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NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO
REAL QUADRATIC FIELDS

KATHRIN BRINGMANN AND BEN KANE

To George Andrews, who has been a great inspiration, on the occasion of his 70th birthday

Abstract. In previous work, the authors discovered new examples of q-hypergeometric series
related to the arithmetic of Q(

√
2) and Q(

√
3). Building on this work, we construct in this paper

sum of the tails identities for which some which some of these functions occur as error terms.
As an application, we obtain formulas for the generating function of a certain zeta functions for
real quadratic fields at negative integers.

1. Introduction

Andrews, Dyson and Hickerson [2] investigated the function

σ(q) := 1 +
∑
n≥1

q
n(n+1)

2

(−q)n
= 1 + q − q2 + 2q3 + · · ·+ 4q45 + . . .

which first appeard in Ramanujan’s lost notebook [7]. We denote as usual (a)n := (a; q)n :=∏n−1
m=0(1−aqm). By showing that the Fourier coefficients of σ(q) are connected to the arithmetic

of Q(
√

6), the authors of [2] were able to prove that σ is lacunary, i.e. its coefficents are almost
always zero, and yet attains every integer infinitely many times.

Since Andrews, Dyson and Hickerson’s investigation, the function σ(q) has shown up in a
variety of settings and is related to the theory of automorphic forms in many interesting ways,
as described in [4]. Here we consider one such type of result involving sum of tails identities.
Such identities were first studied by Zagier [8] in his work on Vassiliev invariants, who showed
that ∑

n≥0

((q)∞ − (q)n) = (q)∞D1(q) + E1(q),

where

D1(q) := −1
2

+
∑
n≥1

d(n)qn, E1(q) :=
1
2

∑
n≥1

(
12
n

)
nq

n2−1
24 .

Here d(n) denotes the number of divisors of n and
(•
n

)
is the Kronecker symbol. In [3], Andrews,

Jimenez-Urroz, and Ono obtained a number of related identites, which have the form

(1.1)
∑
n≥0

(F (q)− Fn(q)) = F (q)D(q) + E(q),

where F is a (modular) infinite product, Fn → F , and D is a divisor function. Since the
coefficients of E grow much slower than those of FD, the function E may be considered as an
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“error series”. Of particular interest are special cases of (1.1) in which the “error series” is σ(q),
for example the following formula which can be found in Ramanujan’s lost notebook

(1.2)
∑
n≥0

((−q)∞ − (−q)n) = (−q)∞D1(q) +
1
2
σ(q).

In [4], the authors discovered 8 additional examples of q-hypergeometric series related to the
arithmetic of Q(

√
2) and Q(

√
3) including the functions

f(q) :=
∑
n≥0

(q)2n

(−q)2n+1
qn, h(q) :=

∑
n≥0

(q)2n+1

(−q)2n+2
qn+1.

Using the theory of Bailey pairs, it was shown in [4] that

qf(q2) =
∑

a⊂OK

(
−4
N (a)

)
qN (a),(1.3)

h(q) = −
∑

a⊂OK

(−1)N (a)qN (a),(1.4)

where K := Q(
√

2), OK is the ring of integers of K, the sum runs over all ideals of OK , and
N denotes the norm of an ideal. As in the case of σ, the identities in (1.3) and (1.4) imply
arithmetic information about the coefficients of f and h including lacunary behavior.

In this note we consider sums of tails identities resembling (1.2) which involve the functions
f and h as “error series”. To state our results, for i ∈ {0, 1} we define

θi(q) :=
∑
n∈Z

q
1
2

(2n+i)2

and, denoting as usual the q-binomial coefficients by
[

A
B

]
:= (q)A

(q)B(q)A−B
, we let its “finite com-

panion” be given by

θi,n(q) := (q)n

∑
j∈Z

[
2n+ 1
n− 2j

]
q

1
2

(2j+i)2 .

We note that limn→∞ θi,n(q) = θi(q) and that the theta series θi(q2) are modular forms which

can be expressed as an infinite product, namely they can be written θ0

(
q

1
2

)
= (q2;q2)5∞

(q)2∞(q4;q4)2∞
and

θ1(q2) = 2q (q16;q16)2∞
(q8;q8)∞

. Moreover, we define

D2(q) :=
∞∑

n=1

do(n)qn,

where d0(n) counts the number of odd divisors of n.

