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Study on a Metal-Insulator—Silicon Hydrogen
Sensor With LaTiON as Gate Insulator

Jerry Yu, Gang Chen, and Pui To Lai

Abstract—1In this paper, by using a metal-insulator-
semiconductor Schottky-diode structure, we examined the electri-
cal and hydrogen-sensing properties of radio frequency sputtered
LaTiON thin films that had been annealed at four different tem-
peratures (450 °C, 550 °C, 650 °C, and 750 °C). Characterization
of their morphological surface indicates that their average surface
roughness decreases from 0.108 to 0.090 nm with increasing
annealing temperature. X-ray diffraction shows the growths of La
and Ti are in the 1 0 0 direction, i.e., in parallel to the Si substrate.
Analysis of measured electrical characteristics indicates that
thermionic emission is the dominant mechanism at low temper-
atures (from RT to 150 °C), while Poole-Frenkel emission plays
an important role at high temperatures (above 150 °C) in the
electrical conduction. Results suggest that the sample annealed
at 650 °C has the most promising hydrogen-sensing performance
(better current-voltage characteristics, higher sensitivity of
2.0 at 100 °C) among the four samples.

Index Terms—High-k dielectric, hydrogen, Schottky diode,
sensor.

I. INTRODUCTION

HE awareness of climate change has prompted a scientific

push towards a new and clean energy source to reduce
the pollution to the environment. With this concern growing
rapidly, scientists have examined hydrogen gas as a promising
and realistic substance that can function as a fuel that one
day can be implemented widely [1]-[3]. However, using such
an explosive substance presents great risk and any leakage
requires monitoring to prevent the occurrence of an ignition
event [4].

As a consequence, it has become very important to study
and develop hydrogen sensors with high sensitivity to
detect this particular gas species with concentration down to
parts per million and even parts per billion for the future
energy industry. It is possible to develop one type of high-
performance hydrogen sensors based on the structure of a
metal-semiconductor Schottky diode [5]-[7]. Moreover, by
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adding a thin insulating metal-oxide layer between its semi-
conducting substrate and catalytic metal, the Schottky barrier
height can be made dependent on the work function of the
metal and the electron affinity of the metal oxide. Many reports
in the literature have shown the advantages of using a thin
metal oxide layer that is only several nanometers thick as it
substantially improves the hydrogen-sensing performance of
the Schottky-diode sensors [8]-[12].

For the fabrication of metal oxide-based thin films, RF sput-
tering has grown into one of the most mature and well-
established physical deposition techniques. It is particularly
advantageous for large-area film preparation and is relatively
simple, straight forward and cost-effective. Since RF sputtering
can deposit uniform thin films down to nanometer thicknesses,
it is suitable for this research.

Lanthanum oxide has mostly been studied for dielectric
applications [13], [14] and is also known to exhibit a partic-
ularly high dielectric constant of about 25 and large bandgap
of 5.5 eV [15], which is advantageous in suppressing leakage
current. Lanthanum itself, has primarily been used as a cat-
alytic dopant in metal oxide materials such as (ZnO, SnO») in
gas sensing [16]-[19]. Materials such as molybdenum oxide
[20], tungsten oxide [21] and titanium oxide can have a much
higher permittivity than LapO3 and TiO, has been examined
particularly for its unique electrical and structural properties,
exhibiting many advantages for gas sensing applications with
a high dielectric constant of 80 and a bandgap of 3.3 eV
[22]-[26]. These materials can be used to substitute silicon
as the primary surface material and can exhibit far greater
reactive changes in their electrical properties in the presence
of hydrogen gas. Currently, the gas sensing properties of these
two materials as a compound have yet to be examined and
are still in its early stage of inquisition Hence in this work,
we fabricated LaTi-based oxide thin film on Si substrate and
examined its electrical properties and hydrogen sensing per-
formance by using a metal-insulator-semiconductor Schottky-
diode structure.

II. EXPERIMENTAL/METHODOLOGY
A. Fabrication

The sensors were fabricated on n-type silicon wafers (pur-
chased from Silicon Quest International, USA) with an ori-
entation of <100> and were diced into 10x 10 mm? square
substrates. The wafers were cleaned using the conventional
RCA method: solution I (H,O-H>O,-NH4OH) and solution II
(H20-H,0,-HCI) followed by dipping the wafers into 2% HF

1530-437X/$31.00 © 2013 IEEE
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for 1 min to remove the native oxide. The sputtering deposition
was immediately performed after the cleaning procedure as
explained below.

