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Abstract—This paper presents a new bandwidth adaptive non-
local kernel regression (BA-NLKR) algorithm for image and 
video restoration.  NLKR is a recent approach for improving the 
performance of conventional steering kernel regression (SKR) 
and local polynomial regression (LPR) in image/video 
processing.  Its bandwidth, which controls the amount of 
smoothing, however is chosen empirically. The proposed 
algorithm incorporates the intersecting confidence intervals (ICI) 
bandwidth selection method into the framework of NLKR to 
facilitate automatic bandwidth selection so as to achieve better 
performance. A parallel implementation of the proposed 
algorithm is also introduced to reduce significantly its 
computation time.  The effectiveness of the proposed algorithm 
is illustrated by experimental results on both single image and 
videos super resolution and denoising.    

I. INTRODUCTION 

Image and video restoration is an important problem in 
image and video signal processing. For instance, with better 
display devices with higher resolutions (HD, etc.), there is a 
need to convert lower resolution videos to higher spatial 
resolution and frame rates. Moreover, the needs for supporting 
high quality close-up or scaling of important image and video 
objects call for better super-resolution techniques.  Due to the 
various degradations of the original image or video, such 
operations may need to take these degradations like sensor 
noise and deblurring into account.   

Local kernel regression using say polynomial modeling 
has recently emerged as a flexible and effective framework for 
restoration tasks such as image denoising, super-resolution 
and inpainting [1-9]. For instance, a Steering Kernel 
Regression (SKR) algorithm [1, 2] for image super-resolution 
(SR) has been proposed.  Local polynomial regression (LPR) 
or modeling has also been applied to image denoising and 
inpainting in [3-8].  Both LPR and SKR explore the local 
smoothness of the image/videos and represent the image/video 
locally as a polynomial.  By estimating the coefficients of such 
local polynomials, one may interpolate image locally using 
these local representation and remove high frequency noise.  
To further exploit the structural information in natural images 
which may result from repeated structures in the same image, 
Non-Local Kernel Regression (NLKR) algorithm [9] has been 
proposed recently.  It is also based on the local polynomial 

representation.  However, it utilizes non-local self-similarity in 
the image to collect similar but distant observations to 
estimate the local polynomial models. Therefore, it can 
considerably improve the performance of SKR in presence of 
noise. Due to the nature of block matching used to find similar 
blocks, motion estimation is not required for NLKR and it can 
work for image and video data. Moreover, NLKR also offers 
promising performance for single image SR due to the 
introduction of non-local similarity. 

An important problem in SKR, LPR and related techniques 
is the selection of an appropriate bandwidth for smoothing.  
Too large a bandwidth will result in over smoothing while too 
small a bandwidth may not provide sufficient attenuation of 
image noise. Both the SKR and NLKR rely on user supplied 
empirical bandwidth and hence it is highly desirable to 
develop automatic bandwidth selection for these methods. In 
this paper, we propose a Bandwidth Adaptive Non-Local 
Kernel Regression (BA-NLKR) algorithm for image and 
video restoration using the intersecting confidence intervals 
(ICI) bandwidth selection method. To further reduce the 
computational time of both the original NLKR and the ICI 
bandwidth selection rule, the whole algorithm has been 
parallelized on Graphic Processing Units (GPUs).  Simulation 
results show that the proposed BA-NLKR has a higher PSNR 
than the conventional NLKR algorithm and its GPU 
implementation also offers significant speedup over 
conventional CPU implementation.   

The rest of the paper is organized as follows. We first 
briefly review the local and nonlocal kernel regressions in 
Section II. We then extend the ICI rule for automatic 
bandwidth selection for NLKR.  Its GPU implementation will 
be briefly outlined in Section IV.  Practical applications and 
experimental results on super-resolution (SR) and denoising 
will be given in Section V. Finally, we conclude the paper in 
Section VI. 

II. LOCAL AND NON-LOCAL KERNEL REGRESSION 

A. Locally Adaptive Kernel Regression 

In LPR, the image or video at location x is modeled locally 
as a polynomial. Let jy , j=1,...,p, be the observation at 

location jx  within a small neighborhood )( iN x  of the 
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location ix  of interest, i.e. )( ij N xx  . Ideally, the 

neighborhood )( iN x  should be chosen so that the 
image/video can be approximated well by the given 
polynomial.  It was shown in [1] that the local polynomial 
coefficients can be obtained by weighted least squares (WLS) 
fit of the given polynomial to the observations, which gives: 
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which puts more emphasis to observations near ix , )(uK   is 

the kernel function, h  is the bandwidth of the kernel which 
control the size of the neighborhood, and }{vech  is the half-

vectorization operator. The first element of ib̂  is the smoothed 

pixel value of at ix  which is given by 
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where T
1 ]0,,0,1[ e . Note that ix  can be any location in 

the image and hence the image can be interpolated to a higher 
resolution.  Since the local structure is usually anisotropic, the 
following locally adaptive kernel has been proposed in [1, 2], 
which can better adapt to the local gradient of the image: 
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where nC  is the inverse of the covariance matrix estimated 

from the gradients in )( nN x  and )( in N xx  . 

