The HKU Scholars ub 'Thc University of Hong Kong 7§ t;% A %—i’ ’E-?ﬂ*' }?ﬁ&

R L

|2 BAH
| #0| 54 |

Cs®

P
B
3

Title Optimized synthesis of art patterns and layered textures

Author(s) Wu, R; Wang, WP; Yu, YZ

Citation IEEE Transactions on Visualization and Computer Graphics,
2014, v. 20 n. 3, p. 436-446

Issued Date | 2014

URL http://hdl.handle.net/10722/191791

Rights IEEE Transactions on Visualization and Computer Graphics.
9 Copyright © IEEE.

436 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

Optimized Synthesis of Art Patterns
and Layered Textures

Ruobing Wu, Wenping Wang, and Yizhou Yu

Abstract—Line drawings and digital arts appear everywhere, from simple icons and logos to cartoons, maps, and illustrations. We
define art patterns as the subset of line drawings and digital arts that are comprised of repeated elements. There exist textures that
share characteristics with art patterns. Examples of such textures include piled discrete elements with curved contours. Inspired by
recent success of exemplar-based texture synthesis, in this paper, we focus on synthesizing art patterns and textures with curvilinear
features from exemplars, which we cast as a global optimization problem. Our energy function for this problem measures both the
appearance similarity of color patterns and shape similarity of curvilinear features between an input exemplar and a synthesized
image. We develop an overall expectation-maximization-style algorithm for minimizing this energy function. The shape similarity part of
the energy is minimized through an innovative application of the level set method. We further generalize our energy function and
optimization algorithm to multilayer pattern and texture synthesis. Our generalized optimization can effectively handle multiple layers

and synthesize valid instances of interaction.

Index Terms—Texture synthesis, level set method, line drawing, digital arts, multilayer synthesis

1 INTRODUCTION

LINE drawings and digital arts appear everywhere, from
simple icons and logos to cartoons, maps, illustrations,
and storyboards. They are also used for various decoration
purposes. The creation of line drawings and digital arts is
typically a time-consuming process that requires skilled
artists. Most of us appreciate their simple and aesthetic
appearances, but do not have the necessary skills to create
them. There exist a subset of line drawings and digital arts
that exhibit the essence of textures, i.e., a spatial arrangement
of repeated elements. We use the phrase, art patterns, to call
both such line drawings and digital arts.

Art patterns have their unique characteristics. They are
typically dominated by curves and shape contours. Spaces
among the curves are typically filled with constant colors,
color gradients, or a smooth diffusion of a sparse set of colors.
In fact, there exist textures that share characteristics with art
patterns. Examples of such textures include piled discrete
elements with curved contours, such as piles of candies and
leaves in Figs. 5a and 7a. In this paper, we would like to
investigate techniques for synthesizing both art patterns and
textures with curvilinear features from exemplars.

Synthesizing the aforementioned art patterns and tex-
tures is challenging for the following reasons. First, thin and
elongated curves in an art pattern or texture are not
compatible with rectangular patches and neighborhoods
often found in recent exemplar-based texture synthesis
literature. Second, given the relatively wide span of a curve,
local synthesis is unlikely to work well, often producing

o The authors are with the Department of Computer Science, The University
of Hong Kong, Pokfulam Road, Hong Kong.

Manuscript received 8 July 2012; revised 14 Mar. 2013; accepted 5 Aug. 2013;
published online 13 Aug. 2013.

Recommended for acceptance by G. Drettakis.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-07-0127.
Digital Object Identifier no. 10.1109/TVCG.2013.113.

1077-2626/14/$31.00 © 2014 IEEE

fragmented appearances. And it is also unclear how to place
this synthesis task in a global optimization context. Third,
elements in an exemplar may have mutual interactions,
giving rise to layers and occlusions. It is unclear what
mechanisms need to be in place to create valid instances of
interactions in a synthesized image. Synthesizing high-
quality novel instances of layered textures and patterns
remains a hard problem.

In this paper, we present an exemplar-based synthesis
framework for art patterns and layered textures. It is based
on the level set method, a popular numerical technique for
tracking and optimizing curves and contours. The level set
method embeds a closed curve as the zero level set of a
level set function whose domain covers the entire 2D image
space, and performs curve tracking indirectly through
the level set function. It, thus, becomes possible to
perform patch-based synthesis over the level set function.
Furthermore, the level set method offers a global optimiza-
tion capability for our image synthesis task. As long as a
global energy function as well as its derivative with respect
to level sets is well defined, this energy function can be
minimized through the level set method. To enable effective
synthesis of complex scenarios, such as mutual dependence
and interactions among image elements, we make use of
multiple level set functions, each of which is assigned a
distinct layer, and further generalize our synthesis frame-
work to accommodate multiple layers of level set functions.

We summarize our contributions in this paper as follows:

e Inspired by existing work that casts exemplar-
based synthesis as a global optimization problem,
we formulate a new global energy function for
synthesizing art patterns and layered textures that
have many thin curvilinear features. This energy
function measures both the appearance similarity
of color patterns and shape similarity of curvilinear
features between an input exemplar and a synthe-
sized output.

Published by the IEEE Computer Society

WU ET AL.: OPTIMIZED SYNTHESIS OF ART PATTERNS AND LAYERED TEXTURES 437

Fig. 1. A 2.5D illustration from Wikipedia [4] for the level set method. The
bottom row shows that it is simply the height of the level set function that
becomes lower when the 2D shape in the top row becomes
disconnected.

e We develop an expectation-maximization (EM)-style
optimization technique for the aforementioned glo-
bal energy function. The shape similarity part of the
energy is minimized through a novel and systematic
level set-based algorithm, which iteratively moves
the curvilinear features in the synthesized image
toward nearby features in the best matching neigh-
borhoods from the input exemplar. This algorithm
maintains the integrity of every curvilinear feature
during optimization even though the matching
neighborhoods only contain truncated features.

e We further generalize the above global energy
function and level set-based optimization to multi-
layer pattern and texture synthesis. Multiple layers
of signed distance functions are utilized for repre-
senting the complete set of curvilinear features. Our
generalized optimization can effectively handle
these signed distance function (SDF) layers and
synthesize valid instances of mutual dependence
and interactions, such as occlusions.

