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Abstract—Studying the propagation of social influence is
critical in the analysis of online social networks. While most
existing work focuses on the expected number of users influenced,
the detailed probability distribution of users influenced is also
significant. However, determining the probability distribution of
the final influence propagation state is difficult. Monte-Carlo
simulations may be used, but are computationally expensive.
In this paper, we develop an analytical model for the influence
propagation process in online social networks based on discrete-
time Markov chains, and deduce a closed-form equation for the
n-step transition probability matrix. We show that given any
initial state, the probability distribution of the final influence
propagation state may be easily obtained from a matrix product.
This provides a powerful tool to further understand social
influence propagation.

Keywords—Social Network Intelligence, Social Influence Prop-
agation, Analytical Model, Markov Chain.

I. INTRODUCTION

Social network is a complex network, connected by social
relationships. Social network intelligence are widely applied
in building web intelligence [1]. With the rapid development
of online social networks and social media such as Twitter,
Facebook, and Google+, large-scale, instantaneous information
dissemination becomes possible [2]. This offers the potential
for a surge of innovations and opportunities in web adver-
tising and marketing intelligence. Various applications have
been deployed, including viral marketing [3], word-of-mouth
recommendation [4], and social search [5], in the hope that
certain population could be targeted accurately through the
diffusion process in social networks. Hence understanding
the real social influence [6] and the propagation dynamics is
essential as it may help inform corresponding applications and
further enhance the development of web intelligence.

Motivated by the diffusion-based applications, different
diffusion schemes have been proposed. Two representative
models are the Threshold Model [7] and the Cascade Model
[8]. The Threshold Model comes from the social science
studies, and a node’s tendency to become active depends on the
node-specific threshold. The Cascade Model is derived from
interacting particle systems studies, and each active node is
given a single chance to activate its inactive neighbors. In
both cases, the cascading behavior is progressive, i.e. nodes
can switch from inactive to active but not in the opposite
direction. Kempe et al. [9] propose a broader framework that
simultaneously generalizes both models where the probability
that an inactive node becomes active increases monotonically

as the number of its active neighbors increases. Another
research direction is to study the spread of influence where
explicit network topology is unknown. Yang and Leskovec
[10] propose a Linear Influence Model (LIM) to depict the
global influence through an implicit network. However, LIM is
empirical rather than analytical, and we cannot get an accurate
description of the process evolution over time.

Given certain stochastic diffusion models, how can we
calculate the expected influence spread? In other words, given
a set of initial active nodes, what is the probability distribution
of the final influence propagation state? For the Cascade
Model and the Threshold Model, the evaluation could only
be achieved through Monte-Carlo simulation techniques. Al-
though submodularity properties [11] of the diffusion process
have been extensively studied and a performance bound of
1− 1

e (e is the base of natural logarithm, and it is approximately
equal to 2.71828) can be guaranteed for a greedy algorithm,
only the final expected influenced number but not the accurate
influence propagation state distributions can be obtained [9].
A large portion of existing studies focus either on exploring
more efficient algorithms to provide a good estimation for
the expected number of influenced nodes [12] [13], or on
developing new diffusion models [14] [15] to directly pre-
dict the influence spread based on real propagation traces.
To summarize, none of the current performance evaluation
approaches for the social influence propagation provides accu-
rate probability distribution of the final influence propagation
state. Thus proposing an appropriate diffusion scheme and a
comprehensive performance evaluation framework is vital for
designing efficient marketing strategies.

