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Yile Yang, Victor O.K. Li, Kuang Xu
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Pokfulam, Hong Kong, China
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Abstract—In this paper we analyze influence maximization for
noncooperative social networks under the Independent Cascade
Model. We propose a model of noncooperative nodes and prove
some interesting properties of this model. Based on this, we
further develop a game-theoretic model to characterize the
behavior of noncooperative nodes, and design a Vickrey-Clarke-
Groves-like scheme to incentivise cooperation. An advertiser can
resolve the negative effect of noncooperation with our proposed
solution. Evaluation on large social networks demonstrates the
importance of cooperation and the effectiveness of our proposed
incentive scheme in maximizing influence. We also discuss the
budget allocation between seed nodes activation and incentives
to non-seed nodes.

Keywords—influence maximization; cooperative; social net-
work

I. INTRODUCTION

Identifying pilot users is critical for social-network adver-

tisers to spread product adoption influence in the potential

customer base, and thus to maximize client revenues. The

famous influence maximization problem [1] is to select “op-

timal” initial seed nodes. Nevertheless, non-pilot/intermediate

user may also influence the spreading of product adoption.

Generally, pilot users are more likely to help forward the

product information to their social neighbors because they feel

“special” as early adopters and have a sense of duty for ac-

cepting certain incentives (e.g., free sample or discount) from

advertisers [2]. However, other users may not be willing to

pass on the influence (or are noncooperative) since the action

incurs cost (e.g., time, credibility, privacy, etc.). Therefore, we

believe it is important to investigate influence maximization in

noncooperative social networks.

In this paper, we study the influence maximization problem

in a social network in which nodes are noncooperative in

propagating the influence. Firstly we generalize the standard

Independent Cascade Model (ICM) to take node noncooper-

ation into consideration, and prove some nice properties of

the corresponding model. Then we design a Vickrey-Clarke-

Groves-like (VCG-like) incentive mechanism to stimulate user

cooperation. We use data from a large academic collaboration

network to evaluate our strategy. Results validate the impor-

tance of cooperation and the effectiveness of our proposed

incentive scheme in maximizing influence. We also discuss the

budget allocation between seed nodes activation and providing

incentives to non-seed nodes.

We proceed as follows. Section II describes related work,

Section III, model and property, Section IV, incentive scheme,

Section V, evaluation, and Section VI, conclusion.

II. RELATED WORK

Prior work on solving influence maximization problem

focuses on formulating influence propagation models [3] and

related algorithmic optimization problems [4]. [1] show the

NP-hardness of the corresponding optimization problem and

provide a greedy seed node selection heuristic that can achieve

near-optimal performance. [5] applies game theory to study the

phenomena of innovation spreading. However, these work do

not account for the heterogeneity of cooperativeness between

the seed and ordinary nodes during the influence propagation

process. In the field of computer communications, the prob-

lem of noncooperative routing and load balancing have been

studied (see, e.g. [6] and [7], respectively) as examples of the

impact of noncooperation on networked systems. In this paper

we address the noncooperation problem in the online social

advertising scenario. A natural approach to overcome node

noncooperation is to provide incentives. Designing incentive

mechanism has long been a hot topic in networking research.

For example, [8] studies incentive issues in participatory sens-

ing applications and design a Reverse Auction based Dynamic

Price (RADP) mechanism to stimulate user participation. The

VCG auction scheme has also been applied to design incentive

schemes. [9] implements a variation of the VCG scheme in a

mobile ad hoc network consisting of selfish nodes so that all

nodes will report the true information.

III. SYSTEM MODEL

We first formulate the influence maximization problem

and introduce the noncooperative ICM. Following our prior

work [10] which proved the submodularity of the noncoopera-

tive Linear Threshold Model (LTM), we further present several

useful properties of the noncooperative ICM.

A. Problem formulation

We consider an online social network (OSN) as a directed

graph G(V, E), where V is the set of nodes (OSN users) and

E ⊆ V ×V is the set of edges (social ties) in the network. We

also denote by Nu ⊆ V the set of neighbors of node u. Each

node in the system can either be active or inactive. As more

neighbors of an inactive node become active, it is more likely
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to switch to being active. A node cannot return to the inactive

state once it becomes active. All nodes are inactive at the

beginning of the influence propagation process and marketing

practitioners initially activate K nodes to seed the information

cascade in the social network. The process ends when no more

nodes can be activated. The influence maximization problem is

defined as follows: Determine the K-node seed set to achieve

the maximal expected active nodes at the end of the process.