2 BACKGROUND AND RELATED WORK

2.1 Level Set Method

The level set method is a numerical technique for
tracking and transforming dynamic surfaces and shapes.
Introduction to the level set method and its applications
can be found in [1], [2], [3].

In the level set method, surfaces in a fixed Cartesian grid
are described using a signed distance function ®, called
the level set function. This function returns the signed
distance of a point to the surface, when given its position.
The surface separates the interior and exterior of an object on
the grid; therefore, it is often referred to as the “interface.”
Fig. 1 shows a 2.5D illustration. In a two-dimensional space,
the level set method amounts to representing a closed curve
I' using the level set function ®. At any time ¢, the curve I' is
represented as the zero level set of ®,

I(t)={x € R*| ®(x,t) = 0}. (1)

Here, the level set function ® typically takes negative values
inside the region delimited by the closed curve I' and
positive values outside.

The evolution of the level set function follows

O+ V- VO =0, (2)

where @, is the partial derivative of ® with respect to time,
and V is a velocity field governing the advection of the level
set function over time. Note that V also implicitly controls
the evolution of I' because I' is embedded as the zero level
set. V- V@ can also be expressed as v||V®||, where v is the
magnitude of the velocity field in the normal direction of
the passing level set. The level set method allows one to
manipulate I' and perform numerical computations invol-
ving closed curves and surfaces without having to
parameterize them. Because of the embedding of I' in the
level set function, topological changes of I' can be handled
implicitly without special considerations.

Thus, the level set method facilitates the representation of
deformable implicit curves and surfaces as well as offers a
robust numerical method for dealing with the geometric and
topological evolution of shapes and closed curves. Our novel
technique proposed in this paper is meant to take advantage
of these properties of the level set method.

2.2 Related Work

There exists much work on developing computer algo-
rithms for generating floral ornaments [5] and planar
patterns [6], [7]. Such algorithms do not need exemplars.
They can generate patterns following either mathematical
(geometric) principles or design principles observed by
human artists. Since we take an exemplar-based approach
in this paper, in the following, we focus on previous work
related to exemplar-based texture synthesis.

2.2.1 Pixel-Based Synthesis

Among the pixel-based region-growing techniques, Garber
[8] and Efros and Leung [9] define the basic pixel-based
scheme by synthesizing in scanline order to find and copy
the pixels with the most similar local neighborhood in the
input exemplar. Improvements include faster hierarchical
synthesis [10], [11], [12], coherent synthesis [13], real-time
parallel synthesis on GPUs [14], and multiscale synthesis
[15], [16]. Pixel-based techniques [17], [18], [19] are by
nature suitable for controllable texture synthesis because
they have direct control over fine-grain pixel values. Both
color and signed distance have been utilized for neighbor-
hood matching in [19]. Nevertheless, signed distance
values are used as an additional cue in neighborhood
comparison, but not as variables in a global optimization
with a quantitative objective function. There exists work
on generalizing texture synthesis to curves [20], which
only performs individual curve synthesis, and is not
applicable to a 2D arrangement of curves and contours in
an art pattern.

2.2.2 Patch-Based Synthesis

Meanwhile, patch-based techniques [21], [22], [23], [24]
copy and stitch together texture patches from the input
exemplar at various offsets. They are more successful in
generating high-quality synthesis results because they
retain patchwise spatial arrangements from the input
exemplar. Among them, “Image Quilting” [22] takes a
novel minimum-error boundary cut approach based on
dynamic programming, while Kwatra et al. [24] compute
optimal seams using a graphcut algorithm. Wu and Yu [25]
define a feature map from the input exemplar and perform

438 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

Fig. 2. Closed feature curves of an input exemplar and their signed
distance function. Our synthesis result of this example can be found at
the top of the middle column in Fig. 9.

feature matching and alignment by measuring structural
similarity. However, unlike our level set-based method,
these techniques do not attempt to globally optimize the
quality of the synthesized curvilinear features and contours.
In addition, they typically cannot handle textures with
multiple layers very well.

2.2.3 Optimization-Based Synthesis

Global optimization has become popular in texture synth-
esis recently. Such a method synthesizes results by
optimizing a global energy function. Kwatra et al. [26]
present an EM-style synthesis-by-optimization scheme.
Their technique gives robust performance and fully
supports constrained synthesis. More recent work includes
[27], which integrates nonparametric optimization with
histogram matching for synthesizing 3D texture solids, [28],
which runs in the opposite direction of traditional forward
synthesis and generates a small texture compaction to best
summarize the original variations of a large input texture,
[29], which uses control maps that are similar to SDFs in
their optimization and supports multilayer textures through
interactive layer definition, and [30], which provides a
scheme for synthesizing repetitive discrete elements within
a given large-scale structure. Our technique is a natural
generalization of Kwatra et al. [26] in terms of global
optimization. By applying the level set method in the
optimization stage and involving layer information in the
similarity metric, our technique achieves more accurate
patch matching and better curvilinear feature alignment for
both art patterns and layered textures.