To achieve this goal, we borrow certain concepts from
other disciplines. In marketing and management science, the
most basic and widely-studied model is the Bass diffusion
model [16], which quantitatively describes how new products
get adopted as an interaction between existing and potential
users. The imitation coefficient is used to describe the inter-
action among existing customers. In epidemiological studies
[17], the disease or virus propagation process are described
using certain parameters like contact rate and recovery rate.
Existing applications of epidemiology models on Online Social
Network (OSN) studies produce useful quantitative results [18]
[19]. Inspired by the similarities in the patterns of product
adoption diffusion, epidemic propagation and the information
cascading process in OSN, we propose a new Markov chain
based Reinforced Cascade Diffusion (MRCD) model, where
a diffusion parameter p is used to represent the activation
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probability of each node, and repeated tries to activate the
same node is allowed. Specifically, we build an analytical
framework for the information diffusion process based on
discrete-time Markov chains [20] [21], and deduce a closed-
form equation to express the n-step transition probability
matrix. We show that given any initial state the probability
distribution of the converged network state could be easily
obtained by calculating a matrix product. With the analytical
framework, we give a good estimation of the final influence
propagation state.

Our contributions in this paper can be summarized as
follows.

• We introduce an MRCD model and deduce a closed-
form equation to express the probability distribution
of the influence propagation state.

• We propose a ConstructMatrix algorithm to calculate
the 1-step transition probability matrix.

• We evaluate our analytical model in regular graphs
and study the impact of network topology on the prob-
ability distribution of the final influence propagation
state.

This paper is structured as follows: The diffusion process
is described in Section II, our proposed analytical model in
Section III, the ConstructMarix algorithm in Section IV, model
evaluation in Section V, implications in Section VI, and the
conclusion and future work in Section VII.

II. DIFFUSION PROCESS

Considering a social network with N nodes as a directed
graph G(V,E) where V is the set of vertices and E is the
set of edges, we define the in-degree and out-degree neighbor
set of Node j as N in

j = {i ∈ V : (i,j) ∈ E} and

Nout
j = {i ∈ V : (j,i) ∈ E}, respectively. Here edge (i,j)

is directed from Node i to Node j. Each node is active or
inactive. Once a node becomes active, it cannot return to being
inactive. Originally all of the nodes are inactive, and a set of
nodes, namely, the seed set, is made active initially. In the
following discrete steps, nodes are activated by their active in-
degree neighbors and in turn activate their inactive out-degree
neighbors. For instance, Node i that becomes active at Step
t has a probability p to successfully activate each inactive
out-degree neighbor j through edge (i,j) in Step t + 1. The
probability is independent of the historical activation track.
Note that the order of activation is random when there are
multiple active neighbors trying to activate a common node.
The process is finished when no more activation is available.
We monitor the network status at each step. The process ends
if there is no new activations at Step t compared with Step
t− 1.

III. DISCRETE-TIME MARKOV CHAIN MODEL

A Markov chain is a sequence of states Xi(i = 1...n)
which are random variables with Markovian property, de-
scribed as follow:

Pr(Xn+1 = x|Xn = xn, Xn−1 = xn−1,...,X1 = x1)
= Pr(Xn+1 = x|Xn = xn)

(1)

It shows that the future and past states are independent given
the current state. Here the set with all possible value of xi is
called the state space of the chain, and Pr(Xn+1 = x|Xn =
xn) is called the state transition probability. Suppose that the
Markov chain is discrete and the state space is finite, we could
build the 1-step transition probability matrix P1.

P1 =

⎛
⎜⎜⎝

p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n

...
...

. . .
...

pn,1 pn,2 . . . pn,n

⎞
⎟⎟⎠ (2)

where n is the total number of states and pi,j is the transition
probability from State i to State j in one time step.

A. Network state

Assume that the target consumer group has n nodes with
ID 0,1,...,n − 1. We define the state of each node as 1 if it
is active, and 0 otherwise. Thus, the whole network state may
be represented as a binary sequence. For instance, a three-
node network has eight states {0,1,2,3,4,5,6,7}. State 0 with
binary code 000 means all the nodes in the system are inactive.
State 6 with binary code 110 means Nodes 0 and 1 are active
while Node 2 is inactive. In order to judge whether the state is
converged in the diffusion process, we define both the stable
and unstable states for each binary sequence. For the binary
sequence with decimal value i, we define i as the unstable
state and î as the stable state. Thus a network with n nodes
has 2n+1 states {0,1,...,2n − 1,0̂,1̂,..., ̂2n − 1}.

