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ABSTRACT 

 

Mendelian randomization, which is instrumental variable analysis using genetic 

variants as instruments, is an increasingly popular method of making causal 

inferences from observational studies. In order to design efficient Mendelian 

randomization studies, it is essential to calculate the sample sizes required. We 

present formulas for calculating the power of a Mendelian randomization study 

using one genetic instrument to detect an effect of a given size, and the minimum 

sample size required to detect effects for given levels of significance and power, 

using asymptotic statistical theory. We apply the formulas to some example data 

and compare the results to those from simulation methods. Power and sample 

size calculations using these formulas should be more straightforward to carry 

out than simulation approaches. These formulas make explicit that the sample 

size needed for Mendelian randomization study is inversely proportional to the 

square of the correlation between the genetic instrument and the exposure and 

proportional to the residual variance of the outcome after removing the effect of 

the exposure, as well as inversely proportional to the square of the effect size. 

 



 

4 

Key messages 

• The authors derived formulas to calculate the power and sample size 

requirements for Mendelian randomization studies using one genetic 

instrument. 

 

• These formulas permit quicker and easier calculation of sample size 

compared to simulation approaches. 

 

• The formulas make clear that the sample size requirement for a 

Mendelian randomization study is inversely proportional to the square of 

the correlation between the genetic instrument and the exposure and 

proportional to the residual variance of the outcome after removing the 

effect of the exposure, as well as inversely proportional to the square of 

the effect size. 
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Introduction  

It is difficult to make rigorous causal inferences from observational studies due 

to confounding and reverse causation.  One long-standing approach used in the 

social sciences to tackle such obstacles is the employment of instrumental 

variables.1 These only affect the outcome of interest through their effect on the 

exposure of interest, and are otherwise unconfounded with the outcome. Genetic 

information has been used in epidemiological studies for more than 20 years2,3 

and is termed Mendelian randomization (MR)4,5 after Mendel’s second law. This 

law states that the alleles passed on between generations are passed 

independently of one another (if linkage equilibrium holds true), and more 

generally of any other factors. The “assignment” of genetic variants for each 

study subject can therefore be treated as random. Because the instrumental 

variable is assigned by nature rather than by the researcher, this is a type of 

natural experiment. While both Mendelian randomization studies and traditional 

randomized controlled trials are undertaken in order to permit causal inference, 

they are complementary, providing different information by targeting different 

causal pathways. An RCT assesses the effect of a modifiable therapy but may not 

confirm the underlying mechanism, while an MR study assesses the underlying 

mechanism but does not assess the effect of a therapy.6  

 

Before carrying out a trial it is prudent to know how many subjects are required. 

If too few subjects are recruited then a real effect might not be detected, while 

recruiting too many will be a waste of resources and potentially expose the 

participants to unnecessary risk and stress. Sample size calculations are now a 

standard experimental design procedure in epidemiology,7 but currently only 
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simulation approaches have been documented in the literature for MR studies.8 

These approaches are computationally and operationally more expensive to 

implement than theoretical methods, and subject to simulation error. Here we 

review how to calculate the effect of an exposure on an outcome – even in the 

face of confounding – using MR, before proceeding to derive formulas for 

carrying out power and sample size calculations for MR studies using one genetic 

instrument. 

 

Estimating causal effects with Mendelian randomization 

In order to be able to calculate the causal effect of an exposure on an outcome 

using MR, certain assumptions must be made.9 Let X be the random exposure 

under investigation, Y the outcome variable, and U any unobserved confounders 

between X and Y. Then for a genetic variant G to be a valid instrumental variable, 

the following relations must hold true: 

1. G and U must not be associated, i.e. the genotype G must not be involved 

with the confounding between X and Y. 

2. G and X must not be independent of each other, i.e. the genotype G must 

be informative about X. 

3. G must only affect Y through its effect on X. 

These relations can be represented using a causal graph9 (Figure 1). 

 

In order to be an instrument G must at a minimum follow the three relations 

above. However, in order to obtain a point estimate of the causal effect of X on Y, 

further assumptions must be made about the relations between the variables. 
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One set of assumptions is that the relations represented in the graph are linear 

and without interactions, so that (as formulated by Didelez et al10) 

 
(1) 

where h(u) is a function only of u. The aim is to estimate βyx, since this describes 

the change in Y due purely to X. However, as X and U are correlated, the ordinary 

least-squares estimator is biased. Instead, a less biased estimator to use here is 

the Wald estimator9 

 

(2) 

where cov is the covariance function.  