A LayO3 target (99.99% purity) and a Ti target (99.995%
purity) (K.J Lesker) were placed into a Denton Vacuum
Discovery sputterer. The chamber was pumped down to an
operating pressure of 4.5x107° Torr. The sputtering of La, O3
and Ti was performed simultaneously by RF sputtering (at
30 W) of La;O3 and DC sputtering (at 0.12 A) of Ti for a
duration of 16 s in a mixed Ar/N; ambient (ratio = 24:8),
which incorporated nitrogen in the oxide film to improve its
thermal stability and reduce its leakage current. The substrates
were also rotated at a rate of 3 rpm to enhance the film uni-
formity during deposition. The thickness of the as-deposited
sputtered films was measured as 4.1 nm using a J.A. Woollam
Co. VB400 ellipsometer.

Arrays of circular Pt pads (0.5-mm diameter) were deposited
via DC sputtering (0.2 A for 10 min) using a shadow mask.
The samples were annealed in a tube furnace (Lenton Thermal
Design Ltd) at four different temperatures (450 °C, 550 °C,
650 °C and 750 °C) respectively for 10 min in a pure N, gas
with a flow rate of 1000 mL/min.

The back oxide of the samples was removed by 20% HF and
then they were blown dry with Ny after rinsing in DI water.
Subsequently, the samples were pasted onto headers via Ag
epoxy and annealed in an oven at 200 °C for 30 min. Lastly,
the front electrode of the sensor and one of the pins of the
header were connected by a gold wire using a hybrid wedge
bonder.

B. Characterization Methodology

The surface morphology and the crystallographic structure
of the as-deposited samples were characterized by atomic force
microscopy (AFM) and X-ray diffraction (XRD), respectively.
Analysis of the samples will be presented in the Characteri-
zation section

C. Electrical and Gas Testing Procedure

Electrical and hydrogen-sensing measurements were per-
formed using a computer-controlled measurement system con-
sisting of a semiconductor parameter analyzer (HP 4145B),
a thermostatcontrolled chamber and two gas-flow controllers
connected to a data acquisition PC unit. The mounted sample
was placed into the stainless-steel chamber, and then Hy and
N, gases were injected accordingly.

III. CHARACTERIZATION
A. Surface Morphology

Fig. 1 shows a three-dimensional map of a 1 yumx 1 um
section of the surface morphology of the LaTiON films.
In this work, we designate the samples by their annealing
temperature. The values of the parameters (surface roughness,
mean grain size and mean grain diameter) measured by AFM
are presented in Table I.

The results show a decreasing trend of the (1) average
surface roughness, (2) mean grain size and (3) mean diameter
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Fig. 1. 3-D AFM surface map of the LaTiON films annealed at (a) 450 °C,

(b) 550 °C, (c) 650 °C, and (d) 750 °C.
TABLE I
PARAMETERS OF THE LaTiON FILMS (PREPARED UNDER DIFFERENT
ANNEALING TEMPERATURES) MEASURED BY AFM

Annealing Temperature (°C) 450 550 650 750
Average Surface Roughness (nm) | 0.108 | 0.107 | 0.095 | 0.090
Mean Grain Size (nmz) 70.8 70.9 68.7 66.2
Mean Grain Diameter (nm) 9.5 9.5 9.3 9.2
Insulator Thickness (nm) 4.1 3.6 2.9 2.5

with respect to the increasing annealing temperature. With
higher annealing temperature the LaTiON film is thinner due
to stronger densification and therefore its surface becomes
smoother.

B. Crystallographic Structure

Fig. 2 shows a plot of the XRD diffractogram presenting
the measured data of the four LaTiON samples grown on Si
substrate. The peaks of the plot appear to indicate the presence
of elements which can be correlated to the peaks of the
elements (ICDD card file) at their respective 26 angles: [100]
a-La at 56.52° [00-051-1165], [100] Ti at 55.65° [00-044-
1288], and [110] TiN at 61.91° [03-065-0565]. The presence
of LaTiO3 [03-065-1385] and LapO3 [01-076-2273] peaks is
overshadowed by the [100] Si peak at 69.13° [00-027-1402]
due to the thin 4 nm layer. TiO, peaks can also be found
at 69.36° and 69.49° [00-010-0063] inside this large Si peak.
The results suggest that the growths of La and Ti follow in the
direction of the [100] orientation of the substrate due to the
nature of the film. Although there are many peaks that remain
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Fig. 2. XRD diffractogram of the LaTiON films annealed at different
temperatures.
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Fig. 3. I-V characteristics of the sensors (prepared under different annealing

temperatures) measured at (a) 25 °C, (b) 50 °C, (c) 100 °C, (d) 150 °C, and
(e) 200 °C.

ambiguous, it is possible that Si-O; or other compounds (TiSi,
LaSi) could be present.