B. Transition probability matrix

Next we build a 2n+1 × 2n+1 1-step transition probability
matrix for the n-node network. Both row and column indices
correspond to the states {0,1,...,2n−1,0̂,1̂,..., ̂2n − 1}. We have
the following rules to determine the value of the elements in
the matrix.

1) pi,̂j = 0 if i �= j
If the current network state is unstable, it may have
two choices, namely, moving to other unstable states
or to its corresponding stable state.

2) pi,j = 0, if i ≥ j.
Since the active node cannot become inactive, the
unstable network state with a larger decimal value
cannot move to the unstable state with a smaller
decimal value.

3) p̂i,̂j = 1, if i = j and p̂i,̂j = 0, if i �= j
If the current network state is stable, it cannot move
to other states but must remain in this state to the
end. Thus the diffusion process will finally converge
to one stable state.

4) p̂i,j = 0
A stable state cannot move to other unstable states.

According to the rules listed above, we may represent our
1-step transition probability matrix as a partitioned matrix:

P1 =

(
A B
O I

)
(3)
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where A is an upper triangular matrix according to Rule 2, B
is a diagonal matrix according to Rule 1, O is a zero matrix
according to Rule 4, and I is an identity matrix according to
Rule 3. All the matrix blocks are 2n × 2n.

Next we calculate the n-step transition probability matrix
Pn. Since Pn = P1

n, we have

Pn =

(
A B
O I

)n

=

⎛
⎝ An (

n−1∑
i=0

Ai)B

O I

⎞
⎠ (4)

where A0 = I . Considering the final probability distribution
of network state, we only focus on the upper-right block in
the matrix, since this block includes all the probabilities from
unstable states to stable states. We denote it as G and have the
following deduction:

G = (

n−1∑
i=0

Ai)B

(I −A)G = (I −A)(
n−1∑
i=0

Ai)B

(I −A)G = (I −An)B

G = (I −A)−1(I −An)B

(5)

According to Rule 2, the diagonal elements of matrix A are
all zeros, then the diagonal of the matrix I − A are all ones.
Since I−A is still an upper triangular matrix, it is guaranteed
to be a full-rank matrix and thus invertible.

C. Convergence state

Thus far we have given an expression of the n-step transi-
tion probability matrix in (5). Next we discuss the convergence
issue. To analyze the convergence state of matrix G, we need
to first deal with the component An. A is an upper triangular
matrix with all the diagonal elements being zeros. According
to linear algebra theory, there exists an invertible matrix U
such that

A = U−1JU (6)

Here J is a Jordan matrix

J =

⎛
⎜⎜⎜⎝

Jλ1,m1

. . .

Jλi,mj

. . .

⎞
⎟⎟⎟⎠ (7)

J is a block diagonal matrix, and it is composed of Jordan
blocks Jλi,mj , (i = 1,2,..., j = 1,2,...,):

Jλi,mj =

⎛
⎜⎜⎜⎝

λi 1

λi
. . .

. . . 1
λi

⎞
⎟⎟⎟⎠ (8)

The Jordan block Jλi,mj has a size mj ×mj . It is composed
of zero elements everywhere except for the diagonal, which is

filled with λi, and for the superdiagonal, which is composed
of ones. Here λi is the eigenvalue of matrix A.

Since A is an upper triangular matrix with all diagonal
elements being zeros, it only has the eigenvalue 0. The matrix
J could be simplified as follow:

J =

⎛
⎜⎝

J0,m1

. . .

J0,mk

⎞
⎟⎠ =

k⊕
i=1

J0,mi (9)

where J0,mi is an mi ×mi Nilpotent matrix:

J0,mi =

⎛
⎜⎜⎜⎝

0 1

0
. . .