B. Diffusion models

The Independent Cascade Model (ICM) [11] is a popular

diffusion model for the propagation effect. In ICM, a node i
activated at time t has a probability pi,j to successfully activate

its inactive neighbor j at time t+1. Node i does not have any

further opportunities to activate j again whether it succeeds

or not.

C. Noncooperative influence maximization under ICM

Traditional ICM implicitly assumes that nodes in the sys-

tem will not reserve their influence capacities during the

propagation process. To account for non-cooperativeness the

standard ICM is generalized such that Node j is activated by

Node i with probability αi,j · pi,j , where αi,j ∈ [0, 1] is the

cooperativeness level of Node i on its neighbor Node j. We

assume that node cooperativeness levels are static during the

entire diffusion process.

D. Properties of the noncooperative ICM

We now discuss some nice properties of the noncooperative

ICM. First we define a set function σ(·) to be submodular if

σ(S∪{v})−σ(S) ≥ σ(T ∪{v})−σ(T ) for all v ∈ V \T and

S ⊆ T , i.e., σ(·) satisfies a “diminishing returns” requirement:

the marginal gain from adding a node to a set T is at most

the same as the marginal gain from adding the same node to

a subset of T . In addition, we say that σ(·) is monotone if

σ(T ) ≥ σ(S) for all S ⊆ T , that is, σ(·) will at least stay the

same after adding elements to the original set. We also define

a greedy algorithm as follows: starting from an empty set, the

algorithm iteratively selects a seed which achieves the highest

incremental change of σ(·). [12] proves that a non-negative,

monotone submodular objective function can be approximated

to within a factor of (1−1/e) (around 63%, here e is the base

of the natural logarithm) using the greedy algorithm.

Theorem 1. [12] The greedy algorithm is a (1−1/e) approx-
imation for a non-negative, monotone submodular objective
function.

[1] further proves that the greedy algorithm can also

achieve (1− 1/e) approximation for the influence maximiza-

tion problem by proving that the final influence function σ(·),
which is the expected number of the final active nodes in the

network at the end of the diffusion process, is submodular.

Based on [1], we prove that the influence function under the

proposed noncooperative ICM also satisfies the requirement

of submodularity, so that a greedy algorithm can also achieve

the same (1− 1/e) performance guarantee.

Lemma 1. [1] The influence function σ(·) is submodular for
an arbitrary instance of the ICM.

Theorem 2. The influence function σ(·) of noncooperative
ICM is submodular.

Proof: Since the cooperativeness parameters αi,j are

static, the noncooperative ICM is equivalent to a standard ICM

in which p′i,j = αi,j · pi,j . Thus, according to Lemma 1, the

influence function of noncooperative ICM is also submodular.

Proving that the influence function under noncooperative

ICM also satisfies the requirement of submodularity not only

shows that the model has a performance guarantee, but also

implies that the incentive needed for the advertising campaign

should show similar property, since the amount of incentive

needed is closely related to the seed-node set size. It is also

intuitively satisfying that incentive as a function of seed-

node set size would show a “diminishing returns” property.

The detailed study of the relationship between the amount of

incentive and seed-node set size in noncooperative influence

maximization problem will be our future work.

Note that we have to use Monte-Carlo simulations to esti-

mate σ(·) because there is no explicit formula for the influence

function. This means that we can obtain a (1 − 1/e − ε)
approximation with small ε if we run a large number of

simulations.

IV. THE VCG-LIKE INCENTIVE SCHEME

We introduce an incentive mechanism to solve the node

noncooperation problem in this section. We first introduce a

game-theoretic framework to model node noncooperation in

influence propagation. Next, we describe the incentive method

and derive some nice properties of the mechanism, namely,

individual-rationality (IR) and incentive-compatible (IC). Then

we compare the proposed scheme to a fixed price incentive

mechanism to show some of its other advantages. Finally, we

discuss implementation details of the proposed mechanism.

