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Abstract—An electric vehicle (EV) may be used as energy
storage which allows the bi-directional electricity flow between
the vehicle’s battery and the electric power grid. In order to
flatten the load profile of the electricity system, EV scheduling
has become a hot research topic in recent years. In this paper,
we propose a new formulation of the joint scheduling of EV
and Unit Commitment (UC), called EVUC. Our formulation
considers the characteristics of EVs while optimizing the system
total running cost. We employ Chemical Reaction Optimization
(CRO), a general-purpose optimization algorithm to solve this
problem and the simulation results on a widely used set of
instances indicate that CRO can effectively optimize this problem.

Index Terms—Electric vehicle, unit commitment, chemical
reaction optimization, metaheuristic, power system, smart grid,
vehicle-to-grid.

I. INTRODUCTION

WITH the growing concern on global climate change,

governments and industries have invested extensively

in environmentally friendly technologies. The transportation

sector is responsible for a large portion (24%) of green

house gas emission [1], which has been recognized as one

of the major cause of global climate change. To alleviate

such emissions, incentives have been provided to encourage

the adoption of electric vehicles (EVs). The next-generation

EVs have drawn the interest of researchers in recent years, as

they have the capability of performing vehicle-to-grid (V2G)

operation [2]. V2G technology [3] is regarded as an important

application of smart grid technology. An EV may be used

as energy storage which allows the bi-directional electricity

flow between the vehicle’s battery and the electric power

grid [4][5]. V2G can efficiently flatten the load profile of the

electric system with optimal scheduling of charging (grid-to-

vehicle, G2V) and discharging (V2G) behavior, which can

potentially reduce the total system running cost and green

house gas emission [6].

Recently, a number of algorithms for scheduling the charg-

ing and discharging of electric vehicles have been proposed

[2][7][8][9][10]. However, the algorithms proposed in [7] and

[8] only consider EV charging during the scheduling process.

Though [9] and [10] involve V2G operation to minimize the

cost, the consideration of system constraints, especially the

EV-related constraints, is inadequate. In particular, they fail

to take the features of EVs into consideration. The algorithm

proposed in [2] is efficient in reducing the EV individual cost,

but the authors did not take the system running cost into

account. In particular, the Unit Commitment (UC) problem,

or the scheduling of generator units, is ignored. In order to

avoid these drawbacks and provide an integrated solution of

the complete power system, we introduce UC into the optimal

scheduling model and propose a new formulation of jointly

scheduling of Electric Vehicle and Unit Commitment (EVUC).

Metaheuristic is a kind of general-purpose algorithm which

optimizes problems in an iterative manner, trying to find or

improve a candidate solution given a measure of quality. It is

a very popular approach to solve UC-related problems [9][11].

Among all metaheuristics, Chemical Reaction Optimization

(CRO) is a promising algorithm in solving combinatorial

and continuous optimization problems [12]. CRO mimics the

behaviour of molecules in a chemical reaction. It has been

used effectively in solving many real-world problems [13][14].

In this work, we use CRO to find optimal solutions of our

proposed EVUC problem.

The main contribution of this paper is a new formulation of

the joint scheduling of V2G and UC. Compared with previous

formulations, our new formulation introduces additional con-

straints to make it more practical. We also perform simulations

to demonstrate that CRO is a good method for solving this

problem.

The rest of the paper is organized as follows. The related

work is presented in Section II. Section III introduces the

nomenclature we use in this paper. Section IV formulates the

EVUC problem and the implementation of CRO to solve this

problem is described in Section V. We will demonstrate the

experiment instance and the simulation results in Section VI,

accompanied with analysis and discussion. Finally we will

conclude this paper in Section VII.
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II. RELATED WORK

Existing work of V2G operation scheduling of EVs can

be divided into two classes: charging-only scheduling and

bi-directional scheduling. In charging-only scheduling, the

algorithms try to optimize the electricity flow from the power

grid to the batteries of EVs. For example, Shrestha et al.