. . . 1
0

⎞
⎟⎟⎟⎠ (10)

The mi×mi Nilpotent matrix J0,mi satisfies Jn
0,mi

= 0 (n ≥
mi). Thus An could be calculated as follow:

An = (U−1JU)n

= (U−1JU)(U−1JU)...(U−1JU)

= U−1JnU

= U−1(
k⊕

i=1

J0,mi)
nU

= U−1(

k⊕
i=1

(J0,mi)
n)U

(11)

Suppose that the maximum size among all the Jordan blocks
J0,mi(i = 0,1...,k) is m, when n > m, J0,mi = 0 (i =
0, 1..., k). Thus An = 0. It means that when the time steps are
big enough, the probability distribution of the network state
represented by the matrix G converges to a stable value:

G = (I −A)−1B (12)

where I is an identity matrix, A and B are the upper left and
upper right blocks of the 1-step transition probability matrix
P1, respectively. Thus, given the 1-step transition probability
matrix P1, we could calculate the final probability distribution
of network state.

IV. 1-STEP TRANSITION PROBABILITY MATRIX

CONSTRUCTION

In this section, we describe how to construct the transition
matrix by developing the ConstructMatrix algorithm and also
provide the pseudo code for ConstrucMatrix.

A. Algorithm structure

The structure of our algorithm is shown in Fig. 1. The input
of ConstrucMatrix includes three parts:

• Network topology is defined in Section II. We repre-
sent it as an n × n matrix T . Ti,j = 0 if(i,j) /∈ E,
and Ti,j = pi,j otherwise. Here pi,j is the activation
probability from Node i to Node j.

• System state is defined in Section III-A
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Figure 1. 1-step transition probability matrix construction process

• Diffusion model is defined in Section II. Note that
the diffusion rules may influence the structure of the
1-step transition probability matrix P1.

The output of ConstrutMatrix is the 1-step transition proba-
bility matrix P1. Due to the properties of P1 described in (3),
we will describe how to construct the two block matrices A
and B.

B. Matrix A

Firstly, we will build matrix A. Given two arbitrary network
states i and j, we introduce three vectors I,J1 and J0 to
calculate the transition probability pij from State i to State
j. I, J1, J0 are utilized to store the active node IDs in State
i, the newly added active node IDs from State i to State j,
and the remaining inactive node IDs from State i to State j,
respectively. For example, for a 4-node network, we assign
node IDs as {0,1,2,3}. Given two system states i = 4 (with
binary code 0100) and j = 7 (with binary code 0111), we
can get vector I = [1], J1 = [2,3], and J0 = [0]. Based
on the network topology represented by matrix T and the
network state described by vectors I,J1 and J0, the transition
probability can be calculated by Algorithm 1.

Algorithm 1: Build matrix A

Input:
n ∗ n topology matrix T , system state vector
S = [0,1,2,...,2n − 1].

Output:
The constructed state transition matrix A;
for i = 0 to 2n − 1 do

for j = 0 to 2n − 1 do
if i ≥ j OR i & j == 0 then

Aij = 0
else

calculate vector I , J1, and J0
Aij = calProbability(I,J1,J0)

end if
end for

end for
return A

C. Matrix B

Based on matrix A, matrix B is generated by Algorithm
3.

Algorithm 2: calProbability(I,J1,J0)

Input:
Topology matrix T , vector I = [i1,i2,...ix,...],
J1 = [j11,j12,...j1y,...], and J0 = [j01,j02,...j0y,...].

Output:
The final output probability from state I to J is pI→J

pa =
∏

j1y∈J1

[1− ∏
ix∈I

(1− Tix,j1y )]

pb =
∏

j0y∈J0

∏
ix∈I

(1− Tix,j0y )

pI→J = pa × pb
return pI→J

Algorithm 3: Build matrix B

Input:
Matrix A

Output:
The final output stable transition matrix is B
for i = 0 to 2n − 1 do
Bii = 1− ∑

j=1∼2n
Aij

end for
return B

V. MODEL EVALUATION

In this section, we try to apply our MRCD model on some
sample graphs. First we evaluate our model in comparison
with Monto Carlo method, and then we show the total
probability distribution of the final influence propagation
state, and finally we study the impact of network topology on
this distribution.

