximize the total utility 21 
of the system. 22 
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subject to ',,0 JjMmτ j
m    (32b) 24 

where the quantities  τ~*
~nmq ,  τ~*

mc  and  τf ~*
mn  are determined by solving the set of 25 

differential equations (25) at the lower level, in which the set of fixed tolls τ~  is passed from 26 
the upper level to the lower level subprogram. Given that in practice only very few cordons 27 
are introduced or the number of fixed toll variables is very small, the upper level subprogram 28 
can easily be solved using the pattern search method (Hookes and Jeeves, 1961). Note that 29 
the resultant second-best congestion charging scheme is optimized in the context of the 30 
chosen cordon locations. A better second-best scheme can be obtained by joint optimization 31 
of the cordon locations and toll levels, which is a useful extension of the present methodology 32 
and is worthy for exploration in a future study. 33 

 34 
 35 

5. A numerical example 36 
We now present a numerical example to illustrate the proposed congestion-pricing model 37 
with multiple user classes within a continuum system. The Chinese region modeled is shown 38 
in Figure 2. The region spans about 350 km from east to west and 250 km from north to south, 39 
and has two cities competing for users of two different vehicle classes. Note that the vehicle 40 
classes used in this example is for demonstration purpose, and thus they are not referred to 41 
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any real categories of vehicles. For the sake of simplicity, it is assumed that the users are 1 
uniformly distributed over this region. In a real-life application, the demand surface may vary 2 
over space according to the zonal population density and other demographic and socio-3 
economic characteristics of the population specified by the modelers. The demand for class 1 4 
and 2 users is respectively taken as 50 users/km2 and 60 users/km2, while the corresponding 5 
demand distribution functions for the different destination choices are specified as: 6 

Class 1 non-travel: 
  
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Class 1 to city 2: 
  

        1211

12
12 310008.0exp200008.0exp100008.0exp

310008.0exp
50

uu

u
q




   9 

Class 2 non-travel: 
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Class 2 to city 1: 
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Class 2 to city 2: 
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The demand function is dependent on the total travel cost, mnu , incurred in traveling 13 

from the demand locations continuously dispersed on the 2-dimensional plane to a common 14 
and compact destination in the city. The unit transportation cost function is specified as: 15 

Class 1 user:           222112111 00005.000004.0,,07.0, ffff  yxvyxvyxc ba . 16 

Class 2 user:           222112112 00007.000006.0,,08.0, ffff  yxvyxvyxc ba . 17 

where  yxcm ,  is measured in CNY (Chinese yuan) per kilometer. 18 

   , 1.10 0.00025 ,av x y d x y   and    , 1.20 0.00035 ,bv x y d x y   are the factors that 19 

account for the variation in the location-dependent parameters of the unit transportation cost 20 
function and  yxd ,  is the mean distance from the two cities to locations (x,y). These factors 21 
increase when the mean distance from the cities decreases, which reveals the network 22 
characteristic that junctions are more closely spaced as they are nearer to the cities. Hence, 23 
the parameters of the unit transportation cost function increase. The cost function is flow-24 
dependent and explicitly takes into account the fact that traffic congestion will lead to a 25 
higher travel cost through the opportunity cost of waiting in queues or the payment of a 26 
congestion toll. Given the above definition of the problem, the study region is discretized into 27 
a finite element mesh (see Figure 3), and the continuum approach is adopted to solve the 28 
traffic equilibrium problems in no-toll, first-best, initial-cordon and second-best scenarios. 29 