3 BaAsiCc ALGORITHM

The energy function in our global optimization consists of
two parts. The first part evaluates the local appearance
similarity between the synthesized image and the input
exemplar. The second part of our energy function measures
the local similarity between signed distance transforms of
curvilinear features in both the synthesized image and the
input exemplar. One of our main goals is to measure the
local shape similarity between these curvilinear features in
the input and output. Since every set of features uniquely
define a signed distance function, computing local shape
similarity can be cast as computing the local similarity
between two signed distance functions [31]. Note that, as
shown in Fig. 2, open features, which are obtained with
Canny edge-detection [32], need to be connected together
manually to form closed curves before a signed distance
function can be computed, especially near image bound-
aries. We typically connect no more than 20 open features

among the detected edges in the input exemplar. The SDF
value of a pixel is calculated according to the distance to its
nearest closed feature.

Let X denote the synthesized output and Z denote the
input exemplar. Let A, (or A,) denote the appearance
vector at pixel x (or z) in X (or Z). In this paper, we define
this appearance vector as the concatenated pixel colors
within a local neighborhood centered at pixel x (or z). We
further use Dy (or D,) to denote the vector of concatenated
signed distance values within a neighborhood centered at
pixel x (or z). Let zx denote the center of the neighborhood
from the input exemplar, which is most similar to the
neighborhood centered at x in X in terms of both color and
signed distance under the euclidean norm. The total energy
is defined with respect to a collection of neighborhoods Sx
from X:

Ef(Sx) =« Z [Ax — Azx”2 +(1-a) Z [Dx — sz||27
x€Sy x€Sy
3)

where a € [0,1) is a weight balancing the effects of color
and signed distance similarity. For black and white line
drawing inputs, « is set to 0 because only signed distance
values contribute to the quality of synthesized results. Let
the size of a neighborhood be w x w. In practice, the energy
is evaluated over a subset of local neighborhoods that are
w/4 pixels apart because it is redundant and computation-
ally expensive to compute the energy over all neighbor-
hoods in the synthesized image.

The energy function in (3) can be optimized in a way
similar to expectation-maximization [26], [33], where
({A;},{D,}) and {z,} are alternatively optimized in the
maximization (M)-step and expectation (E)-step, respec-
tively. The EM algorithm is an iterative method for finding
maximum likelihood or maximum a posteriori (MAP)
estimates of unobserved latent variables in statistical
models. Each EM iteration performs an E-step, which
creates a function for the expectation of the log-likelihood
evaluated using the current estimate of the probability
density, and an M-step, which computes updated values of
the latent variables maximizing the expected log-likelihood
found in the E-step. Similar to Kwatra et al. [26], we
perform an EM-like optimization by computing synthesized
texture patches in the E-step while locating the set of input
neighborhoods most similar to the synthesized patches in
the M-step. In theory, due to acceleration schemes used for
nearest neighbor search, our M-step cannot guarantee to
find the truly optimal neighborhoods in the input exemplar.
However, in practice, the located input neighborhoods are
not too different from those optimal ones, and a few
iterations of our E-step and M-step can always reduce the
energy by a large amount even if the process does not
converge at the end.

At the very beginning prior to any M-steps and E-steps
in our framework, we initialize the pixelwise appearance
and signed distance values in the synthesized image using
“image quilting” [22]. The only deviation from the original
quilting algorithm is that every patch from the input
exemplar is padded with an extra signed distance channel.
We further extract an initial zero level set from the
synthesized signed distance channel.

WU ET AL.: OPTIMIZED SYNTHESIS OF ART PATTERNS AND LAYERED TEXTURES 439

The M-step. In the M-step, we search for the best
matching neighborhoods in the input exemplar. That is, in
3), we fix {A,} and {D,} while updating {z,} for all
neighborhoods in Sx. The similarity metric for matching
is based on summed squared differences (SSD) and
includes both terms in (3), color and signed distance.
The search hierarchy is constructed using the Approx-
imate Nearest Neighbor (ANN) [34] algorithm and Patch-
Match [35] for speedup.

The E-step. At the beginning of every E-step, there
already exist an initial appearance map (color image) and
signed distance function for the output image, and every
neighborhood in Sx has already been assigned a best
matching neighborhood from the input exemplar during
the latest M-step. During the E-step, we optimize both
pixelwise appearance values and signed distance values.
That is, in (3), we fix {z,} while updating {A,} and {D,}.
Since our input exemplars are mostly line drawings and art
patterns that have many curvilinear features, producing
high-quality geometric patterns of such features is of higher
priority than color patterns. Therefore, we optimize signed
distance values and appearance values in two sequential
stages, and signed distance values are optimized first. In the
following, we elaborate our algorithm for optimizing signed
distance values. We simply follow the technique in [26] to
optimize appearance values.

The goal of signed distance optimization is to reduce the
second energy term in (3). On average, this makes the
signed distance values from the neighborhoods in
the synthesized image closer to the signed distance values
from their best matching neighborhoods in the input
exemplar. However, this optimization is nontrivial in the
sense that we cannot alter the signed distance value at every
pixel independently to reduce the energy term because
these signed distance values are derived from a signed
distance transform of a set of closed curvilinear features. No
matter how we alter the signed distance values, they have
to remain a valid signed distance transform of some closed
curves. That means the shape of these closed curves are the
only degrees of freedom that we can manipulate during
the optimization. Now the problem becomes how to deform
the curvilinear features in the synthesized image so that
their signed distance transform approaches the expectation
of the signed distance values from the best matching
neighborhoods in the input exemplar.

