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Abstract—In cloud systems, it is non-trivial to optimize
task’s execution performance under user’s affordable budget,
especially with possible workload prediction errors. Based on
an optimal algorithm that can minimize cloud task’s execution
length with predicted workload and budget, we theoretically
derive the upper bound of the task execution length by taking
into account the possible workload prediction errors. With
such a state-of-the-art bound, the worst-case performance of
a task execution with a certain workload prediction errors is
predictable. On the other hand, we build a close-to-practice
cloud prototype over a real cluster environment deployed with
56 virtual machines, and evaluate our solution with differ-
ent resource contention degrees. Experiments show that task
execution lengths under our solution with estimates of worst-
case performance are close to their theoretical ideal values, in
both non-competitive situation with adequate resources and the
competitive situation with a certain limited available resources.
We also observe a fair treatment on the resource allocation
among all tasks.

I. INTRODUCTION

Cloud computing has emerged as a compelling paradigm
for the deployment of ease-of-use virtual environment on
the Internet. One of typical features of Clouds is its pool of
instantly accessible virtualized resources that can be dynam-
ically customized, while optimizing the resource utilization.

Traditional task scheduling adopted in distributed systems
like Grids assumes discrete resource usage model [1], [2],
[3]. The processing ability assigned to a task cannot be
customized by users elastically. Such an indivisible resource
consumption model with discrete computation units results
in a non-trivial problem like binary Integer programming
problem. For example, given a CPU-intensive task that was
assigned with a payment budget and a particular per-time-
unit price for resource consumption, how many cores would
lead to the minimization of the task execution length (or
execution time) is an Integer Programming problem. That
is, much of CPU rate may not be fully utilized in this case.

With virtual machine (VM) resource isolation technol-
ogy [4], [5], [6], [7], [8], [9], the computational resources
could be partitioned and reassembled to meet users’ specific
demands, significantly improving resource utilization. The
key contribution of this paper is improving the algorithm
to suit practical issues like the worst-case performance with
possible workload prediction errors.

• In our work, the divisible-resource allocation problem
is modeled as a convex optimization problem [10], such

that we can find the optimal solution quickly from the
perspective of resource allocation. We also take into
account in our model the possible execution costs like
the extra time in loading VM images. Based on the
problem formulation, we can rigorously prove that our
proposed algorithm is an optimal solution to minimize
cloud task execution length with respect to resource
allocation.

• We further study the upper bound of task execution
length in the situation that task workloads are predicted
with a margin of errors, which is more in the line
with reality. Although the existing workload predic-
tion method like multi-variate polynomial regression
[11] have been very effective, it still suffers inevitable
margin of prediction errors like 10%. The inevitable
workload prediction errors may significantly affect task
execution in reality. In this paper, we theoretically
derive the performance bound of task length for the
above proposed optimal algorithm in terms of a margin
of prediction errors, as compared to the theoretically
ideal task length with hypothetically precise workload
information. This is fairly valuable/useful in that users
are able to predict the worst performance in advance
and one can tune the resource allocation to meet higher
Quality of Service (QoS) based on our derived bound
of task execution time.

• We implement and evaluate the algorithm over a real
cluster environment deployed with 56 real VM in-
stances. By leveraging Xen’s credit scheduler [12] and
Linux network traffic controller (TC) [13], we evaluate
our algorithm based on divisible CPU rates, on-demand
network and disk bandwidth. The cloud services in our
experiment corresponds to different types of executions
like computation incentive or I/O incentive applications.
Experiments confirm that our solution by considering
the workload prediction errors is able to effectively
restrict task’s execution length even in a competitive
situation with a certain limited resource capacities.

The remainder of the paper is organized as follows.
In Section II, we formulate the research as a convex-
optimization problem that aims to minimize task execution
length with divisible resource allocation subject to some
constraints like user payment budgets. In Section III, we



describe the optimal solution and rigourously prove its
optimality in minimizing task execution length. In Section
IV, we derive the upper bound of task execution length for
the situation with erroneous workload prediction, as against
to the ideal results with the hypothetically precise prediction.
We present the experimental results generated over a real
cluster environment in Section V. We discuss the related
works in Section VI and conclude with a vision of the future
work in Section VII.

II. PROBLEM FORMULATION

Our architecture follows a popular data center model (or
server/client model) to process user requests. The cloud
server is responsible for collecting dynamic availability
states of managed nodes and customizing virtual machines
for users based on their elastic demands. The procedure in
executing a task can be split into three steps: (1) Select
a physical node upon task arrival. (2) Each task will be
executed in an individual VM instance, whose resources are
customized on demand by virtual machine monitor (VMM),
a.k.a., hypervisor. (3) Send computational results to users.

Different task executions are likely of largely different
patterns due to the fact that they need multiple types of
resources (or execution dimensions). For example, one task
execution may be split into multiple steps, each calling for a
different CPU rate or I/O bandwidth on demand (e.g., CPU,
IO, CPU, · · ·).