A. A VCG-like incentive mechanism to solve the noncoopera-
tion problem

We define C(i) as the cost of individual node i during the

influence diffusion process. The utility of an individual node

without payment should be

Ui = −C(i)

= −D ·
∑

j neighbor of i

αi,j · pi,j (1)

In (1) we model C(i) as the sum of the influence probabil-

ities Node i imposes on all its neighbors mainly to reflect the

fact that the more a single node can impact its friends, the more

reward it will ask for from the initiator of the viral marketing

campaign, because “influence” here is considered a scarce

commodity. Also an influential node (e.g., a celebrity) in the

social network may have already expended a large amount of

resources (e.g., time, money, privacy, etc.) in order to cultivate

its impact. D ≥ 0 is the cost-of-influence parameter, which
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converts the amount of influence an individual node exerts

into cost. It is assumed to be constant over the whole network

and known to the operator in our model.

The action of Node i is denoted as αi =
(αi,1, αi,2, . . . , αi,|Ni|), in which 0 ≤ αi,j ≤ 1,

j = 1, 2, . . . , |Ni|. We also assume that all nodes determine

their actions (i.e., cooperativeness levels) at the beginning of

the game simultaneously.

Theorem 3. Without payment, the strategy α̂i which consti-
tutes the Nash equilibrium should be α̂i,j = 0, j neighbor of
i.

Proof: Suppose that Node i chooses an action αi different

from α̂i, with αi = (αi,1, αi,2, . . . , αi,|Ni|), s.t. ∃αi,j �= 0.

From the utility function (1) we can see that Node i can

obtain a better payoff by setting αi,j = 0. Thus αi is a strictly

dominated action and cannot be used in any Nash equilibrium.

So the strategy which constitutes the Nash equilibrium should

be in the form α̂i,j = 0, j neighbor of i.
Define VCG-like payment to Node i as

Mi = q · (σ(A)− σ−i(A)) + C(i)

= q · (σ(A)− σ−i(A)) +D ·
∑

j neighbor of i

αi,j · pi,j (2)

where σ(A) − σ−i(A) is the difference of the expected final

active node set size when Node i exists, and the expected size

if Node i does not exist. q ≥ 0 is the amount of reward the

initiator is willing to pay for a successful activation. In other

words, (2) means that besides compensating the individual

cost C(i), the initiator will additionally pay Node i for its

contribution during the influence diffusion stage.

Our proposed VCG-like incentive scheme is different from

the standard scheme in the following two aspects. First, in

traditional mechanism design theory, the goal of VCG auction

is to encourage each selfish agent in the game to disclose

its private information (“types”) to the auctioneer [13]. For

example in [14], under the VCG payment scheme, each node

may choose to report its true forwarding cost so that the least

cost path can be found correctly. But the objective of our

proposed incentive mechanism is to ensure that each selfish

node is cooperative in the sense that they will exert all its

influence capacity (i.e. αi,j = 1, j = 1, 2, . . . , |Ni| for an

arbitrary Node i). Second, in standard VCG, the cost the

operator has to compensate is the reported value claimed by

the selfish node, while in (2) the cost C(i) is the actual

cost Node i has exerted taking its cooperativeness level into

consideration.

Although there are some differences, the proposed VCG-

like payment (2) is similar to the standard VCG payment

formula in structure in that they both consist of two parts:

premium, and some kind of “cost” (reported value or true

value). More importantly, the proposed VCG-like scheme

shares some nice properties of the standard scheme, and such

properties will be discussed next.

First we introduce Lemma 2 which is useful in showing

that the VCG-like incentive scheme will encourage nodes in

the network to be cooperative. In order to prove the lemma,

an equivalent view of the ICM proposed in [1] needs to be

described first.

The probability pi,j in ICM represents the likelihood Node

i will activate Node j when Node i becomes active while at

the same time Node j is inactive. The outcome of this random

event can be viewed as the flipping of a coin of bias pi,j . In

fact we can flip the coin corresponding to each of the edges

at the beginning of the cascading process and the result will

only be revealed when Node i is active while its neighbor

Node j is inactive. This change is equivalent to the original

cascading process. After all the coins have been flipped in

advance, we declare edges in G for which the coin flip result

in heads as live and the remaining edges as blocked. In this

graph, it is clear that a node will be active at the end of the

cascading process if it is on a path consisting of only live edges

from the target set A. Further we can see that the number of

nodes that are active at the end of the cascading process will

be the number of the nodes that are on paths consisting of

only live edges from the target set A. This equivalent view

also shows that the final activated set size under ICM is an

order-independent outcome, that is, if a node has several newly

activated neighbors, the order of their activating attempts will

not affect the final result. For a detailed discussion on the

equivalent view, readers are referred to [1].