This problem can be conveniently solved using the level
set method. Since the neighborhoods in Sx are overlapping,
every pixel in the synthesized image is actually covered by
multiple best matching neighborhoods from the input
exemplar. If we break every neighborhood into a set of
pixels, the second energy term in (3) can be rewritten as

SN (@) - @i(x)), (4)

x€X jEsx

where ¢ is the signed distance function for the output image
that we need to optimize, sx is the set of neighborhoods
(from the input exemplar) covering pixel x, and {<I>;| j € sx}
represent the set of signed distance functions associated with
the neighborhoods in sx. Note that ®° is also the level set
function we use in our level set algorithm.

N

(b) Without curvature term

(c) With curvature term

Fig. 3. The curvature-based term helps remove irregularities along
synthesized shape boundaries (« = 0.4).

To derive the velocity field for the level set method, we
need to redefine the energy term in (4) in a continuous
image domain, where the gradient of ®° is well defined,
as follows:

BAX) = [3 (@00 - @) . (5)

s

Taking the derivative of this energy with respect to the
level set passing through x, we obtain the following
velocity component:

_ o x) — t x Vcb"(x)
VS - 22 ((I) () q)g()) H(I)O(X)H . (6)

JE€sx

This equation indicates that the total “force” to deform and
optimize the zero level set of ®° is a weighted average of the
“forces” from individual overlapping neighborhoods, and
the magnitude of the “force” from the jth overlapping
neighborhood should be set to 2(®°(x) — @;(x)), which can
be either positive or negative. When the weight is positive
(negative), the zero level set of ®° will be pushed outward
(inward) to the zero level set of <I)§ Note that the gradient of
the level set function can be estimated robustly using the
upwind scheme [36].

Although neighborhoods in sx are overlapping, curvi-
linear features therein do not necessarily align with each
other very well. Minimizing the energy term in (4) alone
may give rise to undesired discontinuities in the zero level
set of ®°. To make the zero level set of ¢ sufficiently
continuous and smooth while minimizing the energy in (4),
it is a common practice to add a curvature-based velocity
component, which achieves similar effects of a regulariza-
tion term. As shown in Fig. 3, this curvature-based term
helps improve the shape of synthesized boundaries. Thus,
the overall velocity field is defined as

V = AV, + uV,, (7)

440 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

(c) Time step 10

Fig. 4. The evolution of the zero level set over multiple time steps
(= 0).

where A, i € [0,1] are weights of the two velocity compo-

nents, V; is defined in (6), and V, = k(x) % ,where k(x) is

defined as (©2,7% — 2000709, + @7, @2%) /(7% + ©3%)?, and
denotes the curvature of the level set passing through x [3].

Intuitively, our level set-based optimization tries to instill
a small amount of distortion into the zero level set of ®° so
that it maintains a certain level of continuity, while its
signed distance transform is still locally much similar to the
signed distance functions associated with the neighbor-
hoods from the input exemplar.

During every E-step, we run the level set method
multiple time steps until it converges. During each time
step, we follow (7) to compute an overall velocity field,
which is used for driving the zero level set. In practice, we
use the narrow-band method [37] for acceleration. Fig. 4
shows the evolution of the zero level set and the level set
function over multiple time steps. It can be observed
that misalignments and unnatural local shapes in the initial
zero level set gradually disappear as the level set-based
optimization goes on.

(a) Input

(c) a=0.45

When the zero level set of ®° is being deformed and
optimized, the entire synthesized image should be de-
formed consistently. To address this issue, at the end of
each level set time step, we generate a deformation vector
field for the entire image from the velocity vectors within a
narrow band around the zero level set of ®° using the image
morphing technique in [38]. This deformation field is then
used for warping the colors inside the entire synthesized
image. The subsequent color optimization stage is actually
performed over the warped image.

Let us now discuss the influence of weight « in (3) on
synthesis quality. When the input exemplar is a color or
grayscale image, o is typically set to a medium value
between 0.4 and 0.6 to ensure both color and SDF channels
are treated in a balanced manner. When the input is black-
and-white, a is set to a small value between 0 and 0.1 because
the SDF term is the one that really matters. Fig. 5 shows a
series of results with different choices of a for a color input
exemplar. A small o overemphasizes the SDF channel but
neglects the color channels. As a result, texture elements
with matching boundaries but different colors become
blended together. A large «, on the other hand, over-
emphasizes the color channels but neglects the SDF channel,
and gives rise to incomplete texture elements with broken
boundaries. Parameter in the range of [0.45, 0.55] will
robustly give reasonable results, as shown in Figs. 5c and 5e.

To demonstrate the necessity of level set propagation,
we have compared our synthesis algorithm with a
simplified version. In this simpler version, the input and
synthesized images still have an SDF channel in addition
to the color channels. Instead of level set propagation, it
largely follows the E-step in [26] except, at the end of
every E-step, it enforces the accuracy of the SDF channel
by first extracting the zero crossings of the SDF channel of
the synthesized image and then recomputing an SDF for
these extracted zero crossings. Comparison results can be
found in Fig. 6, where it can be verified that level set
propagation is indeed crucial for maintaining the integrity
of texture elements.

3.1 Multiresolution Scheme

Intuitively, large-scale features and their spatial layout
should be synthesized first followed by the synthesis of
smaller scale features and details. Wei and Levoy [39] first
introduced such a pyramidal framework to achieve order-
independent synthesis. The optimization process in our
framework has been implemented following a similar multi-
resolution scheme. We first synthesize an output image at a
coarse resolution and then repeatedly perform upsampling

Fig. 5. The influence of weight a on synthesis quality. Artifacts are marked with blue circles in (b) and (f).