optimized the EV charging cycles to off-peak periods to

flatten the demand curve, in order to reduce the charging cost

[15]. Mets et al. presented a smart energy control strategy

to charge residential plug-in hybrid EVs (PHEVs) to smooth

the system load profile [7]. However, with the development

of V2G technology, bi-directional charging, i.e., V2G and

G2V, is possible, and bi-directional scheduling algorithm has

attracted much research recently. The role of EVs in the power

system may change during the day from loads to sources, and

vice versa. Binary particle swarm optimization was employed

to tackle the V2G scheduling problem to minimize the total

running cost and reduce green house gas emission in [9] and

[10]. Han et al. proposed an aggregator for V2G frequency

regulation in [16], aiming to maximize the revenue.

CRO is a recently proposed metaheuristic, which has been

developed intensely in the past few years. CRO was originally

designed to solve combinatorial optimization problems in [12],

where CRO is adopted to solve the Quadratic Assignment

Problem, the Resource-Constraint Project Scheduling Prob-

lem, and the Channel Assignment Problem. The Cognitive

Radio Spectrum Allocation Problem is addressed in [17]. Yu

et al. proposed and solved a Sensor Deployment Problem with

CRO in [14]. Lam et al. analyzed the convergence of CRO for

combinatorial optimization in [18]. Lam et al. also proposed

Real-Coded CRO, a variant of CRO, to solve continuous

optimization problems in [19]. Yu et al. solved an Artificial

Neural Network training problem in [13], and proposed several

perturbation functions for RCCRO in [20].

Researchers have been using metaheuristics to solve UC and

its related problems for many years. Mantawy et al. proposed a

hybrid algorithm integrating genetic algorithm, tabu search and

simulated annealing to solve UC in [21]. Rajan et al. proposed

an evolutionary programming-based tabu search method for

the same problem in [22]. Yousuf et al. proposed a binary

particle swarm optimization to solve the UC with renewable

energy sources in [10]. Chen proposed an expert system with

elite particle swarm optimization algorithm to solve UC in

[11]. As CRO has been applied to solve related power system

optimization problems, e.g., [23][24] and has demonstrated

outstanding performance, we adopt CRO to solve this EVUC

problem.

III. NOMENCLATURE

T Total number of time intervals.

t The index of a time interval.

∆t Length of a time interval.

I Total number of thermal units.

i The index of a thermal unit.

M Total number of EVs.

m The index of an EV.

P t
i Power output of unit i at time t.

U t
i State of unit i at time t. 1 is online and 0 is

offline.

fFC
i (P ) Fuel cost of unit i when generating P power

output.

UCi Start-up cost of unit i.
DCi Shut-down cost of unit i.
ai, bi, ci Fuel cost coefficients of unit i.
Pi Maximum power output of unit i.
Pi Minimum power output of unit i.
Ti,mr The set of time intervals when unit i must be

online.

Ti,mo The set of time intervals when unit i must be

offline.

P t
D System load demand at time t.

P t
SR Spinning reserve at time t.

P t
EV The amount of power discharged from EV

through V2G at time t. A positive value rep-

resents discharging to the power grid (V2G) and

a negative value represents charging from the

power grid (G2V).

MUTi Minimal uptime of unit i.
MDTi Minimal downtime of unit i.
τ ti The number of continuous online or offline time

intervals before time t for unit i. A possitive

value represents online state and a negative rep-

resents offline state.

URRi Maximum up-ramp rate limit of unit i.
DRRi Maximum down-ramp rate limit of unit i.
Ecap

m Battery capacity of EV m.

Et
m The amount of electricity hold by EV m at time

t.
freqm Charging frequency of EV m.

T charge The set of time intervals when EVs are charging

from the power grid T charge = {t|∀P t
EV < 0}.

Econ
m Total electricity consumed by EV m in a com-

plete scheduling period.