 

Power and sample size calculations for Mendelian randomization studies 

with one instrument 

In order to undertake power and sample size calculations of MR studies, the 

distribution of the Wald estimator needs to be known. Assuming the sample is 

large enough, the distribution of  is approximately11–13 

 

(3) 

 

where Var(X) is the variance of the exposure,  is the correlation between X 

and G, and Var(Y|X) is the residual variance of Y after removing the effect of X. 

These can be respectively estimated as the sample variance of the exposure, the 
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R-squared statistic of a regression of X against G, and the sample variance of the 

quantities , where  is as given above. 

 

With the estimator  distributed as above, and with a null hypothesis  

and an alternative hypothesis of , the power of detecting a true effect size 

 (where b is positive, although by symmetry the power is equivalent for a 

true effect size of –b) is 

 

(4) 

where α is the desired significance level of the test (conventionally 0.05),  is the 

cumulative distribution function of the standard Normal distribution,  is the 

value which satisfies , and , the ratio of the sample 

variance in Y due to factors other than X to the sample variance of X. The 

derivation of this result is shown in Appendix 1.  

 

If the observed effect size is positive,  will be small and can be 

approximated as zero. By setting the desired power to be 1-β, the formula above 

can be solved for n to give the required sample size, 
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(5) 

At the usual significance level of ,  = 1.96. With power set to a 

conventional 0.8, , and the sample size formula becomes 

 

(6) 

For different values of the significance level and the power, the formula will 

retain the same structure with only the value of 7.848 changing. Note that when 

 the minimum sample size required for an MR study is equal to that of an 

otherwise-identical randomized controlled trial, as the instrument and exposure 

become perfectly correlated and thus the instrument becomes a perfect proxy 

for the exposure.  

 

Table 1 shows sample sizes calculated using this formula for a range of other 

parameter values. Figure 2 shows the parameter combinations that lead to 

identical sample size requirements. The R code to create Table 1 and Figure 2, as 

well as the simulation above, is available from the author upon request. 

 

We present an example to help illustrate how to calculate this sample size in 

practice. As described elsewhere,14 C-reactive protein (CRP) is a marker for 

coronary heart disease, as is fibrinogen. The causal pathway between these 

variables is uncertain. Variations of the CRP gene in the form of single nucleotide 

polymorphisms (SNPs) have been used in Mendelian randomization studies to 
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learn more about the causality involved,14,15 as the CRP gene is believed to only 

directly affect CRP. A recent study attempted to assess the causal effect of CRP on 

fibrinogen using a Bayesian meta-analysis of Mendelian randomization studies.16 

This latter study estimated the causal effect of a unit increase in log(CRP) on 

fibrinogen to be 0.234 μmol/l using the Wald estimator with the SNP rs1205, 

although this was not significant at the 95% confidence level. An R2 between 

rs1205 and log(CRP) has been observed of around 0.01 17, while the variance of 

log(CRP) was found to be 1.11.14 If these are taken to be the true values of  

and V(X), then the only value additionally required to calculate the necessary 

sample size is the residual variance of fibrinogen after taking into account the 

causal effect of log(CRP), i.e., V(Y|X). This will depend on the extent to which it is 

believed that the causal effect of the exposure explains the variation in the 

outcome. Other sources of variation in the outcome are other covariates and 

pure random error arising from, for example, measurement error. This concept 

is analogous to R2 in the ordinary linear model setting, which gives the 

proportion of the variation of the outcome explained by the exposure. We 

assume here that the residual variance of fibrinogen after taking into account the 

causal effect of log(CRP) is the same as the variance of log(CRP), so that the value 

of V(Y|X) is also 1.11.  

 

With these values, the required sample size to have a power of 0.8 to detect an 

effect size of 0.234 at a significance level of 0.05 calculated using the above 

formula would be around 14,332, because substituting these values in equation 

(5) leads to the following calculation: 
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(7) 

We compare this solution with that given by simulation. We simulated the 

variables G, U, X and Y, representing the values of the SNP rs1205, confounders, 

log(CRP) and fibrinogen respectively, according to the distributions given in 

Appendix 2, which ensured that G would be a valid instrumental variable and 

that b, , V(X) and V(Y|X) would be equal to 0.234, 0.01, 1.11 and 1.11 

respectively, with varying levels of confounding.  

 

Samples of these variables of size n were drawn 25,000 times for varying levels 

of n, with the proportion of the samples where a significant causal effect of X on Y 

was detected considered to be the power. In order to assess significance, we also 

simulated samples where there was no causal effect. If the estimate  in the 

original sample was smaller than the 2.5% or bigger than the 97.5% percentile of 

the simulated sampling distribution with no effect then it was considered 

significant. 