A. Sample Graph

In order to focus on evaluating the performance of our
analytical model, we hope to remove the effect of uncertainty
on graph topology. Thus we choose regular graphs introduced
in [22] to test our model. These graphs have the following
properties:

• The graph is centro-symmetric, which means all nodes
are identical in the network.

• Each node has the same fixed degree, and the graphs
are identified by the degree value.

The regular graphs we used are shown in Fig. 2. Here
each graph has eight nodes, and the degree values are from 2
to 7. Fixing the degree for each node is easily achieved by the
following rules.

• To construct 2-degree graph, we may connect all
nodes in a circle. It is shown in the first graph in
Fig. 2.

• To construct 2n-degree graph (n = 2,3,...), we could
further connect each node with its 2-hop, 3-hop, ...,
and n-hop neighbors based on the 2-degree graph. For
instance, we may connect 2-hop neighbors in the 2-
degree graph to build the 4-degree graph shown in
Fig. 2.
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Figure 2. Regular graphs with different degree values

Table I. PERFORMANCE COMPARISON BETWEEN THE MONTE CARLO

METHOD AND OUR MRCD MODEL

Settings Sample Mean Sample Deviation

Avg100 1.100 0.0307
Avg1000 1.100 0.0098
Avg10000 1.100 0.0031
AvgMRCD 1.100 N/A

• To construct 2n + 1-degree graph (n = 1,2,...), we
could make extra link between each node and its
centro-symmetric node base on the corresponding 2n-
degree graph. For instance, we can connect the centro-
symmetric node pairs in the 2-degree graph to build
the 3-degree graph shown in Fig. 2.

Moreover, we set an identical activation probability p = 0.05
for each edge in all the graphs.

B. Comparison with Monte Carlo method

We run the Monte Carlo method, as well as our analytical
model, to estimate the final influence propagation, and compare
the results. We take the 2-degree regular graph as an example.
Since all the nodes are identical in a 2-degree graph, we choose
one node as the active seed, and then utilize the Monte Carlo
method and the analytical model to run the diffusion process
described in Section II. The performance metric is the average
number of active nodes at the end of the diffusion process.

For the Monte Carlo method, to obtain this performance
metric, we consider three experiments with 100, 1000, and
10000 runs. In a run, we simulate the whole information
diffusion process one time, and get the number of active
nodes at the end. Then we calculate the performance metric
for the three experiments, and denote them Avg100, Avg1000
and Avg10000, respectively. Each sample mean, e.g. Avg100, is
the result of one experiment. To determine the distribution of
each sample mean, we repeat each experiment 10000 times,
obtaining three distributions of sample means, as shown in
Fig. 3. For our MRCD model, we utilize the ConstrucMatrix
algorithm described in Section II to calculate the 1-step tran-
sition probability matrix, and then utilize (12) to calculate the
distribution of influence propagation state. Fixing the start state
at 1, the corresponding row of the matrix G is the probability
distribution from State 1 to all other stable states. Through
this distribution, we can easily calculate the average number
of activations, and denote it AvgMRCD.

Fig. 3 shows the distributions of Avg100, Avg1000, and
Avg10000 calculated by the Monte Carlo method. According

1 1.05 1.1 1.15 1.2
0

20

40

60

80

100

120

140

 P
D

F

Avg
100

Avg
1000

Avg
10000

Figure 3. The distributions of Avg100, Avg1000, and Avg10000

to the central limit theorem, the three distributions follow the
Gussian distribution. Moreover, when the number of simulation
runs increases, the deviation of the distribution decreases.
The sample means and deviations of Avg100, Avg1000, and
Avg10000, as well as AvgMRCD from our analytical model are
shown in Table I. According to statistical theory, the sample
mean is the unbiased estimate of the average number of active
nodes. The value calculated from our analytical model is the
same as the sample mean. Moreover, even for the experiment
of 10000 simulation runs, there is still a deviation of 0.0031
in estimating the average number of active nodes. By contrast,
our analytical model gives the accurate result without variance.