IV. EVUC PROBLEM FORMULATION

The purpose of UC problem is to determine the schedule

of the start up and shut down of power generator units, such

that the total power output meets the fluctuating load over

the scheduling period at minimal cost [11]. EVs connected

to the grid can act as loads, sources, or energy storages. The

EVUC problem can be formulated as a constrained nonlinear

optimization problem if we divide the scheduling period into

time intervals as follows:

min
P t

i

T∑

t=1

I∑

i=1

[fFC
i (P t

i )U
t
i + UCi(1− U t−1

i )U t
i

+DCiU
t−1

i (1− U t
i )],

over P t
i for i = 1, 2, · · ·, I, t = 1, 2, · · · , T.

(1)

In power systems, the fuel cost of a thermal unit is usually

formulated as a quadratic function:

fFC
i (P ) = ai + biP + ciP

2. (2)
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This objective function of EVUC is subject to two classes

of constraints: UC and EV constraints. The former constraints

are introduced by the original UC problem [11] and the latter

ones are introduced due to the special characteristics of EVs.

A. UC Constraints

When considering UC constraints, we can consider the

collection of EVs as a new type of unit which can generate

or consume power at different times.

1) Generation Constraints: Every online unit has genera-

tion limits:

Pi ≤ P t
i ≤ Pi i = 1, 2, · · · , I, t = 1, 2, · · · , T. (3)

2) Must-run and Must-off Units: Sometimes units are as-

signed to be in a must-run or must-off status to meet different

requirements:

U t
i = 1 for t ∈ Ti,mr

U t
i = 0 for t ∈ Ti,mo

. (4)

3) System Power Balance: The generation and demand of

the system must be identical:

I∑

i=1

P t
i U

t
i + P t

EV − P t
D = 0 t = 1, 2, · · · , T. (5)

4) Spinning Reserve Constraints: In order to prevent power

supply interruptions, an adequate amount of spinning reserve

is essential for a power system:

I∑

i=1

PiU
t
i + P t

EV − P t
D−P

t
SR ≥ 0

t = 1, 2, · · · , T

. (6)

5) Minimal Uptime and Downtime: A unit must be online

or offline for a certain number of time intervals before it can

be shut down or started up:

τ ti ≥ MUTi×U
t−1

i (1− U t
i )

−τ ti ≥ MDTi×(1− U t−1

i )U t
i

i = 1, 2, · · · , I, t = 1, 2, · · · , T

. (7)

6) Ramp Rate Limit: A unit cannot change its power output

too rapidly. The range is constrained by the ramp rate limits:

P t
i − P t−1

i ≤ URRi i = 1, 2, · · · , I, t = 1, 2, · · · , T

P t−1

i − P t
i ≤ DRRi i = 1, 2, · · · , I, t = 1, 2, · · · , T

. (8)

B. EV Constraints

1) Capacity Limit: The total amount of electricity which

can be stored in the EVs is limited by the capacity of the

batteries in the EVs:

M∑

m=1

Ecap
m −

M∑

m=1

Et
m ≥ 0 t = 1, 2, · · · , T. (9)

2) Charging Frequency Limit: In order to save the battery

life, it is suggested to limit the charging frequency of EVs

[25]. So the maximum amount of electricity charged to EVs

is limited:

∑

t∈T charge

P t
EV ×∆t ≤

M∑

m=1

(Ecap
m × freqm). (10)

3) Battery Electricity Balance: The total electricity stored

in the batteries of EVs shall remain the same after a complete

scheduling period, otherwise the EV system may have all

its electricity depleted, or charged to capacity, rendering it

incapable of providing regulation service. In this process, the

energy consumed by EVs themselves shall also be considered.

Assume that the total number of EVs in the system, i.e., m,

is constant during the scheduling period. This constraint is

formulated as follows:

T∑

t=1

P t
EV ×∆t+

M∑

m=1

Econ
m = 0. (11)

V. ALGORITHM DESIGN

In this section, we will first briefly review CRO. Then the

detailed implementation of our proposed methodology will be

presented.

A. A Brief Review of CRO

CRO mimics the behavior of molecules in a chemical

reaction. Consider a closed container with some molecules.