Theorem 1.1. We have the sum of tails identities∑
n≥0

(
θ0(q)

(q)∞(q; q2)∞
− θ0,n(q)

(q)n(q; q2)n+1

)
= 2

θ0(q)
(q)∞(q; q2)∞

D2(q)− h(q),(1.5)

∑
n≥0

(
θ1(q)

(q)∞(q; q2)∞
− θ1,n(q)

(q)n(q; q2)n+1

)
= 2

θ1(q)
(q)∞(q; q2)∞

D2(q) + q
1
2 f(q).(1.6)



NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS 3

As an application, we next consider formulas for the generating function of the following zeta
functions for real quadratic fields at negative integers, paralleling the results obtained in [8] and
[3]. For this define the usual Hecke L-function ζK(s) for K and a twisted zeta-function ζ̃K(s)
by

ζK(s) :=
∑

a⊂OK

N (a)−s, ζ̃K(s) :=
∑

a⊂OK

(
−4
N (a)

)
N (a)−s.

Theorem 1.1 will give us the following formulas from which ζK(s) and ζ̃K(s) may be calculated
at negative integers.

Theorem 1.2. As a power series in t, we have the equations

−
∑
n≥0

θ0,n(−e−t)
(−e−t;−e−t)n(−e−t; e−2t)n+1

=
∑
n≥1

(−1)nζK(−n)
tn

n!
,(1.7)

∑
n≥0

θ1,n(−e−t)
(−e−t;−e−t)n(−e−t; e−2t)n+1

=
∑
n≥1

(
−1

2

)n

ζ̃K(−n)
tn

n!
.(1.8)

We note that similarly we could also consider the limiting behavior at other odds roots of
unity.

This paper is organized as follows. In Section 2, we first introduce an auxilliary function with
an extra parameter, which is in special cases related to f and h, and thus also to the arithmetic
of K. This auxiliary function also has some nice combinatorial meaning. We then show that
this function is the “error series” in a sum of tails identity. In Section 3, we use the results
from Section 2 to prove Theorem 1.1. We conclude section 3 with another sums of tails result
involving h, but where h(q) is not the “error series.” Finally, we will establish the formulas for
ζK(s) and ζ̃K(s) at negative integers in Section 4.
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2. An Auxilliary Function

We will first investigate the properties of an auxilliary function which we will then bootstrap
to obtain the main results for f and h. To this end, we define

gz(q) :=
∑
n≥0

(q)n

(−q)n+1
z−nq

n
2 .

We will see in equation (2.6) that z−1qgz(q2) is the generating function for a natural combina-
torial object. For this recall that an overpartition of the integer n is a partition, where the last
occurence of each part may be overlined. Denote by P the set of overpartitions into odd parts
where the largest part must be overlined. If we denote the largest part by L(Λ) and the number
of parts by M(Λ), then the coefficient of z−mqn in z−1qgz(q2) is the number of overpartitions
Λ ∈ P of n with M(Λ) = m, weighted by

( −4
L(Λ)

)
.

We will particularly be interested in the two specializations z = ±1. For the specialization
z = 1, the n-th Fourier coefficient of qg+1(q2) equals

#{Λ ∈ P : L(Λ) ≡ 1 (mod 4)} −#{Λ ∈ P : L(Λ) ≡ 3 (mod 4)},
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while the n-th coefficient of qg−1(q2) equals

#{Λ ∈ P : L(Λ) ≡ 2M(Λ) + 1 (mod 4)} −#{Λ ∈ P : L(Λ) 6≡ 2M(Λ) + 1 (mod 4)}.
However, we will see that the coefficients of qg±1(q2) will always be equal up to absolute value,
due to the following relations with f(q) and h(q):

1
2

(g+1(q) + g−1(q)) = f(q),

1
2

(g+1(q)− g−1(q)) = q−
1
2h(q).

Taking q → q2 and adding the two above equations relates the coefficients of g1(q) to the
arithmetic of OK by

(2.1) qg+1(q2) = qf(q2) + h(q2) =
∑

a⊂OK

[(
−4
N (a)

)
− 1 + (−1)N (a)

2
iN (a)

]
qN (a),

which follows from equations (1.3) and (1.4). Here we have used the fact that there is a unique
ideal of OK of norm 2, so h(q2) is precisely the generating function for the elements of norm 2n,
weighted by −i2n. Subtracting the two equations yields

(2.2) qg−1(q2) = qf(q2)− h(q2) =
∑

a⊂OK

[(
−4
N (a)

)
+

1 + (−1)N (a)

2
iN (a)

]
qN (a).

Remark. Since
(−4

2n

)
= 0 and 1 + (−1)2n+1 = 0, it follows that the absolute value of the n-th

Fourier coefficient of both qg+1(q2) and qg−1(q2) equals the number of ideals of OK of norm n.
Hence, although the coefficients of these series are not multiplicative, they are multiplicative up
to ±1.

