The HKU Scholars Hub The University of Hong Kong

香港大学学術庫

Title	Influence of Ar/O2 ratio during IGZO deposition on the electrical characteristics of a-IGZO TFT with HfLaO gate dilectric
Author(s)	Qian, L; Lai, PT
Citation	The 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, 3-5 June 2013. In Conference Proceedings, 2013, p. 1-2
Issued Date	2013
URL	http://hdl.handle.net/10722/191662
Rights	IEEE Conference on Electron Devices and Solid-State Circuits Proceedings. Copyright © IEEE.

Influence of Ar/O₂ Ratio during IGZO Deposition on the Electrical Characteristics of a-IGZO TFT with HfLaO Gate Dielectric

L. X. Qian, P. T. Lai*
Department of Electrical and Electronic Engineering the University of Hong Kong
Hong Kong
* Email: laip@eee.hku.hk

Abstract—In this work, the influence of Ar/O₂ ratio during InGaZnO (IGZO) deposition on the electrical characteristics of a-IGZO thin-film transistor (TFT) with HfLaO gate dielectric has been investigated. It is found that lowering the oxygen concentration in the a-IGZO sputtering ambient can effectively improve the device performance, including carrier mobility (μ_{sat}), threshold voltage (V_{th}), sub-threshold slope (SS) and on-off current ratio (I_{on}/I_{off}). Moreover, the hysteresis (ΔV_{H}) of the transfer characteristics of the device under forward and reverse sweepings of gate bias voltage can be suppressed, and improvement on its low-frequency noise properties has been found for lower oxygen concentration in the sputtering ambient. As a result, a high saturation mobility of 12.5 cm²/Vs, a low sub-threshold slope of 0.260 V/dec and a small Hooge's parameter ($\alpha_{\rm H}$) of 0.4 have been achieved for the sample with an Ar/O₂ ratio of 24 sccm / 1 sccm. All these improvements can be ascribed to the fact that more oxygen vacancies exist in the a-IGZO film deposited in an ambient with less oxygen. These positively-charged oxygen vacancies can induce a higher electron concentration in the a-IGZO film and thus fill up more electron traps at the interface between a-IGZO and HfLaO.

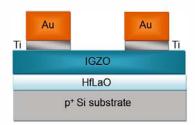


Fig. 1. Schematic diagram of the a-IGZO TFT with HfLaO gate dielectric

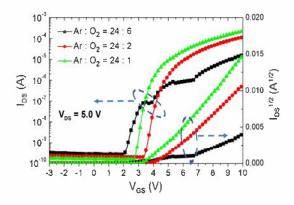


Fig. 2. Transfer characteristics of the a-IGZO TFTs with different Ar/O₂ ratios during IGZO deposition.

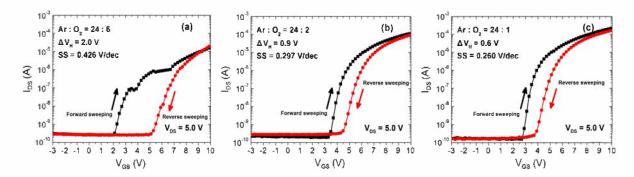


Fig. 3. Transfer characteristics of the a-IGZO TFTs measured under forward (V_{GS} = -3 V to 10 V) and reverse (V_{GS} = 10 V to -3 V) sweepings: (a)Ar:O₂ = 24:6; (b) Ar:O₂ = 24:2; (c) Ar:O₂ = 24:1.

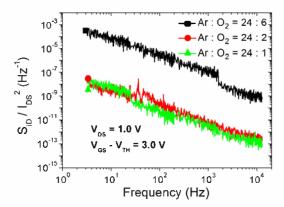


Fig. 4. S_{iD}/I_{DS}^2 versus frequency of the a-IGZO TFTs with different Ar/O₂ ratios during IGZO deposition.

Table I Electrical parameters of the a-IGZO TFTs extracted from Fig. 2, Fig. 3 and Fig. 4

Ar: O ₂	μ_{sat} (cm ² /Vs)	(V)	SS (V/dec)	ΔV_H (V)	I_{on}/I_{off}	$lpha_{_{ m H}}$
24:6	1.2	5.5	0.426	2.0	6.6×10^4	16189
24:2	7.0	4.8	0.297	0.9	6.3×10 ⁵	1.0
24:1	12.5	4.5	0.260	0.6	1.5×10^6	0.4

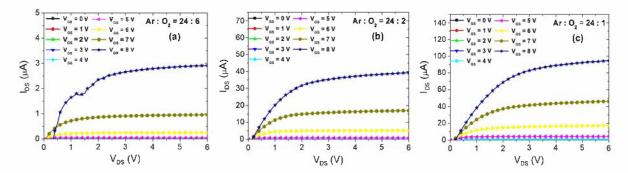


Fig. 5. Output characteristics of the a-IGZO TFTs with different Ar/O_2 ratios during IGZO deposition: (a) $Ar:O_2 = 24:6$; (b) $Ar:O_2 = 24:2$; (c) $Ar:O_2 = 24:1$.