Each molecule has a molecular structure, which is used to

represent a feasible solution, and different kinds of energy,

which represent some solution quality-related parameters. As

time evolves, the molecules move around randomly and collide

with the container wall or with each other. The collisions

modify the molecular structures of participated molecules

according to some predefined rules. If the modification caused

by the collision accords with the energy conservation law, then

the modification is accepted and the molecular structure, i.e.,

a feasible solution, is potentially improved. CRO utilizes this

kind of modifications to perform optimization tasks.

In CRO, there are four kinds of elementary reactions,

namely, on-wall ineffective collision (on-wall), decomposition

(dec), inter-molecular ineffective collision (inter), and synthe-

sis (syn). In each iteration of CRO, only one out of these

four elementary reactions will occur. Among these elementary

reactions, on-wall and dec take one molecule as input (parent

molecule) while inter and syn take two molecules. on-wall

and syn employ the input molecule(s) to generate one output

(child molecule) while dec and inter generate two. The occur-

rence of these elementary reactions are controlled by different

parameters. Although they are quite different in terms of

inputs and outputs, they share a common characteristic which

distinguishes CRO with other metaheuristics. All elementary

reactions satisfy the energy conservation law, i.e., the energy

in the whole system remains the same before and after the

elementary reaction. Interested readers can refer to [12][26]

for details.
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B. Encoding Scheme

As stated in Section IV, we use T to represent the total

number of time intervals and I to represent the set of units.

So we can use a T ×I binary matrix to represent the schedule

of online status of thermal units, where 1’s stand for online

and 0’s for offline. Besides this typical encoding scheme for a

canonical UC problem, we also append a vector of length T
to represent the power output of all EVs. So a typical solution

s for the EVUC problem is composed of two parts: an UC

part and an EV part as follows:

s =








U1

1
U1

2
· · · U1

I P 1

EV

U2

1
U2

2
· · · U2

I P 2

EV

...
...

. . .
...

...

UT
1

UT
2

· · · UT
I PT

EV







.

︸ ︷︷ ︸

UC

︸ ︷︷ ︸

EV

C. Initial Solution Generation

As a feasible solution of EVUC can be divided into two

parts, we initialize them separately. Instead of randomly gen-

erating binary numbers for the UC part (as is usually the

case when using metaheuristic to solve other optimization

problems), we use a heuristic proposed in [11] to generate

this part. Note that this heuristic, or so-called “Expert System

Pre-dispatch” cannot guarantee the solutions generated have

good performance. For the EV part, we will dispatch the EV

charges evenly without violating the constraints.

The main idea of the initial solution generator of the UC part

proposed in [11] is that an initial solution will go through all

UC constraints to check whether any violation occurs. When

a solution violates any constraint, it will be repaired using

some predefined “rules”. This process can be further divided

into three steps: a) check Constraint (4), b) check Constraint

(6), and c) check Constraint (7). Other UC constraints will

be satisfied in the process of Economic Dispatch (ED), which

will be introduced later. Interested reader can refer to [11] for

details of this initial solution generation heuristic.

However, this method has a serious drawback. As the steps

previously stated are performed sequentially, it is highly likely

that the repair function in Step c may potentially make the

solution violate Constraint (6) again, despite this solution has

just passed the checks in Steps a and b. Here is an example.

Suppose a thermal unit i with MUTi = MDTi = 3. The unit

state of unit i in a solution which just passed Step a and b

check is [· · · , 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, · · · ]⊺. As this sequence

does not satisfy MDTi, either state of the two underscored

time intervals must be changed to 0. However, this change

potentially decreases the maximum power output of this time

interval, which may in return violate Constraint (6). Moreover,

as there is no feedback scheme in this method, this violation

will still be retained without repair and the solution becomes

infeasible. In order to overcome this drawback, we add a

simple recursive scheme to the original method: every solution

after going through all the steps will go through these checks

again sequentially until no violation is found. As this recursion

is a time-consuming task, we will discard this solution and

generate a new one if the solution still cannot pass all the

constraint checks after 10 recursions. Thus we can guarantee

the UC part of our generated initial solution satisfy Constraints

(4), (6), and (7).