WU ET AL.: OPTIMIZED SYNTHESIS OF ART PATTERNS AND LAYERED TEXTURES 441

4 —~4
j«‘ﬁwﬂaﬂ ‘4‘ ;3;
.k L LLE L L : B

Our method Wlthout level sets

Fig. 6. Comparison between our method and a simplified version that
does not support level set propagation (Top: « = 0.2. Bottom: o = 0).

and optimization. Upsampling to a higher resolution is
implemented via interpolation, which is followed by multiple
EM iterations at that resolution. Level set reinitialization is
performed right after each interpolation.

During the iterative EM-style optimization at each
resolution, the size of image neighborhoods starts from
128 x 128 and is halved in both dimensions every iteration
until it reaches 8 x 8. Meanwhile, the weights in (7), A and
i, are also automatically adjusted at each resolution for
high-quality outputs. At first, u is set to 0.8 to encourage a
high degree of smoothness while A is set to 0.2. In later EM
iterations on the same level, A gradually increases (no
larger than 0.95) to allow better localization of the zero
level set of the synthesized image, while p decreases (no
less than 0.05).

4 MULTILAYER SYNTHESIS

In the previous section, we have introduced an image
synthesis algorithm that relies on a signed distance function
to optimally synthesize the shape of curvilinear features. By
doing so, we need to model curvilinear features as closed
curves. An important limitation of a single SDF is that such
closed curves must divide an image into two colorable
regions. There exist many scenarios where we cannot model
the features using a single SDF. For example, if an image
consists of elements on multiple layers and there exists
occlusion between elements on different layers, a single
SDF is insufficient to simultaneously delineate the contours
of all elements. In another scenario, three or more image
elements could be abutting each other. A single SDF is also
insufficient to simultaneously represent the contours of all
abutting elements.

This limitation can be overcome by increasing the
number of SDFs. For example, two SDFs can already divide
an image into four colorable regions. Thus, multiple SDFs
have the capability of representing nonmanifold structures,
where three or more regions are simultaneously adjacent to
each other. In practice, we interactively define multiple

(d) Without layers

(e) With layers

Fig. 7. (a) Input. (b) and (c) SDF Layers. Top to bottom layers are shown
from left to right. An SDF layer only contains the signed distance
function of a subset of closed features without any color information. We
show the color of foreground pixels within each SDF layer in (c) only for
better visualization. (d) Synthesis result without SDF layers. Leaves
from different layers incorrectly merge together, as marked in blue
circles. (e) Our multilayer synthesis result (o« = 0.3).

layers according to the edge detection results in the input
exemplar to generate multiple SDFs.

To accommodate multiple SDFs in our optimization
framework, we allocate a distinct channel for each SDF. To
construct multiple SDF channels for an input exemplar, we
interactively separate curvilinear features into multiple
layers (see Fig. 7b), and compute a signed distance function
for the features on each layer. If part of some visually
important feature from the bottom layer is occluded by a
top layer, we can manually recover the occluded feature
boundaries to obtain more reasonable SDF distribution on
that bottom layer. Each SDF channel has an associated
foreground mask, which encloses all curvilinear features on
that layer. Pixels inside the mask are called foreground
pixels of the corresponding SDF channel. To make the SDF
channels behave like layers in a stack of images, they are
associated with a predefined order, which will be useful in
various scenarios. For example, to correctly handle occlu-
sions among image elements during image synthesis, an
occluding layer should precede an occluded layer in this
predefined order. Note that in our multilayer representa-
tion, only the SDF channel is separated into multiple layers,
while the three color channels remain intact. The color of a
foreground pixel in a SDF layer is still defined by the three
color channels at the same pixel location in the original
input exemplar.

Suppose there are L SDF channels. Let ¢ and ¢,
denote the mth SDF channel associated with the input
exemplar and synthesized output, respectively. We

442 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

further use DJ' (or D}') to denote the vector of
concatenated mth channel SDF values within a neighbor-
hood centered at pixel x (or z). The energy function in (3)
is revised as follows:

L
o> A - AL P+ (1-a)Y Y Dy -Dr | (8)

x€Sx m=1x€eSy

Note that all SDF layers are optimized at the same time
in every iteration. To accommodate multiple SDF layers,
our EM-based optimization needs to be revised as follows.
During the M-Step, when we search for the best matching
neighborhoods in the input exemplar, the SSD-based
similarity metric needs to consider all SDF channels as well
as all color channels altogether. In this way, we can not only
synthesize image elements associated with individual
SDF channels, but also effectively synthesize novel in-
stances of interactions among different SDF channels as
well as correlations between curvilinear features and color/
appearance values.

During the E-step, when we optimize the SDF channels of
an output image, we apply the level set method to every
SDF channel independently and compute a distinct velocity
field prescribed by (6) for every SDF channel during each
time step according to the corresponding SDF channel of the
matching neighborhoods from the input exemplar. Every
SDF channel generates its own warped version of the color
map from the previous time step. At the end of the current
time step, we “collapse” all warped versions into a single
image by observing the predefined order among the SDF
channels. That means, if the m;th SDF channel precedes the
m;th channel, foreground pixel colors from the m;th warped
image should overwrite colors at the same pixels from the
m;th warped image. At the end of the E-step, once level set-
based optimization concludes, we further update pixelwise
colors in the “collapsed” image.

The pseudocode in Algorithm 1 shows the outline of our
multiresolution framework. Fig. 7e demonstrates that the
synthesis result can be much improved once layers have
been explicitly considered using our multilayer synthesis.