IV. ELECTRICAL PROPERTIES
A. Current-Voltage (I-V) Characteristics

The I-V characteristics of the Schottky-diode sensors mea-
sured at different temperatures from 25 °C to 200 °C are shown
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Fig. 4. Thermionic emission plot of the 4 sensors (prepared under different
annealing temperatures) measured at (a) 25 °C, (b) 50 °C, (¢) 100 °C, and
(d) 150 °C.

in Fig. 3. The turn-on voltage for the 450 °C, 550 °C and
650 °C samples can be found to be 1.26, 0.97 and 0.95 V,
respectively.

The carrier transport mechanism from the Si substrate
through the thin metal oxide layer to the Pt metal can be
described by the thermionic emission (TE) and Poole-Frenkel
(PF) emission. Analysis of the results shows that the TE
and PF emissions are most likely to contribute to the overall
conduction mechanism.

B. Analysis of Thermionic Emission

The forward electrical characteristics can be described in
terms of the Schottky J-V equation, when Vg > 3kT/q
[27]-[29]:

Jr = A™T?exp I:_q¢3] exp [ﬂ} (1)

kT kT

where Jr is the forward current density; A** is the effective
Richardson constant; T is the absolute temperature; g is the
electron charge; ¢ p is the forward barrier height; and & is the
Boltzmann’s constant.

The forward barrier height can be calculated using the
extrapolation method [27] and is given by the equation:

s kT [A**TZ}

B(FWD) = —— In .

(WD) q Jo

The thermionic emission plot based on the /-V data of the
four sensors is shown in Fig. 4.

)

C. Analysis of Poole—Frenkel Emission

The PF emission, a trap-assisted mechanism, occurs when
charge carriers travel through an insulator by trapping and de-
trapping processes. It is a dominant conduction process in an
insulator with a high trap density. The Poole—Frenkel current-
voltage characteristics are given by [28], [29]:

,BVI/Z—QI]

BT 3)

I =B exp|:
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Fig. 5. Poole-Frenkel emission plot of the four sensors (with different
annealing temperatures) measured at 200 °C.

TABLE 11
CONSTANTS OF LaTiON FILM EXTRACTED FROM THE POOLE-FRENKEL
PLOT OF THE SENSORS (PREPARED UNDER DIFFERENT ANNEALING
TEMPERATURES) AT DIFFERENT OPERATING TEMPERATURES

Annealing Temperature (°C) | 450 550 | 650 | 750
x(at 25 °C) 32.8 | 21.9 | 24.0 | 36.6
x(at 50 °C) 341 | 215 | 275 | 374
x(at 100 °C) 212 | 16.1 | 20.6 | 33.9
x(at 150 °C) 248 | 189 | 194 | 318
x(at 200 °C) 23.0 | 184 | 185 | 24.1

where f = (@*/(mk &y tox)'/?; @y is the depth of the trap

potential well; B is a physical parameter; x is the dielectric

constant of the insulator; kp is the Boltzmann’s constant; g¢ is

the permittivity of free space; and 7, is the oxide thickness.
The base-10 logarithm of equation (3) has the form:

log(B) —®; , BV
logl = .
23kpT 23kgT

The Poole-Frenkel plot based on the /-V data is presented
in Fig. 5, and the corresponding value of the dielectric constant
x extracted from the measured data using equation (4) is given
in Table II.