We next show a sum of the tail-identity involving the functions gz. For this, we let

Dz(q) :=
∑
n≥1

z−1qn+ 1
2

1− z−1qn+ 1
2

−
∑
n≥0

zqn− 1
2

1− zqn− 1
2

.

Theorem 2.1. We have

(2.3)
∑
n≥0

(
(zq

1
2 )∞

(−zq
1
2 )∞

− (zq
1
2 )n

(−zq
1
2 )n+1

)
=

(zq
1
2 )∞

(−zq
1
2 )∞

(Dz(q)− 1 + 2D2(q))− z−1q
1
2 gz(q).

This immediately implies the following corollary.

Corollary 2.2. The following equations hold∑
n≥0

(
(q

1
2 )∞

(−q
1
2 )∞

− (q
1
2 )n

(−q
1
2 )n+1

)
= 2

(q
1
2 )∞

(−q
1
2 )∞

D2(q)− q
1
2 g1(q),(2.4)

∑
n≥0

(
(−q

1
2 )∞

(q
1
2 )∞

− (−q
1
2 )n

(q
1
2 )n+1

)
= 2

(−q
1
2 )∞

(q
1
2 )∞

D2(q) + q
1
2 g−1(q).(2.5)

Proof. ¿From Theorem 1 of [3] with a = −zq
1
2 and t = zq−

1
2 , one may easily deduce that∑

n≥1

(
(zq−

1
2 )∞

(−zq
1
2 )∞

− (zq−
1
2 )n

(−zq
1
2 )n

)
=

(zq−
1
2 )∞

(−zq
1
2 )∞

(Dz(q)− 1 + 2D2(q)) + 1 +
∑
n≥1

(−z−1q
1
2 )n

(z−1q
3
2 )n

(−1)nqn.
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Dividing both sides by 1− zq−
1
2 = −zq−

1
2 (1− z−1q

1
2 ) and shifting the sum of tails gives

∑
n≥0

(
(zq

1
2 )∞

(−zq
1
2 )∞

− (zq
1
2 )n

(−zq
1
2 )n+1

)
=

(zq
1
2 )∞

(−zq
1
2 )∞

(Dz(q)− 1 + 2D2(q))−z−1q
1
2

∑
n≥0

(−z−1q
1
2 )n

(z−1q
1
2 )n+1

(−1)nqn.

Using Heine’s second transformation (cf. [1, p. 11, (2.15)]) with a = b = q, c = −q2, and
z = z−1q

1
2 gives that

(2.6) gz(q) =
∑
n≥0

(−z−1q
1
2 )n

(z−1q
1
2 )n+1

(−1)nqn.

This gives the claim. �

3. Proof of the Main Result

In this section, we will use Theorem 2.2 to obtain the desired sum of tails results for f(q) and
h(q). Since the proof of both identities are quite similar, we only prove the first here. We first
define

F (q) :=
(q

1
2 )∞

(−q
1
2 )∞

+
(−q

1
2 )∞

(q
1
2 )∞

and its “finite companion”

Fn(q) :=
(q

1
2 )n

(−q
1
2 )n+1

+
(−q

1
2 )n

(q
1
2 )n+1

.

Specializing equation (2.3) once with z = 1 and once z = −1 and then summing gives∑
n≥0

(F (q)− Fn(q)) = 2F (q)D2(q)− 2h(q).

Thus it remains to compute F (q) and Fn(q). Using the Jacobi triple product identity (cf. [5, p.
17]) one obtains

F (q2) =
1

(q2; q4)∞(q2; q2)∞

(
(q)2
∞

(q2; q2)∞
+

(q2; q2)5
∞

(q4; q4)2(q)2
∞

)
=

1
(q2; q4)∞(q2; q2)∞

(∑
n∈Z

(−1)nqn2
+
∑
n∈Z

qn2

)
.

Thus

F (q) =
2

(q; q2)∞(q)∞
θ0(q).

To compute Fn(q) we first rewrite

Fn(q) =
1

(q; q2)n+1

((
q

1
2

)2

n
(1− qn+ 1

2 ) +
(
−q

1
2

)2

n

(
1 + qn+ 1

2

))
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and then use McMahon’s finite version of the Jacobi triple product identity [6, vol. 2, Section
323] with x = q−

1
2 for the first summand and x = −q−

1
2 for the second summand. This gives

Fn(q) =
1

(q; q2)n+1

(1− qn+ 1
2

)∑
j∈Z

[
2n
n+ j

]
(−1)jq

j2

2 + (1 + qn+ 1
2 )
∑
j∈Z

[
2n
n+ j

]
q

j2

2


=

2
(q; q2)n+1

∑
j∈Z

[
2n

n+ 2j

]
q2j2

+ qn+ 1
2

∑
j∈Z

[
2n

n+ 2j + 1

]
q2j2+2j+ 1

2


=

2
(q; q2)n+1

∑
j∈Z

(q)2n

(q)n+2j+1(q)n−2j
q2j2 (

1− qn+2j+1 + qn+2j+1(1− qn−2j)
)

=
2

(q; q2)n+1

∑
j∈Z

[
2n+ 1
n− 2j

]
q2j2

=
2

(q; q2)n+1(q)n
θ0,n(τ).