Algorithm 1. Multiresolution Multilayer Synthesis.
INPUT « input exemplar Z, multilayer SDFs;
INPUT «— weight «, target image resolution Rr;
RO — RT /].6,
for (resolution R. = Ry to Ry, R. — 2R,.) do
if (R. = Ry) then
Initialize X" using image quilting enhanced
with SDFs;
else
Upsample the resolution of X’ to R,;
end if
for (neighborhood size S, = Syp downto
Stp, Se — S¢/2) do
A—02,u+038;
for (level set iteration n =1 to N) do
zx — the neighborhood in Z most similar to x,
vx e X"
X"« arg minx Fy(X; {zx }yex»-1), where E is the
energy defined in Eq. (8);

Fig. 8. Controllable synthesis results. Top: The input exemplar is shown
in Fig. 2. The control mask is shown in black and white, where the white
region stands for the foreground. (ow = 0) Bottom: Left is the input
exemplar. Middle is the control mask. Right is the result (o« = 0.4).

A—=A+0.75/N,pu— p—0.75/N;
end for
X0 XV,
end for
end for
OUTPUT « synthesized texture X

5 CONTROLLABLE SYNTHESIS

Our method can be easily modified to support controllable
synthesis. Given an input exemplar and a control mask
for the output (as in Fig. 8), we would like to perform
exemplar-based synthesis and generate an image where the
shape and boundary of the mask are well delineated by
curvilinear features in the synthesized image. Here, we
take advantage of our multilayer scheme and add an extra
SDF layer. For the synthesized image, this extra layer
contains an SDF of the mask boundary. For the input
exemplar, this extra layer contains an SDF of all features.
The SDF on this new layer will affect neighborhood
matching during the M-step and level set-based optimiza-
tion during the E-step. During neighborhood matching, if a
neighborhood overlaps with the mask boundary or falls
completely outside the mask, the weight of the extra SDF
channel is much increased (typically four times larger) to
locate a neighborhood (in the input exemplar) whose extra
SDF channel matches the SDF of the mask boundary
closely. When computing the velocity field during level set-
based optimization, (6) is revised as follows:

V=D (20 — @ (x)) Fﬁiii’iﬂ ’ Y

JEsx

where w; is a neighborhood-specific weight. Weights for
those neighborhoods (from the input exemplar), which
match neighborhoods (in the synthesized image) over-
lapping with the mask boundary, are also four times larger
than other neighborhoods to ensure that the “forces” from
such neighborhoods are sufficiently strong so that they can
push the zero level set toward the mask boundary. Results
from controllable synthesis can be found in Fig. 8.

WU ET AL.: OPTIMIZED SYNTHESIS OF ART PATTERNS AND LAYERED TEXTURES

Input Texture optimization
Fig. 9. Comparison between our method and the texture optimization
algorithm in [26]. (Top: « = 0. Bottom: a = 0.5). The third column shows
results from an improved version of texture optimization, which
incorporates a signed distance function of features. Results in the first
row were synthesized using the signed distance function only. Artifacts
are marked with blue circles.

Our metho Feature matching

Fig. 10. Comparison between our method and the feature matching
technique in [25]. Artifacts are marked with blue circles. Our method
generates better results using multilayer synthesis (Top: « =0.3.
Bottom: a = 0.3).

6 RESULTS AND COMPARISONS

We have fully implemented our algorithms and success-
fully tested them on a variety of art patterns and layered
textures. The running time for generating a 256 x
256 (512 x 512) synthesized image from a 128 x 128 input
exemplar is around 3 (11.5) minutes on an Intel 2.00-GHz
Core i7-2630M processor. In our multiresolution scheme,
the output resolution typically increases from 32 x 32
to 256 x 256. At each resolution, typically 10 EM iterations
are performed. The size of image neighborhoods
is decreased from 1/4 current image resolution down to
8 x 8 from iteration to iteration. During each E-step, five
time steps of the level set method are performed. A and p in
(7) are automatically adjusted according to the discussion in
Section 3.1.

443

Parallel controllable

Our method

Input
Fig. 11. Comparison between our method and the parallel controllable

synthesis algorithm in [14]. (Top: @ = 0.1. Bottom: a. = 0.8). Artifacts are
marked with blue circles.

Our method

Input Layered Shape

Fig. 12. Comparison between our method and the layered shape

X

Our method Content Aware Fill

Input

Fig. 13. Comparison between our method and content-aware fill in
Adobe Photoshop CS5. First column: input exemplars. Second column:
our results (Top: a = 0.1. Bottom: a = 0.8). Third column: results from
Adobe Photoshop. Atrtifacts are marked with purple circles.

444 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

AR
\'\ - g

*

NIV

Fig. 14. More results from our method. The first row shows synthesis results for single-layer art patterns. The second and third rows show synthesis
results for multilayer art patterns. High-resolution results (4 x 4) are shown in the last row. (From top to bottom: « =0.3,0.6;0.3,

0.5;0.2,0;0.3,0.5;0.4,0.)

We have also compared our method against the state-of-
the-art synthesis algorithms [14], [25], [26], [29] and the
content-aware fill technique in Adobe Photoshop CS5 on a
set of difficult art patterns and textures. Representative
comparison results are shown in Figs. 9, 10, 11, 12, and 13.
Note that for fair comparison, the results obtained using

texture optimization in Fig. 9 were actually generated from
our improved implementation that incorporates a signed
distance function for features. Thanks to the level set-based
curve optimization, our method can smoothly connect
curve segments from local image patches to form globally
coherent patterns and textures. In comparison to results