Lemma 2. The expression σ(A) − σ−i(A) is always non-
negative, i.e., σ(A)− σ−i(A) ≥ 0.

Proof: Based on the order-independent equivalent view

of the ICM process [1], we can divide the diffusion process

of one sample point X in a sample space S into two steps.

The first step is to simulate the diffusion process in the whole

graph, but assuming all the incoming edges of Node i to be

“blocked” and Node i itself to be inactive. The active set size

at the end of the first step is thus σX,−i(A). In the second

step, we keep the original states of incoming edges (blocked

or live) of i, and activate Node i if it is in the original seed

set A. The result at the end of the second step is thus σX(A).
If Node i is activated first at the beginning of step two (i.e.

i ∈ A), then it is obvious that σX(A) > σX,−i(A). Consider

the case in which i /∈ A, if there is a path from some node in

A to i consisting entirely of live edges, then Node i will be

active and in turn may possibly initiate a cascading process

(i.e. σX(A) > σX,−i(A)), if not, Node i will end up inactive

and the diffusion process ends (i.e. σX(A) = σX,−i(A)). In

general, σX(A) ≥ σX,−i(A). Since

σ(A) =
∑

X∈S
P [X]σX(A) (3)

and

σ−i(A) =
∑

X∈S
P [X]σX,−i(A) (4)

So σ(A)− σ−i(A) ≥ 0.

Lemma 3. [15] Let p′ ∈ [0, 1]|E| be the true influence
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probabilities on each edge. Given a target set A, then

σ(A) =
n∑

i=1

ui(p
′, A) + |A| (5)

where ui(p
′, A) is the expected number of neighbors activated

by Node i, given the target set.

Theorem 4. The strategy α̂i which constitutes the Nash
equilibrium should be α̂i,j = 1, j neighbors of i, under the
VCG-like payment scheme.

Proof: Consider an arbitrary Node i, and fix the cooper-

ativeness levels of the other nodes. If Node i is cooperative

(i.e. αi,j = 1, j neighbors of i), with the VCG-like payment,

the utility function of Node i now becomes

Ui = Mi − C(i)

= q · (σ(A)− σ−i(A))

+D ·
∑

j neighbor of i

pi,j −D ·
∑

j neighbor of i

pi,j

= q · (σ(A)− σ−i(A))

(6)

In Lemma 2 we have proved that σ(A)−σ−i(A) ≥ 0. Since

q ≥ 0, so Ui ≥ 0.

Let α′i = (α′i,1, α
′
i,2, . . . , α

′
i,|Ni|), s.t. ∃α′i,j < 1 be the

cooperativeness level of a noncooperative Node i, then the

utility becomes

U ′i = M ′
i − C ′(i)

= q · (σ′(A)− σ′−i(A)) +D ·
∑

j neighbor of i

α′i,j · pi,j

−D ·
∑

j neighbor of i

α′i,j · pi,j

= q · (σ′(A)− σ′−i(A))

= q · (σ′(A)− σ−i(A))(Since the cooperativeness levels of

other nodes are fixed)

(7)

Actually the true influence probability vector p′ in

Lemma 3 can be represented as (p′i, p
′
−i), where p′i =

(p′i,1, p
′
i,2, . . . , p

′
i,|Ni|) is the true influence probability Node i

has on its neighbors while p′−i is the true influence probability

vector on all other edges in the graph. According to Lemma 3,

the final expected active node set size contains the expected

number of neighbors activated by each node, given target set

A. For each i, Node i can influence more neighbors when it

is cooperative, i.e. ui((pi, p
′
−i), A) ≥ ui((p

′
i, p

′
−i), A). Thus

σ(A) ≥ σ′(A) and Ui ≥ U ′i . The cooperative strategy always

maximizes the node utility.