For the EV part of an initial solution, we suppose that no

smart operation, i.e., having EVs as storages or sources, occurs

in the scheduling period. So the total amount of electricity

charged to the EVs is
∑M

m=1
Econ

m . This amount is first

evenly distributed to all time intervals. Then we check this

solution against Constraint (6), which is the only constraint

this solution may violate. If this constraint is violated, then

we calculate the excessive electricity Eex at time tex when

the maximum power output of all online thermal units cannot

satisfy the requirement of demand and spinning reserve:

Eex = P t
D+P t

SR − P t
EV −

|I|
∑

i=1

PiU
t
i . (12)

This excessive electricity then is divided evenly and dispatched

to all time intervals whose maximum power outputs can satisfy

the spinning reserve requirement. This process repeats until no

time interval violates constraint (6). Here is an example. Sup-

pose there are three thermal units with P = [100, 100, 100]⊺,

the demands and spinning reserves of the three time intervals

are P t
D+P t

SR = [80, 290, 170]⊺, and
∑M

m=1
Econ

m = 50. After

the first step of even dispatch, a possible solution is:





1 0 0 −16.667
1 1 1 −16.667
1 1 0 −16.667



⇒





1 0 0 −20
1 1 1 −10
1 1 0 −20



 .

However, the excessive electricity in the second time interval

violates Constraint (6). So the excessive electricity Eex =
290−(−16.667)−300 = 6.667 is dispatched to the other two

time intervals, rendering the solution feasible. Up to now there

is no smart operation in our initial solution. The Constraints

(9), (10), and (11) are naturally satisfied, otherwise the EVs

in the system would not have enough electricity to function,

and this is not an acceptable situation.

D. Neighborhood Search Operator

The neighborhood search operator, which modifies one

feasible solution and attempts to find another one, is employed

in all four elementary reactions in our CRO implementation

for this problem. As each solution can be divided into two

parts, we will modify them separately.

1) UC Part Modification: At the beginning, the neighbor-

hood search operator will first generate a random position in

the T × I binary matrix except those must-run and most-

off positions. The state in this position is then toggled, i.e.,

U t
i ← 1 − U t

i . Then the newly generated solution will be

checked against Constraints (6) and (7). If either one of the

constraints is violated, the modification is discarded and the

solution is reverted to the original state. In such cases, the
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algorithm will go on to modify the EV output values. However,

if the algorithm successfully modifies one position in the UC

part without violating the constraints, the EV output values

will not be changed. An example of the operation of this

neighborhood search operator is as follows:





1 0 0 −20
1 1 1 −10
1 1 0 −20



⇒





1 1 0 −20
1 1 1 −10
1 1 0 −20





where the neighborhood search operator toggles the state of

the second unit on the first time interval from offline to online,

which is bolded in the above transformation.

2) EV Part Modification: If the UC part modification does

not successfully change any state, the algorithm will modify

the EV part values. In order not to violate Constraint (11),

the sum of all EV output values shall keep unchanged. So we

first select two random time intervals tinc and tdec from T ,

assign one of them to be the time interval for which we decide

to increase the EV output (increase V2G or decrease G2V),

and the other to be the time interval for decreasing the EV

output. As Constraint (6) limits the maximum power that the

selected outputs can increase/decrease, we first determine the

increase/decrease range r as

r =min(P tinc

D − P tinc

E V −

|I|
∑

i=1

(Pi),

|I|
∑

i=1

(Pi) + P tdec

E V − P tdec

D − P tinc

SR).

(13)

The first term in the min operator is the maximum increase

range for tinc and the second term is the maximum de-

crease range for tdec. With this range, we draw a random

increase/decrease value v ∼ N(0, r/3). If the absolute value

of v is larger than r, this v will be discarded and we randomly

draw another one from the distribution. This process will

iterate until a feasible |v| ∈ [0, r] is drawn. This v is then

applied to modify the EV output values of the two previously

selected time intervals, i.e.,

P tinc

EV ← P tinc

EV + |v|

P tdec
EV ← P tdec

EV − |v|.
(14)

This operation may violate Constraints (9) and (10). In such

cases, this modification on EV output values is reverted and the

neighborhood search operator will do nothing in the current

elementary reaction.