WU ET AL.: OPTIMIZED SYNTHESIS OF ART PATTERNS AND LAYERED TEXTURES 445

from existing synthesis techniques, our results have the
least broken or misaligned curvilinear features and the least
amount of visual repetition. Our method also has a strong
generalization capability because it successfully generates
novel local patterns that are visually similar to local patches
in the original exemplars but not exactly the same. Texture
optimization produces blurry regions because of its aver-
aging operation. It does not inherently maintain continuous
and smooth feature boundaries; therefore, misaligned edges
often exist in their synthesized line drawings (see Fig. 9). In
comparison with the feature matching technique [25], our
method is clearly superior when dealing with textures and
patterns that consist of multiple layers because layering is
not explicitly considered in their technique. In addition,
their technique is also more likely to generate misaligned
features due to the lack of global optimization. The parallel
controllable synthesis algorithm [14] is fast but cannot
guarantee boundary continuity especially when the input
exemplar is nonperiodic, as shown in Fig. 11. Compared
with the layered shape synthesis method [29], our level set
method can treat color and shape in a more balanced
manner, as shown in Fig. 12. It can be observed that our
method can not only generate competing results on terrain
exemplars (top row), but also can successfully deal with the
failure cases of the layered shape synthesis method (bottom
row). The content-aware fill technique of Adobe Photoshop
takes advantage of textured background patches when
filling a user-selected region and by nature is a quilting
method. It sometimes gives rise to obvious feature dis-
continuities along region and patch boundaries.
More results of our method can be found in Fig. 14.

7 CoONCLUSIONS AND FUTURE WORK

We have presented an exemplar-based synthesis frame-
work for art patterns and layered textures. It takes a global
optimization approach. Our energy function measures both
the appearance similarity of color patterns and shape
similarity of curvilinear features between an input ex-
emplar and a synthesized image. We have developed an
overall EM-style technique for minimizing this energy
function. The shape similarity part of the energy is
minimized through an innovative application of the
popular level set method. We further generalize our
energy function and optimization technique to multilayer
pattern and texture synthesis. Our generalized optimiza-
tion can effectively handle multiple layers and synthesize
valid instances of interactions.

Limitations. There exist a few aspects of our algorithm
and implementation that deserve further investigation.
First, albeit fine-scale details in our synthesis results are
nonrepetitive, sometimes a certain level of regularity is
present at larger scales to maintain feature continuity due to
our quilting-based initialization, as shown in Fig. 14
(bottom left), especially when the input exemplar exhibits
regularity. Second, there exists manual involvement in two
steps: edge connection and layer extraction. We need the
signed distance function of a set of closed curves to
initialize the level set function. Since edge detection does
not guarantee closed results, we need to interactively
connect a few open edges. An automatic scheme for closed

curve construction can be developed by integrating region-
based image segmentation, such as the graphcut algorithm
[40], with edge detection as region boundaries are always
closed. Prior to multilayer synthesis, we also need to
interactively construct multiple SDF layers for the input
exemplar. Automatic layer extraction needs to automati-
cally recognize partially occluded image regions. It is,
therefore, a challenging problem worth further exploration.
Furthermore, parallel computing techniques could be
adopted to speed up the optimization stage of our method.

ACKNOWLEDGMENTS

This work was partially supported by Hong Kong
Research Grants Council under General Research Funds
(HKU718712, HKU719313).

REFERENCES

[1] SJ. Osher and J. Sethian, “Fronts Propagating with Curvature
Dependent Speed: Algorithms Based on Hamilton-Jacobi For-
mulations,” Computational Physics, vol. 79, pp. 12-49, 1988.

[2] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge
Univ. Press, 1999.

[3] S.J. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2003.

[4] Wikipedia, “Level Set Method—Wikipedia, the Free Encyclope-
dia,” http:/ /en.wikipedia.org/wiki/Level_set_method, 2012.

[5S] M. Wong, D. Zongker, and D. Salesin, “Computer-Generated
Floral Ornament,” Proc. SIGGRAPH, pp. 423-434, 1998.

[6] M. Kaplan and E. Cohen, “Computer Generated Celtic Design,”
Proc. 14th Eurographics Workshop Rendering, pp. 9-19, 2003.

[7]1 V. Kraevoy and A. Sheffer, “Cross-Parameterization and Compa-
tible Remeshing of 3D Models,” ACM Trans. Graphics, vol. 23,
no. 3, pp. 861-869, 2004.

[8] D. Garber, “Computational Models for Texture Analysis and
Texture Synthesis,” PhD dissertation, Univ. of Southern
California, 1981.

[91 A.A. Efros and T. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Seventh Int’l Conf. Computer Vision, pp. 1033-
1038, 1999.

[10] K. Popat and R. Picard, “Novel Cluster-Based Probability Model
for Texture Synthesis, Classification, and Compression,” Proc.
SPIE, vol. 2094, pp. 756-768, 1993.

[11] J. De Bonet, “Multiresolution Sampling Procedure for Analysis
and Synthesis of Texture Images,” Proc. ACM SIGGRAPH, pp. 361-
368, 1997.

[12] L.-Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. ACM SIGGRAPH, pp. 479-
488, 2000.

[13] M. Ashikhmin, “Synthesizing Natural Textures,” Proc. Symp.
Interactive 3D Graphics, pp. 217-226, 2001.

[14] S. Lefebvre and H. Hoppe, “Parallel Controllable Texture
Synthesis,” ACM Trans. Graphics, vol. 24, no. 3, pp. 777-786,
2005.

[15] C. Han, E. Risser, R. Ramamoorthi, and E. Grinspun, “Multiscale
Texture Synthesis,” ACM Trans. Graphics, vol. 27, no. 3, article 51,
2008.

[16] E. Risser, C. Han, R. Dahyot, and E. Grinspun, “Synthesizing
Structured Image Hybrids,” ACM Trans. Graphics, vol. 29, no. 4,
article 85, 2010.

[17] A.Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin,
“Image Analogies,” Proc. SIGGRAPH, pp. 327-340, 2001.

[18] J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum, “Synthesis
of Progressively-Variant Textures on Arbitrary Surfaces,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 295-302, 2003.