 

With no confounding, a sample size of 14,332 gave a power of around 0.80. With 

a reasonably low level of confounding between the exposure and outcome – with 

a correlation between the exposure and confounder of around 0.22 – the sample 

size required to achieve a power of 0.8 was approximately 14,000, almost exactly 

the sample size of 14,332 suggested by the formula. At this level of confounding, 

using a sample size of 14,332 gave a power of around 0.81. As a sensitivity 

analysis, we also ran a simulation with an extremely high level of confounding 
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between the exposure and outcome, with a correlation between the exposure 

and confounder of around 0.97. Sample sizes of around 12,500 were required in 

this scenario to give power of around 0.8, with some sampling variation around 

this number. This is around 13% lower than the value of 14,332 given by the 

formula. Using an n of 14,332 in this high confounding simulation gave a power 

of approximately 0.84.  

 

If the correlation between the exposure protein and the gene were stronger, so 

that 
 
were instead equal to 0.03, then the formula would suggest a sample 

size of 4778 was required to achieve power of 0.8 at a significance level of 0.05. 

Simulations with both no confounding and a low level of confounding gave a 

power of almost exactly 0.8 at this sample size. With a high level of confounding 

a sample size of around 4200 gave the required power of 0.8, which is around 

12% lower than the number given by the formula. 

 

Discussion 

In this paper we have presented formulas for calculating the power of a 

Mendelian randomization study to detect a given effect size and for calculating 

the required sample size to detect a given effect size with a desired power. Our 

formulas make explicit that the sample size needed for a Mendelian 

randomization study is inversely proportional to the square of the correlation 

between the genetic instrument and the exposure and proportional to the 

residual variance of the outcome after removing the effect of the exposure, as 

well as inversely proportional to the square of the effect size. 
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It must be kept in mind that the formulas provided here should not be applied 

automatically without forethought. It must be ensured that a Mendelian 

randomization study is appropriate by carefully considering whether the 

required assumptions for a valid genetic instrument hold by understanding the 

biology underlying it. Potential issues with MR studies, and potential remedies, 

are reviewed in Lawlor et al4 and Glymour et al.18 

 

Even if the basic requirements for a valid MR study are met, the formulas 

presented above might still not be immediately usable. Firstly, the formulas 

given here only hold under the assumption that there is a simple linear 

relationship, without interaction, between the exposure and the outcome. When 

the outcome is dichotomous, the formulas in this paper can still be used as long 

as the linearity assumptions they depend on are not deviated from too much. 

They would therefore only make good approximations if the assumption that the 

outcome changes linearly with the exposure holds well over the range of the 

exposure, which is more likely to be the case if both the causal effect and the 

range of the exposure are relatively small.10 In general, though, non-linearity 

complicates calculation of the causal effect so that the Wald estimator is not valid 

any longer and the formulas given here would no longer be applicable. 

 

Secondly, the formulas rely on the asymptotic distribution of the instrumental 

variable estimator as given in Equation 3. In any finite sample, though, the actual 

sampling distribution will differ from this to a certain extent.19 The extent of this 

difference determines the extent to which the asymptotic distribution in 
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Equation 3 is a good approximation to use. It is well known that a weak 

instrument – i.e., an instrument with a very low correlation with the exposure of 

interest relative to the confounding present between the exposure and the 

outcome – can lead to a substantially different estimate of the causal effect from 

the true value.12,19–21 In the simulation example above, it was seen that when 

confounding was extreme the sample size required differed more from the one 

calculated with the formula compared to a scenario where there is no or low 

confounding. When the instrument was stronger, the discrepancy between the 

sample size the formula suggested and that yielded by simulation was slightly 

smaller. Although the formula will always provide an initial estimate, the formula 

performs better in situations without extreme confounding. 

 

With the widespread availability of genetic data, it is becoming increasingly 

common to perform Mendelian randomization using multiple genetic variants. 

While the formulas here were derived for the case where there is one genetic 

variant, they can be extended to the case where there are multiple genetic 

variants. This is achieved through the creation of an “allele score”, which is a 

weighted or unweighted sum of the number of alleles in the genetic variants that 

are considered to have a positive effect on the exposure of interest,8,22 which is 

then used in turn as the genetic instrument. If the individual genetic variants 

have similar effects on the exposure, then the unweighted allele score has been 

shown to lead to a robust causal estimate of the exposure on the outcome, with 

slightly lower power being made up for by lower bias compared to estimating 

the effect of each genetic variant on the exposure separately when using, for 

example, the two-stage least squares estimator.8,23 This allele score can then be 
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treated in the same way as a single genetic instrument is handled in this paper, 

i.e. ρxg becomes the correlation between the exposure and the allele score. 