First, let us start with the no-toll scenario, which is also known as the user optimal 30 
model. In this scenario, all users choose their optimal routes over the continuum with the 31 
lowest transportation cost (no toll). The resultant traffic flow pattern for class 1 users 32 
traveling to city 1 is displayed in Figure 4. In this paper, only figures for class 1 and city 1 are 33 
included, as the solution patterns for the other combinations of user classes and cities are 34 
quite similar. Certain indicators associated with this no-toll scenario are calculated and listed 35 
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in Table 1. For this no-toll scenario, we find that city 2 has a higher market share (51% for 1 
class 1 users and 45% for class 2 users) as city 2 has a higher utility gain level, Um2, (310 2 
CNY for class 1 users and 380 CNY for class 2 users) as compared to city 1, Um1, and non-3 
travel option, Um0. The total system cost is 506.10 million CNY and the total system utility is 4 
about 1,356.39 million CNY in this no-toll scenario. The resultant traffic flow intensity for 5 
class 1 users traveling to city 1 is displayed in Figure 5. The flow intensity increases rapidly 6 
as traffic approaches city 1, which is also true for city 2 and class 2 users, resulting in a steep 7 
increase in the total travel cost incurred by users. Figure 5 shows that in the eastern part of 8 
the modeled region (around city 2), the flow intensities around the northern and southern 9 
boundaries of the region are higher than that in the vicinity of city 2. This indicates that some 10 
of the users, especially those located to the east of city 2, are diverted away from the vicinity 11 
of city 2 while heading to city 1. Such behavior can be explained by the interactions of 12 
different users within the region. As the vicinity of city 2 is congested with the users who 13 
choose to patronize city 2, the delay due to congestion is very high. Therefore, those who 14 
choose to use city 1 try to avoid the congested area near city 2 and take a longer but less 15 
congested route.  16 

Figure 6 shows the contour of the total travel cost of class 1 users, where the boundary 17 
of city 1 represents the contour of zero total travel cost for class 1 users traveling to city 1. By 18 
comparing the spacing between contours in Figure 6, it can be seen that the change of total 19 
travel cost with respect to the change of demand location is more rapid in the proximity of 20 
city 1 and 2 than in the other locations. Such rapid change of total travel cost in these 21 
proximities is resulted from the high flow intensities (i.e. heavy congestion) in those areas. 22 
Turning to the proximity of city 2, Figures 5 and 6 show that while the flow intensity is 23 
relatively low, the travel cost contour is highly distorted. This is because in the region of low 24 
flow intensity of class 1 users traveling to city 1, the effect of round-off and convergence 25 
error of the flow vector (f11) is relatively large. These errors, which affect the direction of the 26 
cost gradient (Equation 8), will be amplified by the high travel cost, which due to the 27 
congestion of this area with the traffic heading to city 2, and causes the irregularities of the 28 
iso-cost contours. Despite the above non-smooth (distorted) iso-cost contours, Figure 6 gives 29 
a reasonable pattern of total travel cost as the highest travel cost (over 160 CYN) is located 30 
around city 2 for the high congestion delay in that area. 31 

Traffic congestion is particularly severe in the no-toll scenario, especially as traffic 32 
approaches the cities. As there is no congestion toll, all road users spend their time waiting in 33 
queues rather than using it fruitfully for other purposes. To maximize the total utility of the 34 
modeled system, a congestion pricing scheme should be introduced. In this numerical 35 
example, the continuum modeling approach is applied to find the first-best solution of utility 36 
maximization (using the mathematical program expressed in (6)). Following the imposition 37 
of congestion tolls, a portion of the congestion externality is internalized by road users. Given 38 
the regional configuration, the congestion toll for each class of users is defined by the toll rate 39 
defined in Equation (18). The results of the first-best solution are presented in Table 1. In the 40 
first-best scenario, the toll rate, m, varies continuously over space according to location and 41 
traffic volume. Geographically, the toll rate can be shown by the iso-toll rate contours and the 42 
contours for all class 1 users (for travel to both city 1 and city 2) are shown in Figure 7. As 43 
traffic intensity rises sharply near the cities, the iso-toll contours become very densely packed 44 
in these locations. The maximum toll rates for class 1 and class 2 users, which are 45 
respectively 5.38 and 6.42 CNY per km (Table 1), occur around city 2, as this is the most 46 
congested area (and is even more congested than the proximity of city 1). For road users 47 
departing from any location ),( yx  within the region to a city, the total toll paid Tmn can be 48 
calculated by solving problem (23). The iso-toll contours of this total toll pattern for class 1 49 
users traveling to city 1 are displayed in Figure 8. In Figure 8, it can be seen that the total toll, 50 