As can be seen, the extracted x values for the LaTiON
films are in the range from 16.1 to 37.4 The values for pure
LayO3 films in the literature are 18.8 [30], 26.0 [31], and
25.0 [28]. Since all the samples in this work show a x value
within the reported range by other authors only at the operating
temperature of 200 °C, this signifies that the Poole-Frenkel
emission should contribute as the dominant conduction process
in these samples in the high-temperature range (> 150 °C).This
phenomenon was also observed in other works [29]-[31]
because at high temperature, electrons confined in the oxide
traps can have sufficient thermal energy to escape, contributing
to extra current flow. Since TiO, has much higher x value
(~75 as reported in [32]) than LayO3; adding Ti to LayO3
in this work should result in a higher x value, e.g. 33 in
[33]. However, due to inevitable growth of a low-x layer at
the LaTiON/substrate interface during the annealing step, the
effective x value of the two layers combined is lower, e.g. ~18
to 25 in [34]. Therefore, the x value of ~ 20 for our samples
extracted from the Poole Frenkel model is a reasonable value.

“)
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TABLE III
PARAMETERS OF LaTiON FILMS (PREPARED UNDER DIFFERENT
ANNEALED TEMPERATURES) AS EXTRACTED
FROM THE TE AND PF PLOTS

Annealing Temperature (°C) | 450 550 650 750
Barrier height (eV) 0.74 | 0.73 | 0.72 | 0.71
Trap Energy (eV) 0.59 | 0.58 | 0.58 | 0.57

In this study, the conduction mechanism of the LaTiON
films is also analyzed by fitting the /-V data to the thermionic
emission and Poole-Frenkel emission models with the method
used by Lee et al. [33]. By extrapolating the data with
respect to 1/T, the barrier height and trap center level are
calculated and their values are as given in Table III. During the
calculation of the barrier height, we neglected the 200 °C data
set in order to achieve a value which is consistent across the
four samples because the difference in annealing temperature
mainly affects the number of traps in the metal oxide. If we
include the results at 200 °C, the values for the calculated
barrier heights of the 4 samples would differ significantly, and
therefore the results become unreasonable. This indicates that
TE should be the dominant mechanism between 25 °C and
150 °C. Combining with the analysis on the extracted x values
in the previous paragraph, it can be inferred that at around
200 °C, the traps in the oxide are thermally activated and cause
a gradual change in the dominant conduction mechanism from
the TE emission to the PF emission.

A flatband voltage of 1.06 V (the work-function difference
between Pt and the Si substrate) is used in the calculations. The
results clearly show that the barrier height and the energy level
of the trap center are independent of the annealing temperature
because the annealing temperature should mainly affects the
number of traps in the oxide film. It also indicates that both
Poole-Frenkel and Schottky emission models can be involved
in the actual conduction mechanism.

V. HYDROGEN SENSING PERFORMANCE
A. Barrier Height Variation

The LaTiON-based sensors were exposed to hydrogen gas
(with a concentration of 1001 ppm) and their /-V charac-
teristics were measured at different temperatures (from 25 to
200 °C) as shown in Fig. 6.

Fig. 6 shows the I-V characteristics of the samples (at
different operating temperatures up to 200 °C) before and after
exposure to hydrogen (at 1001 ppm concentration). Fig. 6a, 6¢
and 6d also show that at 200 °C, the characteristics under
H; exposure become less conductive than those under air
exposure, which indicates that the Schottky barrier breaks
down and most likely the Si sensors are damaged at 200 °C.
Due to the very small thickness of the metal-oxide layer, the
barrier is insufficient to inhibit the highly energetic electrons
to flow uncontrollably over the barrier. The /-V characteristics
of the sensor in Fig. 6b illustrate an explicit breakdown of the
Schottky barrier as its conductivity begins to decline at 200 °C.

In general, the operation of the sensors is based on the
Schottky barrier-height lowering mechanism upon exposure
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Fig. 6. I-V characteristics of the sensors at different operating temperatures
and as exposed to air and H2 with 1001 ppm concentration, prepared under
different annealing temperatures of (a) 450 °C, (b) 550 °C, (c) 650 °C, and
(d) 750 °C.

20
16+
L e450°C
127 ~—\_
T 650°C
8,
| \ 750°C
2550°C
' T ('C)
0 50 100 150 200 250

Fig. 7. Plot of the barrier height variation with respect to operating
temperature for the sensors prepared under different annealing temperatures
of (a) 450 °C, (b) 550 °C, (c) 650 °C, and (d) 750 °C.

to hydrogen gas [34]. Hydrogen molecules are adsorbed and
then dissociated into H atoms at the surface of the catalytic
Pt metal. These H atoms then diffuse through the Pt and
accumulate at the Pt/metal-oxide interface. As a result, a
dipole charge is formed at the interface and causes a lowering
of the barrier height. The change in barrier height (barrier-
height variation) upon exposure to Hy gas is calculated using
the extrapolation method [27]. The results in Fig. 7 indicate
that the largest change occurs at an operating temperature of
150 °C, and the sample annealed at 450 °C exhibits the largest
change among the four samples.