 

We showed how the sample size required for a Mendelian randomization study 

can also be found using simulation instead of the formulas derived here. This has 

the advantage of avoiding the finite-sample bias our formulas suffer from due to 

depending on asymptotic statistical theory. However, the disadvantages are that 

it is not trivial to set up the required simulation so that the variables under 

consideration have the desired distributions, and that while it is relatively simple 

to find the power for a particular sample size (subject to simulation error), to 

find the sample size required to achieve a fixed power it is necessary to run a 

simulation for different sample sizes until the desired power is achieved. We 

therefore recommend our formulas as a useful and fast approximate calculator 

for power and sample size requirements. 

 

In conclusion, we have derived and provided a procedure for calculating without 

simulation the sample size required to carry out a Mendelian randomization 

study with a desired significance level and power. Using an analytic formula also 

highlights some points that can facilitate design of the most efficient Mendelian 

randomization study. First, the Mendelian randomization sample size calculation 

only differs from that of an RCT in that the sample size is inversely proportional 

to the square of the correlation between the genetic variants and the exposure, 

making plain the importance of choosing a genetic instrument that is more 

strongly correlated with the exposure. Second, the proportion of the expected 
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variation in the outcome that is explained by the exposure alone affects the 

sample size, just as it does for an RCT.  
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Appendix 1 

 

The Wald estimate  is normally distributed with mean  and variance 

. Under the null hypothesis of X having no causal effect on Y, i.e. , 

the null hypothesis will be rejected at significance level α when  

. If the true value of  is b, then the probability of rejecting the 

null hypothesis, i.e. the power of the study, is 

 

 

 

In the situation where 
 
is b,  has a standard normal distribution, 

and so the last formula can be re-written with the cumulative distribution 

function of the standard Normal distribution as  

 

Re-arranging provides the equation as given in the paper. 
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Appendix 2 

We simulated the variables G, U, X and Y, representing the values of the SNP 

rs1205, confounders, log(CRP) and fibrinogen respectively, according to the 

distributions given here, to ensure that G would be a valid instrumental variable 

and that b, , V(X) and V(Y|X) would be equal to 0.234, 0.01, 1.11 and 1.11 

respectively. This was done by letting G and U have marginal distributions as 

given in equations (8) and (9), and then simulating X with equation (10) in order 

for it to have the appropriate conditional distribution using standard probability 

theory, as given for example in Section 5.2 of DasGupta24. The variable p varied 

the level of confounding between X and Y due to U, and we simulated at p = 0.05, 

0.5 and 0.95, corresponding to low, medium and high levels of confounding 

respectively. Equation (11) ensures that G only affects Y through X, that U and X 

have no interaction, and that Var(Y|X) equals 1.11. 

 

(8) 

 
(9) 

 
(10) 

 

(11) 
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Table 1: Sample sizes required for a Mendelian randomization study for a range 

of parameter values and effect sizes when the p-value required is 0.05 and the 

power desired is 0.8, where b is the effect size that needs to be detected,   is 

the square of the correlation between the genetic instrument and the exposure, 

and V is the ratio of the variance of the residuals after removing the effect of the 

exposure to the variance of the exposure itself. 

V 0.2 0.5 1 2 

 
0.1 0.03 0.01 0.1 0.03 0.01 0.1 0.03 0.01 0.1 0.03 0.01 

b  
0.05 6,280 20,931 62,791 15,698 52,326 156,976 31,396 104,651 313,951 62,791 209,301 627,902 

0.1 1,570 5,233 15,698 3,925 13,082 39,244 7,849 26,163 78,488 15,698 52,326 156,976 

0.25 252 838 2,512 628 2,094 6,280 1,256 4,187 12,559 2,512 8,373 25,117 

0.5 63 210 628 157 524 1,570 314 1,047 3,140 628 2,094 6,280 
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FIGURE LEGENDS 

 

Figure 1. Causal graph showing the nature of the causal relationships between 

the genotype (G), exposure (X), unobserved confounders (U) and outcome (Y).  
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Figure 2. Contour plots showing minimum sample sizes required to obtain p-

values of less than 0.05 with power 0.8 for different effect sizes for a range of 

correlations between the exposure and the genetic instrument at four levels of V 

= . 
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