B. Non-Local Kernel Regression 

In NLKR, given the neighborhood )( iN x , the image is 
searched for similar structures for including in the WLS fit.  In 
other words, self-similarity is explored to further reduce the 
additive noise. In particular, a non-local term of these similar 
but non-local neighborhoods )( iP x  is added to (1) [8], which 
gives rise to the following minimization problem:  
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where )( iP x  is the collection of patches/neighborhoods with 

similar structure found through block matching, jy  is the 

observation of the jth similar patch, 
jKW  is the corresponded 

weight matrix and ij  is the corresponding weight, which is 

usually determined from the similarity between current patch 
)( iN x  and the jth similar patch.  Similar to the local case in 

(3), the estimated pixel value is given by 









)(

1

)(

T
1 ])([)(ˆ

i
j

i
j

Pj
jKij

T
ii

Pj
Kij

T
iiz

xx

yWAAWAex  . (6)

III. NON-LOCAL KERNEL REGRESSION WITH BANDWIDTH 

SELECTION 

Although the locally adaptive kernel helps to capture of 
the local structures of the image, one still needs to select the 
appropriate bandwidth h, which is a key parameter in LPR. 
Usually such parameter is selected empirically [1, 2]. This 
problem has also been studied extensively in the statistics 
community and a number of bandwidth selection algorithms 
are available [3, 6, 10, 11]. Motivated by the usefulness of 
NLKR, we now study the incorporation of automatic 
bandwidth selection in the NLKR framework. In particular, 
we shall study ICI bandwidth selection method due to its 
effectiveness and relatively low complexity. 

The ICI rule was first proposed as an empirical bandwidth 
selection method for signal filtering in [11]. It has been 
applied to spatially adaptive nonparametric regression [8], 
local polynomial regression and modeling [3-7]. The 
algorithm starts with a set of prescribed possible bandwidth 
parameters in the ascending order, 

}{ 21 Lhhh  H , (7)

where L is the number of bandwidth candidates. For a certain 
bandwidth ih , the confidence intervals ],[ kkk ULD   are 

obtained from the estimated )(ˆ
ki hb  as 
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where )(Var  denotes the variance, and   is a threshold 
parameter for adjusting the width of the confidence interval. 
For instance,  58.2  implies a 99% confidence interval.  A 
suboptimal bandwidth opth  is determined by checking the 

intersection of the confidence intervals with the bandwidths 
H  in the ascending order. Therefore, the bandwidth of the 
last intersected interval is selected as the suboptimal one. 

The bandwidth h controls the scale of the kernel as shown 
in (4). We aim to select optimal bandwidths at different 
locations according to the local structures. Hence not only the 
shape but also the scale of the kernel will be spatially adaptive 
across the whole image. The bandwidth of each pixel will be 
individually selected from the bandwidth set H  using the ICI 

rule. )(ˆ
ki hb  in (8) and (9) can be estimated by (5) with 

corresponding weight matrix 
kj hK |W . However, ))(ˆ( ki hVar b  

of NLKR has a different form from the one of local kernel 
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regression, which is found to be 
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For simplicity, we assume that the observations 
)(, ij Pj xy   are independent as they are coming from distant 

patches, i.e. the deterministic structure is similar but the 
additive noises are independent.  Hence 

jyS  , i.e. the variance 

of the weighted summation of jy , can be simplified to 
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Since 
kj hK |W  is a diagonal matrix, (12) can then be 

rewritten as the summation of several diagonal matrices, 
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denotes the pixel coordinates in the neighborhood of jx , i.e. 

)(, jjn N xx  , and )(2
jy  is the noise variance of the 

observation jy .  

Using (10)-(13), the confidence intervals D  for the 
bandwidth set H  can be determined from (8) and (9). 
Following the standard procedure of ICI, the suboptimal 
bandwidth can be determined for each pixel. Fig. 1(a) shows 
an example of the spatially varying bandwidth across the 
whole images. The pixel estimate of the proposed bandwidth 
adaptive NLKR (BA-NLKR) is therefore derived from (6) as 
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Fig. 1(b)-(d) illustrates the advantage of the proposed BA-
NLKR method by examining typical bandwidth selected in 
Fig. 1(a). It can be seen that small bandwidths are selected at 
the region of textures and edges, while larger ones are used at 
flat area. Fig. 1(c) and 1(d) shows that local structures are 
better represented with the help of bandwidth selection. 

IV. GPU IMPLEMENTATION 

Though LPR is a flexible framework for denoising and 
super-resolution, its computational complexity is still high as 
each pixel has to be estimated individually. The additional 
non-local similarity searching and bandwidth selection make 
the algorithm more complicated. Hence, it is highly desirable 
to accelerate the process by the means of parallel computing. 