There is additionally another sum of tails identity related to gz(q). In this case gz(q) does
not play the role of the “error series” but rather as part of the “divisor function”.

Theorem 3.1. We have the sum of tails identity∑
n≥0

(
(−q)∞
(q)∞

− (−q)n

(q)n(1− q2n+1)

)
=

(−q)∞
(q)∞

(2D2(q)− h(q)) .

Proof. ¿From Theorem 2 of [3] with a = −q, b = z−1q
1
2 , and c = z−1q

3
2 , one obtains

∑
n≥0

(
(−q)∞
(q)∞

− (−q)n

(q)n(1− z−1qn+ 1
2 )

)
=

(−q)∞
(q)∞

2
∑
n≥1

qn

1− q2n
−
∑
n≥1

(q)n

(−q)n(1− qn)
z−nq

n
2


=

(−q)∞
(q)∞

(
2D2(q)− z−1q

1
2 gz(q)

)
.

The result then follows after summing the terms with z = 1 and z = −1 and dividing by 2. �

In addition to these sum of tails identities, the auxilliary function gz(q) also allows us to
deduce new combinatorial interpretations for f(q) and h(q) in terms of overpartitions. Using
Heine’s first transformation (cf. [1, p. 10, (2.11)]) with a = b = q, c = −q2, and z = z−1q

1
2 gives

gz(q) =
(q)∞

(−q)∞

∑
n≥0

(−q)n

(q)n(1− z−1qn+ 1
2 )
qn.

After pulling the infinite product inside the sum, this immediately gives

f(q) =
∑
n≥0

(qn+1)n(q2n+2)∞
(−qn+1)∞

qn, h(q) =
∑
n≥0

(qn+1)n(q2n+2)∞
(−qn+1)∞

q2n+1.

To describe the new combinatorial interpretation for the coefficients of f and h, let n = s(Λ)
denote the smallest part of the overpartition Λ. Then −f(q) is the generating function for
overpartitions where s(Λ) is overlined and occurs exactly once and 2s(Λ)+1 cannot be overlined,
weighted by (−1)M(Λ).
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Similarly, writing 2n + 1 = n + (n + 1), we see that h(q) is the generating function for
overpartitions for which s(Λ) is overlined and occurs precisely once, a non-overlined part of size
s(Λ) + 1 must occur, and 2s(Λ) + 1 cannot be overlined, again weighted by (−1)M(Λ).

4. Values of zeta functions at negative integers

We will use Theorem 1.1 to establish Theorem 1.2 here.

Proof of Theorem 1.2. This proof will follow analogously to that of Zagier [8, Theorem 3] so we
will give a brief argument for (1.7) and leave the details of (1.8) to the reader. We first note
that

θ0(q)
(q)∞(q; q2)∞

=
(−q)2

∞(−q2; q2)3
∞

(−q4; q4)2
∞

and hence vanishes to infinite order as q → −1. We next replace q by −e−t and define a(n) and
b(n) by the asymptotic expansions as t→ 0 given by

−
∑
n≥0

θ0,n(−e−t)
(−e−t;−e−t)n(−e−t; e−2t)n+1

=
∑
n≥0

a(n)tn,

−h(−e−t) :=
∑

a⊂OK

e−tN (a) ∼
∑
n≥0

b(n)tn.

By Theorem 1.1 we have a(n) = b(n) for every n ≥ 0. We then integrate to obtain

−
∫ ∞

0
h(−e−t)ts−1dt =

∑
a⊂OK

∫ ∞
0

e−tN (a)ts−1dt = Γ(s)
∑

a⊂OK

N (a)−s = Γ(s)ζK(s).

The residue at s = −n is hence given by (−1)n

n! ζK(−n). However, for any N fixed we have

−
∫ ∞

0
h(−e−t)ts−1dt =

∫ ∞
0

 ∑
0≤n<N

b(n)tn +O(tN )

 ts−1dt =
∑

0≤n<N

b(n)
s+ n

+H(s),

where H(s) is holomorphic for Re(s) > −N , so that for n < N the residue at s = −n is b(n).
�
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