16 H.W. Ho et al. 

Tmn, is a location-dependent variable and that the highest total toll is paid by those living 1 
farthest away from the city because they travel for a longer distance within the region.  2 

As discussed in section 4.1, the charging cordons are defined on the basis of the iso-3 
contours of the total toll pattern Tmn from the first-best scenario. For the sake of simplicity, 4 
we choose two iso-contours from the total toll pattern for class 1 users as the charging 5 
cordons for the initial-cordon and second-best scenarios. The exact locations of these 6 
charging cordons are shown in Figure 9.  As these cordons are the iso-contours of the total 7 
toll pattern for class 1 users, the tolls charged to class 1 users at these cordons, which are 30 8 
CNY for cordon 1 and 45 CNY for cordon 2, can be calculated easily. For class 2 users, 9 
although these cordons are not exactly the same as their total toll iso-contours, they should be 10 
very similar, as the toll rates for both class 1 and class 2 users are dependent on the flow 11 
intensity at any particular location. Thus, based on the first-best solution, we take 35 CNY 12 
and 55 CNY as the toll charges for class 2 users at cordons 1 and 2, respectively. In this 13 
numerical example, it is assumed that only the inbound direction of the cordons is charged 14 
with the designed toll. Based on this cordon-based charging scheme from the first-best 15 
scenario, a new user equilibrium solution, which forms the initial-cordon scenario, can be 16 
obtained. The results are summarized in Table 1. Although the improvement in total system 17 
utility of the initial-cordon scheme (57.90%) is not as high as that of the first-best solution 18 
(100%), it still leads to an improvement in total system utility when compared to the no-toll 19 
scenario. In Table 1, it can be seen that while the percentage of non-travel cases and the total 20 
utility of the initial-cordon scheme are both higher than in the no-toll scenario, they are lower 21 
than in the first-best case. This indicates that although the initial-cordon charging scheme is 22 
both an efficient way of alleviating congestion and improves the total utility of the system, it 23 
is not as effective as the point-wise charging scheme (the first-best scenario). Similar 24 
conclusion could also be drawn by comparing the total system utility of the initial-cordon 25 
scenario (1.38 billion CNY) to that of the first-best scenario (1.40 billion CNY). 26 

In the initial-cordon scheme, as the system users are only charged at the cordons and the 27 
toll is the same as in the first-best solution, this does not maximize the total utility of the 28 
system as a whole. In other words, this user equilibrium solution should not be the second-29 
best solution under the constraint of cordon-based charging at the selected cordons. Hence, it 30 
is reasonable to find the second-best solution by adjusting the cordon toll levels. The pattern 31 
search method introduced by Hookes and Jeeves (1961) is thus adopted to find the 32 
combination of cordon tolls that maximizes total utility under this cordon-based charging 33 
scheme. It is found that when total utility is maximized, the charges at cordon 1 are, 34 
respectively, 42 CNY and 43 CNY for class 1 and class 2 users, while at cordon 2, the 35 
charges are 67 CNY and 63 CNY. This forms the second-best scenario of this numerical 36 
example involving charges at cordons 1 and 2. Table 1 gives the detailed numerical results 37 
for this second-best scenario. 38 