E. Elementary Reactions

In our proposed methodology, we employ the neighborhood

search operator in all four elementary reactions, namely on-

wall, dec, inter, and syn. For on-wall, the neighborhood search

operator can be employed as described before. For dec, we first

copy the input molecular structure to the two output molecules,

and then perform neighborhood search on them separately.

We treat inter as two on-walls occurring simultaneously.

TABLE I
CAPACITY AND COST COEFFICIENTS OF THERMAL UNITS

Unit Pi(MW) Pi(MW) ai($/h) bi($/MWh) ci($/MWh2)

1 455 150 1000 16.19 0.00048
2 455 150 970 17.26 0.00031
3 130 20 700 16.6 0.002
4 130 20 680 16.5 0.00211
5 162 25 450 19.7 0.00398
6 80 20 370 22.26 0.00712
7 85 25 480 27.74 0.0079
8 55 10 660 25.92 0.00413
9 55 10 665 27.27 0.00222

10 55 10 670 27.79 0.00173

Finally, for syn, we compare the performance of the two input

solutions, pick the better one, and perform the neighborhood

search on it.

F. Economic Dispatch

Up to now our solution is a binary matrix and a real-

number vector. However the EVUC problem requires the

power outputs of the units instead of the online status. So

the algorithm must dispatch the load demand to all online

units, and this process is called Economic Dispatch (ED) [27].

In EVUC, we use the lambda iteration method for economic

dispatch in the UC problem as this method is guaranteed to

find the optimal ED solution with a small enough estimation

error [28].

VI. SIMULATION RESULTS AND DISCUSSION

Our proposed approach was implemented in C++ on an Intel

Core i5 3.1-GHz processor with MinGW compiler. We analyze

the efficiency of V2G as well as the performance of CRO with

a test system of up to 40 units.

A. Testing Instance

In our simulation, an independent system operator (ISO)

of a 10-unit system is considered with 50 000 GVs. This

ISO has been considered in many investigations [9][10][11].

We consider a 24-hour scheduling horizon. Table I gives the

capacity and cost coefficients of these thermal units and Table

II gives the time-dependent parameters of these thermal units.

In this system, the system reserve is set to 10% of the total

demand (load demand and EV charging demand), the shut

down cost is ignored, and the start-up cost is calculated using

UCi =

{

UChot
i MDTi ≤ −τ

t
i ≤MDTi + T cold

i

UCcold
i −τ ti > MDTi + T cold

i

(15)

where T cold
i is the extra time needed for unit i to completely

cool down besides MDTi. So the start-up cost is temperature

dependent where a cold unit requires UCcold to start-up while

a warm unit requires less cost UChot. The load demands for

the 24 hours are presented in Table III. This load profile does

not include the energy consumed by EVs.

In order to have a complete assessment of the proposed al-

gorithm, we also made a 20- and 40-unit system by duplicating

the 10-unit system and scaling the load demands as well as
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TABLE II
TIME-DEPENDENT PARAMETERS OF THERMAL UNITS

Unit MUTi MDTi τ1
i

(h) UChot
i

($) UCcold
i

($) T cold
i

(h)
1 8 8 5 4500 9000 8
2 8 8 5 5000 10000 8
3 5 5 4 550 1100 -5
4 5 5 4 560 1120 -5
5 6 6 4 900 1800 -6
6 3 3 2 170 340 -3
7 3 3 2 260 520 -3
8 1 1 0 30 60 -1
9 1 1 0 30 60 -1

10 1 1 0 30 60 -1

TABLE III
SYSTEM LOAD DEMAND (WITHOUT EVS DEMAND, IN MW)

Hour 1 2 3 4 5 6 7 8
Demand 700 750 850 950 1000 1100 1150 1200

Hour 9 10 11 12 13 14 15 16
Demand 1300 1400 1450 1500 1400 1300 1200 1050

Hour 17 18 19 20 21 22 23 24
Demand 1000 1100 1200 1400 1300 1100 900 800

the system capacity (in terms of EV number) in proportion to

the system size. For 20-unit system, there are 100 000 EVs

and the load demand for the first hour is 1 400 MW. Such

configuration is also studied in [11].