Theorem 4 implies that the VCG-like incentive scheme sat-

isfies two important properties. The first property is individual-

rationality (IR), that is, for each player, it is always better (i.e.

achieving at least no less utility) to join the game than not

participating. Combining Lemma 2 and Theorem 4 we can

see that the individual utility of Node i is always nonnegative

(0 is the utility when not participating in the game) under the

proposed incentive scheme, so our scheme is IR. The other

property is incentive-compatible (IC) — each player prefers

to act in accordance with the objective of the mechanism.

Theorem 4 has proved that the dominant strategy for a single

node is to be cooperative to exert all its influence capacity

under the VCG-like scheme, which is exactly the design

objective of the proposed scheme, so the scheme is also IC.

IR and IC are also two nice properties of the standard VCG

auction [16].

B. Advantages of the VCG-like scheme over the fixed price
incentive scheme

Another possible, also intuitive incentive scheme is as

follows:

Mi = ε+ C(i)

= ε+D ·
∑

j neighbor of i

αi,j · pi,j (8)

where ε can be any arbitrary positive number. Under this

scheme, besides compensating for the individual cost C(i),
the operator will also pay a fixed amount of incentive ε.

It can be easily shown that under the fixed price incentive

scheme, being cooperative (i.e. αi,j = 1, j = 1, 2, . . . , |Ni|
for an arbitrary Node i) is the weakly dominant strategy for a

selfish node. In other words, the utility of an individual node

is the same (i.e. ε) whether it is cooperative or not. How-

ever, Theorem 4 has already shown that under the VCG-like

scheme, being cooperative is the strongly dominant strategy.

That is to say, the individual utility is maximized if a selfish

node chooses to exert all it influence capacity. From this aspect

the VCG-like scheme is superior to the fixed price scheme.

Another drawback of the fixed price scheme is that every

node can get the same premium ε regardless of its abil-

ity to impact others. That means the fixed price scheme

is not “fair” in the sense that the specific contribution of

an individual node during the influence diffusion process is

ignored. Some “influential” nodes in the social network may

thus find this property discouraging. In contrast, in the VCG-

like scheme (2), σ(A) − σ−i(A), which is the difference of

the final performance when Node i does not exist, exactly

quantifies the contribution of Node i during the diffusion

process. To conclude, being more “fair” is another advantage

of the proposed VCG-like incentive scheme.

C. Some technical discussions on the VCG-like incentive
scheme

1) How do we get the cooperativeness levels of nodes?
Suppose the social network marketer has already determined

the influence probability on each edge in the network through

various methods (e.g. machine learning techniques [17]). Since

the marketer has to pay the real cost (i.e. C(i) in (2)), it is vital

for the proposed incentive scheme to get the cooperativeness

levels (i.e. αi,j) of nodes correctly. In this model we assume

that both nodes on the edge (u, v) have various information

about the properties of the edge. There is a similar assumption
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in [15]. The difference is that in our proposed incentive

scheme, it is obvious that the influencer (i.e. node u in edge

(u, v)) has motivation to lie about its cooperativeness level in

order to get a higher payment. So in the VCG-like incentive

scheme, the influencee (i.e. node v in edge (u, v)) will report

the influence probability p′u,v the influencer node u has exerted

on it to the marketer, thus

αu,v =
p′u,v
pu,v

(9)

2) How do we calculate the premium given to Node i (i.e.
σ(A)− σ−i(A))?

Another possible concern on the VCG-like incentive scheme

is the calculation of σ(A)−σ−i(A) via simulation. Since both

terms of the premium require the expected final active node set

size, the efficiency would be greatly improved if we can reduce

the Monte-Carlo simulation times needed while preserving the

accuracy of the result.

To solve this problem, from the proof of Lemma 2, we see

that the expression σ(A) − σ−i(A) at one sample point X
(i.e. σX(A) − σX,−i(A)) is exactly the marginal increase in

the active set size at the end of the present step compared to

the previous step. So for each simulation run we can store

the value of σX(A) − σX,−i(A) and the average number

over all simulation runs is the result desired. By using this

method we can avoid running two simulations separately and

the efficiency is hence improved.

V. EVALUATION

In this section, we study the effect of node noncooperation

on the system performance in terms of the final active set size

under ICM on real large academic collaboration networks.