Compared to the initial-cordon scenario, the second-best scenario is associated with an 39 
increase in the total system utility of the system of 6.42 million CNY (to a level of 1,386.39 40 
million CNY). The system cost falls slightly from 440.85 million CNY to 420.05 million 41 
CNY, and total toll revenue rises from 180.25 million CNY to 227.53 million CNY. Similar 42 
to the comparison of the initial-cordon scenario with the no-toll and first-best scenarios, the 43 
results of the second-best charging scenario indicate that while it is superior to the initial-44 
cordon scenario in alleviating congestion, it is not as good as the first-best scenario. Also, by 45 
considering the improvement in total system utility, it could be seen that the second-best 46 
scenario (73.65%) is better than the initial-cordon scenario (57.9%) but is inferior to the first-47 
best scenario (100%). Figure 10 shows the pattern of total tolls paid by class 1 users traveling 48 
to city 1 in the second-best charging scenario. Comparing Figure 10 with Figure 9, it can be 49 
seen that all class 1 users that are not located within cordon 1 have to pay a 42 CNY toll, 50 
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which is the toll at cordon 1 for class 1 users, when they travel from their home locations to 1 
city 1. This indicates that these users attempt to avoid entering cordon 2, which requires an 2 
extra toll of 67 CNY, when they devise their paths. While from some locations (such as to the 3 
east of cordon 2), the path is shorter if the user chooses to pass through cordon 2, this saving 4 
in travel distance cannot compensate for the extra toll incurred when passing through cordon 5 
2 and the long delay experienced due to the heavy congestion near city 2. Thus, users are 6 
likely to forego the advantage of a shorter route and detour to another path that, while longer, 7 
is nevertheless toll-free and less congested. This demonstrates the usefulness of using a more 8 
controllable and effective cordon-based congestion charging scheme, in contrast to the less 9 
predictable congestion delay experienced by road users, to detour traffic away from a 10 
congested area.  11 

Due to the difference in geographical locations and choices of destination, the impact of 12 
congestion-pricing varies over the modeling region. In this study, the impact of congestion-13 
pricing is measured as the difference of user surplus, which is the logsum of user surpluses of 14 
all travel choices (   

n mnmn uUexpln ), of each class of users before and after the 15 

implementation of scheme. Figure 11 and 12 show the spatial variation of percentage change 16 
of user surplus for class 1 users after the implementation of the first-best and second-best 17 
congestion-pricing schemes, respectively. In Figure 11, it can be seen that the user surplus of 18 
class 1 users decreases ( 0) for the whole modeling region after the first-best congestion 19 
pricing scheme is implemented. This is because under the first-best congestion pricing 20 
scheme, all the users, who choose to travel, have to pay an extra distance-based toll that 21 
cannot be compensated for by the travel time reduction from the less congested network. Due 22 
to the shorter travel distance (less paid toll in the first-best charging scheme), the percentage 23 
decrease in user surplus reduces for the locations that are closer to either of the destinations 24 
(City 1 and City 2). In contrast, the highest reduction of user surplus of class 1 users is at the 25 
locations that are between the two destinations (i.e. locations that are not close to either of the 26 
destinations). One the other hand, the second-best congestion pricing scheme gives a different 27 
pattern of percentage change of user surplus as compared to the first-best scenario (Figure 12). 28 
In general, the reduction of user surplus for class 1 users in the second-best scenario is less 29 
than that in the first-best scenario. This is because the cordon toll that users pay in the 30 
second-best scenario is generally less than the distance-based toll in the first-best scenario. In 31 
Figure 12, it can be seen that there is an increase in the user surplus for class 1 users located 32 
within the charging cordons. Such increase comes from the fact that users within the charging 33 
cordons enjoy a less congested, which due to the implementation of congestion pricing, and 34 
toll free travel environment. In Figure 12, it can be observed that the location for the highest 35 
reduction in user surplus is closer to city 1. Based on the percentage change of user surplus 36 
shown in Figure 11 and 12, it is expected that after the implementation congestion pricing, 37 
class 1 users tend to live closer to the destinations (first-best scheme) or inside the charging 38 
cordons (second-best scheme). As a result, the rent/property value in those areas increases. 39 