[19] S. Lefebvre and H. Hoppe, “Appearance-Space Texture Synth-
esis,” ACM Trans. Graphics, vol. 25, no. 3, pp. 541-548, 2006.

[20] A. Hertzmann, N. Oliver, B. Curless, and S. Seitz, “Curve
Analogies,” Proc. 13th Eurographics Workshop Rendering, 2002.

[21] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-Time
Texture Synthesis by Patch-Based Sampling,” ACM Trans.
Graphics, vol. 20, no. 3, pp. 127-150, 2001.

446

(22]

(23]

[24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

(40]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.3, MARCH 2014

A.A. Efros and W.T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Proc. SIGGRAPH, pp. 341-346, 2001.
M.F. Cohen,]J. Shade, S. Hiller, and O. Deussen, “Wang Tiles for
Image and Texture Generation,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 287-294, 2003.

V. Kwatra, A. Schdl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 277-286, 2003.

Q. Wuand Y. Yu, “Feature Matching and Deformation for Texture
Synthesis,” ACM Trans. Graphics, vol. 23, no. 3, pp. 364-367, 2004.
V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture
Optimization for Example-Based Synthesis,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 795-802, 2005.

J. Kopf, C.-W. Fu, D. Cohen-or, O. Deussen, D. Lischinski, and
T-T. Wong, “Solid Texture Synthesis from 2D Exemplars,”
ACM Trans. Graphics, vol. 26, no. 3, pp. 2:1-2:9, 2007.

L.-Y. Wei, J. Han, K. Zhou, H. Bao, B. Guo, and H.-Y. Shum,
“Inverse Texture Synthesis,” ACM Trans. Graphics, vol. 27, no. 3,
article 52, 2008.

A. Rosenberger, D. Cohen-Or, and D. Lischinski, “Layered Shape
Synthesis: Automatic Generation of Control Maps for Non-
Stationary Textures,” ACM Trans. Graphics, vol. 28, no. 5, article
107, 2009.

C. Ma, L. Wei, and X. Tong, “Discrete Element Textures,” ACM
Trans. Graphics, vol. 30, no. 4, article 62, 2011.

H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric
Correspondence and Chamfer Matching: Two New Techniques
for Image Matching,” Proc. Fifth Int’l Joint Conf. Artificial
Intelligence, pp. 659-663, 1977.

J. Canny, “A Computational Approach to Edge Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp- 679-698, Nov. 1986.

G. Mclachlan and T. Krishnan, The EM Algorithm and Extensions.
John Wiley & Sons, 1997.

S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor
Searching Fixed Dimensions,” J. ACM, vol. 45, no. 6, pp. 891-
923, 1998.

C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman,
“PatchMatch: A Randomized Correspondence Algorithm for
Structural Image Editing,” ACM Trans. Graphics, vol. 28, no. 3,
article 24, Aug. 2009.

R. Courant, E. Isaacson, and M. Rees, “On the Solution of
Nonlinear Hyperbolic Differential Equations by Finite Differ-
ences,” Comm. Pure and Applied Math., vol. 5, pp. 243-255, 1952.
D. Adalsteinsson and J.A. Sethian, “A Fast Level Set Method for
Propagating Interfaces,” Computational Physics, vol. 118, no. 2,
pp- 269-277, 1995.

S.-Y. Lee, K.-Y. Chwa, and S.Y. Shin, “Image Metamorphosis
Using Snakes and Free-Form Deformations,” Proc. SIGGRAPH,
pp- 439-448, 1995.

L.-Y. Wei and M. Levoy, “Order-Independent Texture Synthesis,”
Technical Report TR 2002, Stanford Univ., 2002.

Y. Boykov and M. Jolly, “Interactive Graph Cuts for Optimal
Boundary and Region Segmentation of Objects in N-D Images,”
Proc. IEEE Eighth Int’l Conf. Computer Vision, vol. 1, pp. 105-112,
2001.

Ruobing Wu received the BE degree from
Tsinghua University in 2010. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science, The University of
Hong Kong. His research interest includes
computer graphics, computer vision, texture
synthesis, image processing, and machine learn-
ing. His current research topic is object categor-
ization through deep learning. He is currently a
Hong Kong postgraduate fellowship holder.

Wenping Wang is currently a professor in the
Department of Computer Science, The Univer-
sity of Hong Kong. His research interests include
computer graphics, visualization, and geometric
computing. He has recently focused on mesh
generation and polyhedral surface modeling for
architectural design. He is a journal associate
editor of Computer Aided Geometric Design,
Computers & Graphics, Computer Graphics
Forum, and IEEE Transactions on Visualization
and Computer Graphics (2008-2012). He is the program chair of Pacific
Graphics 2003, ACM Symposium on Physical and Solid Modeling 2006,
and International Conference on Shape Modeling 2009, and conference
chair of Pacific Graphics 2012, ACM Symposium on Physical and Solid
Modeling 2013, and SIGGRAPH Asia 2013.

Yizhou Yu received the PhD degree from the
University of California at Berkeley in 2000. He is
currently a full professor in the Department of
Computer Science, The University of Hong
Kong, and an adjunct professor at the University
of llinois, Urbana-Champaign. He received the
2002 National Science Foundation CAREER
Award and the Best Paper Award at 2005 and
2011 ACM SIGGRAPH/EG Symposium on
Computer Animation. He is on the editorial
board of Computer Graphics Forum and International Journal of
Software and Informatics. He is the program chair of Pacific Graphics
2009, Computer Animation and Social Agents 2012, and has served on
the program committee of many leading international conferences,
including SIGGRAPH, SIGGRAPH Asia, and International Conference
on Computer Vision. His current research interests include data-driven
methods for computer graphics and vision, digital geometry processing,
video analytics, and biomedical data analysis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