To this end, we have implemented the proposed algorithm 
on the GPUs using OpenCL. Three key steps, including block 
matching, adaptive kernel construction and regression with 
bandwidth selection, are implemented on GPUs respectively. 
Since the first two steps are performed at each pixel 
independently, they can be efficiently parallelized on GPUs. 
However, the final step needs some modifications because the 
computation at each pixel is too complicated to be run entirely 
in the computing units of the GPUs. Hence, this step is 
divided into three subtasks. Equations (13) and (14) are first 
parallelly executed on GPU with different bandwidths. Then 
the ICI rule is applied on the CPU to select the suitable 
bandwidths. Finally (14) is estimated at each pixel on GPU 
again using the selected bandwidths. Note that images with 
high resolution may need to be divided into strips to avoid 
hitting the time limit of GPU programs if it is executed on a 
GPU with a display attached. 

Table I shows the time required for processing a single 
image with the resolution of 512512 , while ten nearest 
blocks and five bandwidth candidates are considered 
respectively. The CPU implementation is running under the 
Matlab environment, while the GPU implementation is 
realized using C and OpenCL. The experiments were carried 
in a PC with an Intel i920 CPU and an AMD Radeon HD 
6950 GPU. It can be seen that the processing time is 
dramatically reduced to a reasonable level. 

V. APPLIACTIONS TO IMAGE AND VIDEO RESTORATION 

The BA-NLKR algorithm proposed above provides a 
general framework for various image and video restoration 
applications. In this section, we specifically apply (14) to 
image/video SR and denoising tasks. 

A. Image and Video Super-Resolution 

Image SR aims to estimate a high-resolution image (HR) 
from single or several low-resolution images (LR). The LR 
frames are usually modeled as images blurred and down-
sampled from a HR image, i.e. 

,...2,1   ,  lNDZNHIDY llll ., (15)

where I  denotes a HR image, lY  denotes the l-th LR 

observations, lD  and H  are the corresponding down-

sampling and blurring operators respectively, iN  is the noise 

(a)                                         (b)                         (c)              (d)      

Figure 1. The kernels with spatially adaptive bandwidth. (a) is an example 
of  the spatially adaptive bandwidth.  (b) is the original color image, (c) is the 
adaptive kernels at the marked blocks without bandwidth selection, (d) is the 

corresponded kernels with bandwidth selected in (a). 

TABEL I.    EXECUTION TIME (SECONDS) COMPARISON 

Platform
Block 

Matching
Kernel 

Construction 
Regression with 

Bandwidth Selection
Total 

CPU 796.27 16.19 5287.68 6100.14

GPU 1.75 2.07 3.34 7.16 
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term, Z is the blurred HR image which is the target of the 
estimation. Combining (5) and (15), we can get the 
formulation for SR, 
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where T
jD  denotes the up-sampling operator with zero 

padding. Therefore, (14) can be reformulated as 
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As we can see, the HR image is recovered by multiple LR 
patches at different locations with shape and bandwidth 
varying kernels. The estimated image is then deblurred by a 
Total Variation-based algorithm [12]. 

We evaluate the proposed algorithm in both image and 
video SR tasks. Fig. 2 shows an example of single frame SR 
compared with Bicubic Interpolation (BI) and NLKR. PSNR 
comparison for video SR is given in Table II, where the input 
LR images are zoomed by a factor of 3 and Gaussian noise 
with a standard deviation of 2 is added. More comparison 
between the original NLKR algorithm and other state-of-the-
art SR algorithms can be found in [9]. Note that the bandwidth 
is chosen empirically in the former while the bandwidth is 
chosen automatically in the proposed method. It can be seen 
that the proposed algorithm has a consistently higher PSNR 
than NLKR, thanks to the automatic bandwidth selection. 

 

B. Image and Video Denoising 

The proposed BA-NLKR algorithm is naturally designed 
for denoising applications. Hence, (14) can be directly applied 
to estimate the noise free images and videos. Fig. 3 shows an 
example of the image denoising results. The noisy images are 
generated by adding white Gaussian noise with a standard 
deviation of 20 to the clean ones. The bandwidth of NLKR is 
manually set to 1 as suggested in [9], while the one of the 
proposed BA-NLKR is selected automatically. More PSNR 
comparison can be found in Table II. 

VI. CONCLUSIONS 

A new BA-NLKR algorithm for image and video 
restoration is presented. It incorporates the ICI bandwidth 
selection method into the framework of NLKR to facilitate 
automatic bandwidth selection so as to achieve better 

performance. Simulation results show that the proposed 
algorithm has a higher PSNR than the conventional NLKR 
method. The proposed algorithm is parallelized in GPU, which 
provides significant speedup over the conventional CPU 
implementation. The effectiveness of the proposed algorithm 
is illustrated by experimental results on both image/video 
super-resolution and denoising. 
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Figure 2. Single Frame Super-resolution results (x3, PSNR(dB) in brackets). 
From left to right: BI (30.9566), NLKR (32.0841), and BA-NLKR (32.0896).

 

Figure 3. Denoising results (PSNR (dB) in brackets). From left to right: 
Noisy image, NLKR (31.5298), and BA-NLKR (31.9124). 

TABLE. II   PSNR (DB) RESULTS 

Algorithms
Video SR Denoising 

Foreman Miss America Peppers Cameraman

NLKR 33.8274 35.8325 29.9053 28.6629 

BA-NLKR 33.8311 35.8372 30.6681 29.5160 

 

1391