C. Propagation state distribution

Fig. 4 shows the probability distribution of the influence
propagation state for the 2-degree, 4-degree and 7-degree
regular graphs respectively1. Fig. 4(b), 4(d), and 4(f) are
the three-dimensional (3D) graphs. It is generated by the
mesh network through Matlab. The horizontal plane has two
dimensions which represent the start state and final stable
state, respectively, and the vertical axis represents the transition
probability from the start state to the stable state. In order
to better describe the distribution, we also draw the two-
dimensional (2D) scatter graphs in Fig. 4(a), 4(c), and 4(e).
They are the top views of the corresponding 3D graphs. The
x axis is the start state, and the y axis is the stable state. Point
(x, y) is blank if the transition probability from start state x to
stable state y is lower than the threshold Θ. Here we assign Θ
as 10−5, and the value under 10−5 could be regarded as zero.

1The result of 3-degree, 5-degree, and 6-degree graphs show the same trend.
We omit them due to space limitations.
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Figure 4. Probability distribution of influence propagation state for 2-degree, 4-degree and 7-degree regular graphs in 2D and 3D format

Note that the state values shown on the x and y axes are the
decimal values from the binary code described in Section III-A.
We enlarge Fig. 4(f) to Fig. 5 in order to gain more details
of the distribution. Fig. 5 represents the fully connected graph.
There are several peaks as well as blank triangle areas. We can
see that the points with high transition probability gather at the
diagonal band, while points with low transition probability are
scattered to the right half of the diagonal.

Next we turn to analyze the 2D graphs shown in Fig. 4(a)
4(c) and 4(e). Look at Fig. 4(e) first. It represents the fully
connected graph. We have the following observations:

• The lower-right triangle-shape area below the curve
y = x is blank. This is due to Rule 2) in Section III-B.
The unstable state cannot move to the unstable state
with a smaller decimal value. Thus it is impossible
to move to the stable state with a smaller decimal
value. This big blank triangle is not determined by
the network topology, but only by Rule 2).

• We can also see that there are several symmetric

triangle-shape blanks in the upper-left area. This is
due to the rule of our diffusion model described in
Section III-B. Since the active node cannot return
to being inactive, the transition from 1 to 0 is not
allowed. Thus there is a fixed pattern of symmetric
blank triangles in Fig. 4(e), and these blank triangles
are independent of the network topology.

Then we compared the results in Fig. 4(a) 4(c) and 4(e). We
can see that when degree increases, which means the density of
the network rises, there are more points covered, especially in
the upper-left square area {(x,y) : x ∈ [0,50], y ∈ [200,255]}.
Since the start states from 0 to 50 are regarded as the states
with few active nodes, and the stable states from 200 to 255
are regarded as the states with many active nodes, this shows
that increasing the network density will increase the coverage
of the stable states which has a greater number of active nodes,
thereby enhancing the influence propagation.

For the corresponding 3D cases, by comparing the dis-
tributions in Fig. 4(b), 4(d), and 4(f), we can see that when
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Figure 5. The probability distribution of the influence propagation state for fully connected regular graph

degree increases, the transition probabilities decrease in the
diagonal band, and increases outside of the diagonal band.
Since the density of the regular graph solely depends on the
degree value, this shows that the rise of network density may
help to balance the transition probabilities between different
states, and further reduce the variance of the total distribution.

Finally we summarize the general observations:

• There are fixed patterns of triangle-shape areas with
zero transition probabilities, and they are independent
of the network topology.

• From the 2D graphs, when the degree increases, there
are more points covered. This shows that increasing
the network density will enhance the influence prop-
agation.

• From the 3D graphs, when degree increases, the
transition probabilities decrease in the diagonal band,
and increases outside of the diagonal band. This shows
that the rise of network density may help to reduce
the variance of the probability distribution.