 40 
6. Conclusions 41 
We have proposed a congestion-pricing model for a continuum transportation system with 42 
multiple cities and vehicle types (user classes). In this study, two different models, namely 43 
the utility maximization model and the cordon-based congestion-pricing model, have been 44 
considered and solved under the assumptions of the continuum modeling approach. For the 45 
utility maximization model, which is also known as the first-best solution for this congestion-46 
pricing problem, it is found that different toll rate patterns for different user class and 47 
destination combinations maximize the utility of travel patterns within the system. Based on 48 
this first-best solution, an initial-cordon scheme has been constructed to locate the cordons 49 
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and determine the corresponding set of fixed tolls which are based purely on user class. Using 1 
this initial-cordon scheme, a bi-level programming problem has also been formulated and 2 
solved by way of a Hookes and Jeeves pattern search algorithm to identify the set of cordon 3 
toll levels for different user classes, thereby maximizing total utility and leading to the 4 
second-best scenario. In all of these problems, the continuum models have been solved using 5 
the efficient finite element method. A numerical example has been given to compare and 6 
contrast the efficiency of the utility maximization model and the cordon-based congestion-7 
pricing model. It has been found that the second-best charging scheme, in spite of the simple 8 
charging method it incorporates, delivers total system utility comparable to that of the first–9 
best scenario. 10 

The use of a continuum approach can help to intuitively identify the level of congestion 11 
and the external cost throughout the region, thereby obviating the need for detailed network 12 
modeling work and exhaustive evaluations at the early stage of planning. Moreover, this type 13 
of intuitive approach allows traffic planners to select with ease one or more toll cordon(s) 14 
over space and evaluate the impact of cordon toll charges on the resultant total utility and toll 15 
revenue. This will provide insightful information that can be used to inform the future 16 
formulation of a detailed cordon scheme within a discrete network. 17 

 18 
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Appendix A 1 
 2 
This appendix gives the proof of the direct utility of the representative traveler for a multi-class 3 
congestion-pricing problem with logit-type demand distribution. Based on this direct utility, the 4 
mathematical program that maximizes the total system utility of this problem is derived. For the 5 
congestion-pricing problem with a single user class and destination (Ho et al., 2005), the problem is 6 
formulated as a maximization of the total system benefit. For that single user class and destination 7 
case, the system benefit can be defined explicitly as the difference between the user benefit and the 8 
system cost. However, due to the introduction of the random term in the total perceived cost, the total 9 
system benefit cannot be explicitly defined. To set up the optimization problem for this logit-type 10 
demand distribution congestion-pricing problem, the idea of maximizing the utility of a representative 11 
traveler (R.T.), which was introduced in Oppenheim (1995), is adopted. Consider a class m user 12 
making a choice n~  from among a set of cities and the choice of non-travel. His perceived utility (or 13 
indirect utility) can be specified as: 14 

 nmnmnmnm uUV ~~~~  , (A-1) 15 

where nmU ~  is the utility gain of this class m user making a choice n~ ; nmu ~  is the total travel cost 16 
(including the toll, if any) of that user making this choice; nm~  is the i.i.d. Gumbel distributed random 17 

term. Based on this indirect utility, the corresponding expected utility ( mV ) for class m users is 18 
defined by: 19 

    
n

nmnmm
m

m uUV
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~~expln
1 


. (A-2) 20 

Using this expected utility function, the corresponding direct utility can be found by minimizing 21 
the total expected utility of all system users (Oppenheim, 1995): 22 
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subject to    yxMmBCqu mm
n

nmnm ,,0
~

~~ , (A-3b) 24 

where  NnMmu nm

~~,,Col ~ u ; mC  is the total expenditure on non-travel related items for all 25 
class m users; Constraint (A-3b) is the budgetary constraint with Bm being the total budget of class m 26 
users. Consider: 27 

    yxMmqq m
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This is the definition of the demand qm and will also be used in finding the direct utility. Defining 29 
  nmnmmnm uUu ~~~ exp~   , we have 30 
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and Equation (A-3a) becomes 32 
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As a natural logarithm is an increasing function, problem (A-3) can be rewritten as 34 
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subject to   