The EV parameter values used in this paper are as follows:

average EV battery capacity EV cap = 15kWh, charging

frequency freq = 1.0, and average EV energy consumption

over 24 hours EV con = 8.22kWh. All these numbers are

adopted from [9]. The parameter values for CRO to solve

EVUC are listed in Table IV. We select these parameter

values using a trial-and-error method, which has been used

in [12][20].

B. Analysis on V2G Efficiency

In order to demonstrate the advantage of our V2G scheme

compared with the current EV charging-only scheduling

scheme, we propose and investigate two models representing

the two schemes, respectively.

1) Load-Leveling Model: In this model, EVs are charged

through thermal units using load-leveling optimization. No

V2G operations are made. In this model, Constraint (10) in

EVUC becomes

P t
EV ≤ 0 t = 1, 2, · · · , T. (16)

The simulation results for this model is presented in Table V.

2) V2G Model: In this model, EVs are charged through

thermal units as loads and discharged to the grid as sources.

The simulation results for this model is presented in Table VI.

From Tables V and VI we can see that, the total running

cost is reduced by $7738.63 every 24-hour cycle, due to V2G

operations. This phenomenon can also be observed in the

simulations on the 20- and 40-unit systems, whose results

are presented in Table VII. All the simulation results show

that introducing V2G technology to existing power system can

effectively reduce the running cost.

TABLE IV
CRO PARAMETER VALUES

Parameter Value
Initial population size 5

Initial molecular kinetic energy 100
Initial central energy buffer size 0

Collision rate 0.05
Energy loss rate 0.05

Decomposition threshold 10 000
Synthesis threshold 100 000

TABLE VII
BEST RUNNING COST COMPARISON BETWEEN TWO MODELS

Units Load Leveling V2G difference
10 $572,467.30 $564,727.87 -$7,739.43
20 $1,145,196.73 $1,128,131.28 -$17,065.45
40 $2,286,394.59 $2,257,690.96 -$28703.63

C. Comparing CRO with Other Metaheuristics

In order to demonstrate the superiority of CRO in solving

EVUC, we compare the simulation result of CRO with other

metaheuristics on 10-, 20-, and 40-unit systems. The selected

metaheuristics are all algorithms with excellent performance

in solving UC and related problems. These are EP [29], QIEA

[30], SA [31], LRPSO [32], and ES-EPSO [11]. As there

is no published results on our proposed EVUC problem, we

implement these algorithms according to the description in the

corresponding literature. The function evaluation limit is set

to 50 000. The parameter values are selected according to the

published records. Every algorithm is tested over all systems

for 100 times. The simulation results are presented in Table

VIII.

From the results we can see CRO outperforms other al-

gorithms in every test on both the comparison of best cost

and the mean cost. The superiority is enhanced when the

problem size increases. In terms of computational time, EP is

the fastest algorithm but the advantage over CRO is negligible.

Almost 95% the of total time of CRO, EP, QIEA, and SA

is employed to solve ED using the lambda iteration method,

which is not avoidable in all UC simulations. As to LRPSO

and ES-EPSO, the relatively high computational complexities

of the algorithms make them less competitive.

VII. CONCLUSION

In this paper, we propose a new optimization problem,

namely, joint scheduling of EVs and UC, called EVUC.

Our formulation can overcome the drawbacks of previous

formulations. The main idea of the problem is to employ EVs

as power sources and storages at different times, instead of

only using them as loads. The major improvement of our

formulation with previous formulations is that we consider

the special characteristics of EVs while optimizing the total

system running cost. This improvement makes our model more

realistic and also more effective at reducing the total system

running cost. In order to assess the efficiency of our formu-

lation, we employ CRO to solve the optimization problem.