VI. IMPLICATIONS

The most significant business application on social influ-
ence propagation is social media marketing. With the limited
budget on advertising, the major goal is to utilize a few
influential nodes to trigger a large cascade of activations
through the online social media. The influence maximization
problem in online social networks has been widely studied
(e.g. [9], [23], [12]). However, most of these efforts focus on
increasing the expected final active set size while ignoring the
explicit probability distributions. We list several implications
to demonstrate the importance of exploring the probability
distributions of activations.

A. Risk measure and control

While excessively emphasizing the efficiency of social
media marketing in terms of low advertizing expense, rapid
information dissemination and well-executed marketing strat-
egy, most efforts ignore one significant aspect in the marketing
strategy valuation. That is, the risk measurement and control
mechanism. Explicit definition and measurement for the risk

in social media marketing should be given, so we can further
explore how to avoid them through quantitative and qualitative
ways. Generally the risk in social media marketing could be
regarded as the measurement uncertainty on performance.

Currently, utilizing social media in order to trigger big
influence cascade is still at the theoretical studies stage, with
rarely any real business applications. One reason is the lack
of an accurate evaluation on the performance of social media
marketing. Businesses cannot be convinced by equations and
theorems. They need measurable and quantifiable results on
the effectiveness of proposed strategies, such as Return On In-
vestment (ROI). Giving a reliable measurement and estimation
method on performance is the key to determining the business
value of a strategy. However, currently the uncertainty of the
performance is the main obstacle to social media marketing
deployment.

Since information diffusion is a stochastic process, all the
variables are probabilistic. The final result of a specific social
media marketing strategy is a random variable with a featured
probability distribution function. Although we could use the
expected value to give an approximation, the variance cannot
be ignored. This could be regarded as a risk in measuring the
final performance. Thus, knowing explicitly the total probabil-
ity distribution function will be helpful for us to do the risk
control. The analytical influence model proposed in Section III
gives a good estimation of the final probability distribution by
using simple matrix equation, thus providing an efficient tool
in controlling the risk of performance measurement.

B. The impact of topology on activation distributions

The distribution of activations would help us further de-
fine the efficient social network. Here the efficient social
network is regarded as the social network in which fluent
information diffusion is available, and influence propagation
is easily triggered. Since the efficiency of social network
mainly depends on the network topology and the diffusion
mechanism (activation probability), with our proposed MRCD
model, we could easily analyze the impact of topology on the
final activation distribution. In this paper, as shown in Section
V, we do a preliminary study on regular graphs. In the future,
we may extend the problem to more general graphs.
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C. Maximizing influence in heterogeneous social network

The traditional influence maximization problem solely fo-
cuses on maximizing the expected number of active nodes
based on a fixed number of active seeds at the beginning of
the activation process. The underlying assumption is that the
social network is a homogeneous network, in which nodes are
indistinguishable in activation costs and purchasing abilities.
If the factor of individual difference or group difference is
taken into consideration, the final active set size may not be
an accurate metric to evaluate the performance of social mar-
keting strategies. In other words, the distribution of activations
need to be investigated in detail. Moreover, in some cases,
we hope to influence some favorable nodes while avoiding
to activate unfavorable nodes. Sometimes the activation of
favorable nodes brings positive effect, while activation of
unfavorable nodes may cause negative impact. In order to
realize precision marketing, we also need to find out the
distribution of activations.

VII. CONLUSION AND FUTURE WORK

In this paper, we concentrate on modeling the discrete-
time diffusion process. We build an analytical model for the
influence propagation process based on discrete-time Markov
chains, and deduce a closed-form equation to express the
n-step transition probability matrix. In the future, we shall
find efficient ways to reduce the computational cost of the
matrix in our analytical model. For instance, we may conduct
state classification and aggregation to reduce the size of the
state space. Moreover, based on the analytical results, we
could get the final probability distribution of the influence
propagation state. This may help us further understand the
influence propagation process. For instance, based on the
distribution gained, we could measure and control the risk of
the social media strategy. In addition, we may study the effect
of social network topology on the propagation of influence.
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