 yxMmBCuUq mm

n
nm

m
nmnm ,,0~ln

1
~

~~~


, (A-7b) 1 

where  Col , ,mnu m M n N  u 
   . Due to i) the identical set of feasible solution for problem (A-3) 2 

and (A-7) and; ii) the one-to-one mapping and strictly increasing property of natural logarithm, 3 
solution that minimize problem (A-7) will also minimize problem (A-3), and vice versa. Consider the 4 
Lagrangian of the above minimization problem: 5 
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where νm is the Lagrangian multipliers for constraints (A-7b). Considering the first-order conditions of 7 
the above Lagrangian, we have 8 
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From Equation (A-8), we have 11 
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Substituting Equation (A-10) into Equation (A-9), using Equation (A-4) and after rearranging we have: 13 
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Thus, using the definition of nmu ~
~ , the following equation holds at the optimal point of the 15 

minimization problem (A-7), 16 
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Summing up Equation (A-11) for all classes of users, we get 18 
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As problem (A-3) is equivalent to problem (A-7) and Equation (A-12) holds at the optimal solution, 20 
the right-hand side of Equation (A-12) gives the direct utility of the representative traveler. To solve 21 
for the distributed demand, nmq ~ , this direct utility function is maximized by the following problem: 22 
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    yxNnMmq nm ,,
~~,0~ , (A-13d) 1 

where  NnMmq nm

~~,,Col ~ q . By i) considering the fact that the total travel cost nmu ~  vanishes for 2 
the choice of “non-travel”; and ii) substituting Equation (A-13c) into (A-13a), we have: 3 
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For Equation (A-14a), the first term represents the weighted utility gain of making the relevant 8 
choice, using demand as the weight; the second and third term represents the utility gain by the R.T. 9 
due to the presence of the diversity of choice (Yang, 1999; Oppenheim, 1995); the sum of these three 10 
terms defines the expected direct utility gain by the R.T. for giving the set of choices. The fourth term 11 
of Equation (A-14a) is the total travel cost for all system users, which includes any tolls paid by such 12 
users. Considering this term, mnu  includes some transferable costs, which are the tolls paid by the 13 
users, that are beneficial to the system but not to the users. Thus, maximizing the total direct utility for 14 
the R.T. within the system, as represented by Equation (A-14a), will not necessarily maximize the 15 
total utility of the system. To define the total system utility for maximization, the term 16 

dmn mn
m n

u q
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  in Equation (A-14a) should be replaced by the total system cost, 17 

dmn mn
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 , where umn is the total travel cost (excluding tolls) for class m users patronizing 18 

city n. To make this problem easier to solve, the following replacement is made: 19 

 d dmn mn m mn
m n m n

u q c
 

     f  (A-15) 20 

Equation (A-15) can be easily proven by a post-analysis least square problem based on the 21 
results (i.e. flow pattern and total travel cost) of the optimal solution. A complete proof can be found 22 
in Appendix B. By having the replacement in Equation (A-15), two additional constraints related to 23 
the flow vector fmn are introduced. Based on the above modifications, the mathematical program for 24 
maximizing the total system utility is defined as:  25 

 
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1 1
Maximize , ln ln dmn mn m m mn mn m mn

m n m m n m nm m

U q U q q q q c
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 
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  (A-16a) 27 

subject to    yxNnMmqmnmn ,,0f , (A-16b) 28 

    yxNnMmqq
n

nmm ,,
~~,0

~
~ , (A-16c) 29 

    yxNnMmmn ,,,0f . (A-16d) 30 

As compare to problem (A-14), problem (A-16) had included flow vector as one of its decision 31 
variables. Thus, Equation (A-16b) and (A-16d) are added in problem (A-16) to respectively govern 32 
the conservation and boundary condition of these flow variables. In this problem, Constraint (A-14c) 33 
is removed, as it can be proven that this constraint will automatically satisfy at the optimal point.  34 

35 