B. Sensitivity

A plot of the sensitivity (with respect to 1001-ppm H» in
N») for the samples (annealed at 450 °C, 550 °C, 650 °C and
750 °C) at different operating temperatures is shown in Fig. 8.
For a Schottky diode, its sensitivity S is defined in equation
(4) as [35], [36]:

S = I, — Lair [ Lair 5)

3 2 171 2 33 2 171 2 3

Fig. 8.  Plot of the sensitivity with respect to bias voltage at different
operating temperatures for the sensors prepared under annealing temperatures
of (a) 450 °C, (b) 550 °C, (c) 650 °C, and (d) 750 °C.

where Ipo and I4;, are the currents of the device in hydrogen
and air respectively.

The sensitivity of the samples annealed at 550 °C, 650 °C,
and 750 °C exhibits increasing trend with respect to increas-
ing forward bias voltage at elevated operating temperatures.
In Fig. 8a the sample annealed at 450 °C indicates a steady
sensitivity over a range of voltage (at different operating
temperatures), within a range of 6.0 under reverse bias and up
to 1.5 under forward bias. This is also similar in the reverse
region of the sample annealed at 750 °C. Fig. 8b and Fig. 8c
show that the sensitivity can have a negative value This
signifies the current caused by thermal generation of carriers
overshadows the current induced by the lowered barrier (as
caused by the hydrogen dipole layer at the metal/insulator
interface). Both conduction mechanisms (Thermionic Emis-
sion and Poole-Frenkel) are equally significant at around
150 °C, which implies that the lowering of barrier height
allows carriers with lower energies to flow over the barrier
and also through the thin dielectric via the traps. The plots
in Fig. 8, suggest that the annealing at temperature between
450 °C and 650 °C causes the formation of interface traps,
which provide low-energy carriers (at 100 °C and 150 °C) with
a route to flow easily through the thin dielectric via the Poole-
Frenkel mechanism. As the barrier is lowered by the hydrogen
dipole layer, these low-energy carriers are more likely to flow
over the barrier via thermionic emission, with some of them
still flowing through the thin dielectric via the trap-assisted
mechanism simultaneously.

VI. HYDROGEN SENSING PERFORMANCE
A. Dynamic Response
The dynamic response of the sensors under a reverse bias
is presented in Fig. 9 at an operating temperature of 100 °C.

The results show that by depositing a thin layer of LaTiON on
Si, the sensor is more responsive towards hydrogen, and it is
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Fig. 9. Dynamic response of the sensors (prepared under different annealing
temperatures) operating at 100 °C under —1.5 V voltage bias.

possible to increase the dynamic response in future study by
using different substrate materials such as SiC or GaN, which
can withstand higher operating temperature. We have shown
that thin LaTiON films deposited on Si and annealed at four
different temperatures can exhibit different hydrogen sensing
properties.

VII. CONCLUSION

In this work, nanometer-thick LaTiON thin films sput-
tered on Si substrate were examined for their electrical
and hydrogen-sensing properties by using a metal-insulator-
semiconductor Schottky-diode structure. AFM results indi-
cate a decrease in surface roughness (from 0.108 nm to
0.090 nm) with increasing annealing temperature (from 450 °C
to 750 °C), while XRD shows the growths of La and Ti in the
direction of the Si substrate. We discuss the effects of anneal-
ing on the films and how it affects the sensing performance
of the sensors. Analysis on the measured /-V characteristics
of the samples indicates that thermionic emission controls
their electrical conduction from RT to 150 °C while Poole-
Frenkel emission is the dominant mechanism beyond 150 °C.
These results show that by incorporating La and Ti together
as the insulator layer, the resulting sensors can exhibit good
sensing behavior towards hydrogen gas. The hydrogen-sensing
properties of the samples indicate a promising sensitivity
(~2.0 at 100 °C for the sample annealed at 650 °C), and
their dynamic response, sensitivity, and maximum operating
temperature could be further improved in future work by using
a different substrate (e.g. SiC or GaN).
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