A. Dataset and influence model

The dataset utilized for evaluation is Arxiv’s co-authorship

network under the General Relativity and Quantum Cosmol-

ogy category [18]. The graph constructed contains 4158 nodes

and 26850 edges. Each node is an author, and an edge between

two authors i and j means that they have co-authored a

paper. We consider the co-authoring relationships between two

authors only once in case they have co-authored more than

one paper. For ICM, we set the activation probability p = 5%
and p = 20%, respectively. We adopt the two-tiered, static

node cooperativeness here. That is, we set αi,j = 1 if Node i
belongs to the seed-node set and αi,j = α < 1, otherwise.

B. Centrality measure utilized under noncooperative ICM

Since seed node selection will have no effect on the

performance of the proposed incentive scheme, the selection

strategy can be the neighborhood-removal heuristic proposed

in [19], the greedy algorithm or the centrality-based (degree or

betweenness) schemes [1]. For ease of simulation we choose

the simple degree-based centrality metric, which measures the

influence of a node in terms of its out degree.
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Fig. 1. Performance under ICM (p = 5%) for different α and target set size

C. Result

Here we study the effect of node cooperativeness level

on the performance of the degree-based seed node selection

strategy. The results are shown in Figure 1 and Figure 2 under

ICM with activation probability p = 5% and p = 20%,

respectively. The results are obtained as averages of 1000

simulation runs. The x-axis represents the cooperativeness

level α and the y-axis represents the final active set size.

From the figures we can see that the performance of the

seed node selection scheme improves as α increases, and

the performance of algorithms with a larger target set size

is always superior. An intuitive implication for online social

advertising practitioners is that in order to achieve an effective

online viral marketing campaign, enough incentive should be

offered to recruit enough initial product adopters to seed the

influence cascade. In addition, incentives should be offered to

other nodes in the system so that all nodes in the network

would be cooperative to propagate the influence. We have

proved in Theorem 4 that the Nash equilibrium for nodes

under the proposed VCG-like incentive scheme is α = 1, these

simulation results also verify that the system performance

(i.e. active set size) is optimal under the proposed incentive

mechanism.

D. The budget allocation problem

Since the VCG-like incentive scheme requires a budget from

the viral marketer, an interesting question arises: Since one

only has limited budget, should one put all of the budget in

selecting as many seed nodes as possible, or in making sure

that all nodes in the network will be cooperative? There are

some selection criteria suggested by the simulation results.

The final active set size as a function of the initial target

set size under ICM is generally concave as shown in [19]. It

is a natural result due to the submodularity of the influence

function σ(·) (“diminishing return” property). We can also get

the same conclusion from Figure 1 and Figure 2 because the
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differences between the two simulation results under the same

cooperativeness level α are getting smaller as the target set size

increases. This phenomenon is most obvious for ICM when

p = 20%, in which case the performance of the influence

maximization process under target set sizes of 20 and 30 are

almost identical. It means that it may not be cost-effective for

a viral marketer to use the budget entirely on the initial seed

nodes. Figure 1 and Figure 2 also show that the final active

set size as a function of the cooperativeness level α is convex,

which means that the marginal increase in the performance of

the influence maximization process is higher when nodes in

the social network are more cooperative. Therefore, properly

allocating the budget between initial seed node activation and

incentives for non-seed nodes is an important problem, and

we shall study this problem in our further research.

VI. CONCLUSION

In this paper, we investigate influence maximization in

noncooperative social networks. We generalize ICM to take

node noncooperation into consideration and provide a provable

approximation guarantees for the noncooperative influence

maximization problem. We also desgin a VCG-like incen-

tive mechanism to solve the node noncooperation problem,

showing it is IR and IC as well as having other nice prop-

erties. The evaluation based on noncooperative ICM shows

the importance of cooperation and incentive in maximizing

influence. In this study, we assume a two-tiered, static node

cooperativeness in the system, i.e., seed nodes are cooperative

to propagate the influence while ordinary nodes are only partly

willing to do so. In the future, we plan to study the impact of

noncooperation in other influence diffusion models, especially

for those not satisfying the submodularity requirement. We

also plan to study the proper allocation of the budget between

initial seed node activation and incentives for non-seed nodes.
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