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Appendix B 1 
 2 

This appendix gives the proof of Equation (A-15) that is used in the formulation of the utility 3 
maximization model discussed in section 3.1. Considering the L.H.S. of Equation (A-15) and 4 
equations (9), (11) and (12), it can be seen that: 5 
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where the superscript indicates that the variables are at the solution of problem (6). Considering the 7 
least square problem (23) for the total toll Tmn, a similar model for the total transportation cost (no toll) 8 
umn can be found using the following post-analysis least square problem: 9 
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 (B-2a) 10 

subject to NnMmyxu cmn  ,,),(,0  (B-2b) 11 

Therefore, at the optimal point of the above problem (B-2), we have: 12 
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Putting Equation (B-3) into Equation (B-1), we have: 14 
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Therefore, Equation (A-15) holds at the optimal point of the minimization problem, thereby 16 
completing the proof. 17 

18 
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Table 1. Comparison of results for the no-toll, first-best, initial-cordon, and second-best scenarios. 
 No-toll scenario First-best scenario Initial-cordon scenario Second-best scenario 

Demand of class 1 users to city 1 (’000 veh/h) 797 (27%) 771 (26%) 790 (27%) 796 (27%) 
Demand of class 1 users to city 2 (’000 veh/h) 1,535 (51%) 1,305 (44%) 1,410 (47%) 1,334 (45%) 
Non-travelling class 1 users (’000 veh/h) 644 (22%) 900 (30%) 777 (26%) 847 (28%) 
Demand of class 2 users to city 1 (’000 veh/h) 992 (28%) 935 (26%) 975 (27%) 961 (27%) 
Demand of class 2 users to city 2 (’000 veh/h) 1,622 (45%) 1,390 (39%) 1,484 (42%) 1,476 (41%) 
Non-travelling class 2 users (’000 veh/h) 958 (27%) 1,246 (35%) 1,113 (31%) 1,134 (32%) 
Maximum toll rate for class 1 users (CNY/km) ----- 5.38 ----- ----- 
Maximum toll rate for class 2 users (CNY/km) ----- 6.42 ----- ----- 

Toll at cordon 1 for class 1 users 1
1

~τ  (CNY) ----- ----- 30.00 42.00 

Toll at cordon 1 for class 2 users 1
2

~τ  (CNY) ----- ----- 35.00 43.00 

Toll at cordon 2 for class 1 users 2
1

~τ  (CNY) ----- ----- 45.00 67.00 

Toll at cordon 2 for class 2 users 2
2

~τ  (CNY) ----- ----- 55.00 63.00 

Total tolls received (million CNY) ----- 320.69 180.26 227.53 
Total system cost (million CNY) 506.10 352.96 440.85 420.05 

Total system utility, U
~

 (million CNY) 1,356.39 1,397.12 1,379.97 1,386.39 

Improvement in total system utility (%) 
(Relative to the improve of the first-best 
scenario) 

----- 100.00 57. 90 73.65 
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Figure 1. Framework for the current study. 
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Figure 2. The modeled region. 
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Figure 3. Finite element discretization of the study region.
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Figure 4. Flow pattern of class 1 users traveling to city 1 in the no-toll scenario. 
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Figure 5. Flow intensity of class 1 users traveling to city 1 in the no-toll scenario.
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Figure 6. Total travel cost for class 1 users traveling to city 1 in the no-toll scenario (CNY).
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Figure 7. Contour plot of the distance-based iso-toll rate for class 1 users in the first-best scenario (CNY/km).
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Figure 8. Contour plot of the total toll paid by class 1 users traveling to city 1 in the first-best scenario (CNY).
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Figure 9. The two charging cordons.
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Figure 10. Total toll paid by class 1 users traveling to city 1 in the second-best charging scenario. 
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Figure 11 Percentage change of user surplus for class 1 users as first-best congestion-pricing scheme is implemented 
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 Figure 12 Percentage change of user surplus for class 1 users as second-best congestion-pricing scheme is implemented 

(km)

0 5 10 15 20 25 30 35 40 45

2
0

-2
-4
-6
-8
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
-32

Percentage
change of
user surplus (%)

500 100 150 200 250 300 350 400 450

City 1 

City 2 