The simulation results indicate that our proposed scheduling
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TABLE V
BEST SCHEDULING AND DISPATCH OF 10-UNIT SYSTEM WITHOUT V2G USING CRO

h\unit 1 2 3 4 5 6 7 8 9 10 V2G Load Reserve
1 455.00 324.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -79.98 700 16.67%
2 455.00 324.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -29.65 750 16.72%
3 455.00 324.33 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -59.33 850 14.37%
4 455.00 324.77 130.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 -89.77 950 12.52%
5 455.00 324.19 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -64.19 1000 25.17%
6 455.00 360.00 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 1100 21.09%
7 455.00 410.02 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -0.02 1150 15.82%
8 455.00 455.00 130.00 130.00 30.01 0.00 0.00 0.00 0.00 0.00 -0.01 1200 11.00%
9 455.00 455.00 130.00 130.00 85.00 20.00 25.00 0.00 0.00 0.00 0.00 1300 15.15%

10 455.00 455.00 130.00 130.00 162.00 33.00 25.00 10.00 0.00 0.00 0.00 1400 10.86%
11 455.00 455.00 130.00 130.00 162.00 73.00 25.00 10.00 0.00 10.00 0.00 1450 10.83%
12 455.00 455.00 130.00 130.00 162.00 80.00 25.00 43.00 10.00 10.00 0.00 1500 10.80%
13 455.00 455.00 130.00 130.00 162.00 33.01 25.00 10.00 0.00 0.00 -0.01 1400 10.86%
14 455.00 455.00 130.00 130.00 85.02 20.00 25.00 0.00 0.00 0.00 -0.02 1300 15.15%
15 455.00 455.00 130.00 130.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 1200 11.00%
16 455.00 323.64 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -13.64 1050 25.23%
17 455.00 324.47 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -64.47 1000 25.13%
18 455.00 360.06 130.00 130.00 25.00 0.00 0.00 0.00 0.00 0.00 -0.06 1100 21.08%
19 455.00 440.01 130.00 130.00 25.00 20.00 0.00 0.00 0.00 0.00 -0.01 1200 17.67%
20 455.00 455.00 130.00 130.00 162.00 33.01 25.00 0.00 0.00 10.00 -0.01 1400 10.86%
21 455.00 455.00 130.00 130.00 85.02 20.00 25.00 0.00 0.00 0.00 -0.02 1300 15.15%
22 455.00 455.00 130.00 0.00 35.00 0.00 25.00 0.00 0.00 0.00 0.00 1100 17.00%
23 455.00 324.79 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -9.79 900 14.31%
24 455.00 345.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 800 13.75%

Expected running cost = $572467.30

TABLE VIII
COMPARISON OF SOLUTION PERFORMANCE OF CRO AND OTHER

ALGORITHMS

Units Algorithm Best Cost($) Mean Cost($) Mean Time(s)
10 CRO 564,727.87 565,019.42 2.02

EP 566,016.44 569,217.98 1.99
QIEA 565,294.13 565,364.46 2.17

SA 567,639.85 568,249.21 2.09
LRPSO 566,912.80 567,438.57 2.85

ES-EPSO 565,047.61 565,497.39 2.96
20 CRO 1,128,131.28 1,129,473.01 3.48

EP 1,131,524.73 1,136,132.33 3.44
QIEA 1,130,148.48 1,130,578.16 3.7

SA 1,134,861.47 1,136,905.79 3.61
LRPSO 1,133,126.98 1,133,913.37 5.41

ES-EPSO 1,129,632.35 1,130,975.40 5.69
40 CRO 2,257,690.96 2,259,279.49 5.99

EP 2,263,546.88 2,272,957.50 5.95
QIEA 2,260,964.88 2,261,157.61 6.31

SA 2,269,970.59 2,273,957.16 6.22
LRPSO 2,266,485.37 2,267,800.28 10.32

ES-EPSO 2,259,141.88 2,261,421.76 10.8

algorithm can significantly reduce the running cost while

maintaining sufficient spinning reserve to handle emergency

situations. Moreover, we compare the simulation results of

CRO with a wide range of other metaheuristics with excellent

performance in solving similar problems in previous literature.

CRO outperforms all other compared metaheuristics in terms

of both the best cost and the mean cost, and the simulation time

needed is among the shortest. All these phenomenon show that

CRO is an efficient method for our proposed EVUC problem.
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