We assume there are n resource nodes (denoted by pi,
where 1≤i≤n). For any particular task requiring R execu-
tion dimensions (e.g., R execution steps each with different
types of resources), we denote the complete set of execution
dimensions by Π and denote pi’s capacity vector on the
multiple dimensions by c(pi)=(c1(pi), c2(pi), · · ·, cR(pi))T
(In the paper, we use bold-face to indicate a vector).

A task assigned to node pi is denoted by tij ,
where 1≤j≤mi, and mi refers to the number of
tasks assigned to pi. The workload vector of the task
tij to process in multiple dimensions is denoted by
l(tij)=(l1(tij),l2(tij),· · ·, lR(tij))T . Hence, tij needs a re-
source vector to complete its workloads, and we denote
such a vector as r(tij)=(r1(tij),r2(tij),· · ·,rR(tij))T , where
rk(tij) (k=1,2,· · ·,R) refers to the resource fraction split
from tij’s assigned node pi. Node pi’s resource availability
vector on multiple dimensions (denoted a(pi)) is calculated
by c(pi)−

∑
tij running on pi

r(tij). The resource to be allo-
cated to a task t′ must conform to Inequality (4), where ≼
means componentwise inequality between two vectors.

In our model, tij’s execution length (or execution time)
is defined as l(tij)T ·r(tij)−1+△ (Equation (2)), where
r(tij)−1=(r−1

1 (tij),r−1
2 (tij),· · ·,r−1

R (tij))T and △ implies
a constant extra cost (such as VM-loading time). Such
a definition of execution time specifies a broad set of
applications, each of which needs a series of phases to
process (or mixed non-overlapped executions on various

types of resources). For example, computing the matrix
formula (Am×n·An×m)kx=dm×1 could be split into 5
phases - loading matrix from disk, computing the prod-
uct Cm×m=Am×n·An×m, computing matrix-power Ck

m×m,
solving Cm×mx=dm×1, and storing x onto disk.

The R types of resources (or R execution dimensions)
are associated with a price vector denoted as b(pi)=(b1(pi),
b2(pi), · · · , bR(pi))T . Let bk(pi) (1≤k≤R) denote the per-
time-unit price the consumers need to pay for the resource
consumption of pi at kth execution dimension. Then, tij’s
total payment ρ(tij ,∆t) can be calculated via Equation (1),
where ∆t refers to tij’s execution period on pi.

ρ(tij ,∆t) = ∆t · b(pi)T · r(tij) (1)

We argue that it is non-trivial to precisely predict task
execution length and quantify the resource consumption at
each dimension, thus it is inviable for users to forecast
their total payment in advance. Hence, we adopt the pay-
by-reserve policy, in which the users could get the reserved
resources for the task execution. The users feel happy as
long as the per-time-unit rate is always within an acceptable
budget (denoted B(tij)), i.e., Formula (3). Such a payment
policy is widely adopted by Cloud systems like OpenPEX
[14], and also recommended by Amazon EC2 for cost
modeling research [15].

In the following text, we might omit the symbols tij and
pi if thus would not cause ambiguity (especially when a task
is already determined). For instance, lk(tij), r(tij), bk(pi),
a(pi) and B(tij) may be substituted by lk, r, bk, a, and B
respectively.

Finally, the resource allocation problem is modeled as a
convex optimization problem: for a submitted task t′ with its
workload vector l(t′), how to minimize its execution length
(i.e., Equation (2)) subject to constraints (3) and (4), where
pe is selected from among all managed hosts and r(t′, pe)
means executing t′ on pe).

f(r(t′, pe))=lT (t′) · r−1(t′) +△=
∑R

i=1

li
ri

+△ (2)

b(pe)T · r(t′) ≤ B(t′), where pe is execution node (3)

r(t′) ≼ a(pe) (4)

III. OPTIMAL DIVISIBLE-RESOURCE ALLOCATION
(ODRA)

We outline the pseudo-code of the skeleton algorithm
in Algorithm 1, which describes how to select nodes for
the specific task t′. The input list contains two parts,
resource information and task information. The former
includes the candidate node set S={p1,p2,· · ·,pn}, price
vector set P={b1,b2,· · ·,bn} and availability vector set
A={a1,a2,· · ·,an}; the latter includes t′’s budget B(t′) and
its predicted workload vector l(t′).



Algorithm 1 SKELETON OF ODRA ALGORITHM

Input: S, P , A, B(t′), l(t′);
Output: execution node pe, r∗(t′)
1: pe=p1;
2: for (each node pi in S) do
3: r∗(t′,pi) = LOAA(B(t′),l(t′),ai,pi); /*Calculate the optimal re-

source allocation for task t′ running on node pi.*/
4: Estimate f(pi) based on r∗(t′, pi) /*Presume t′’s time*/
5: if (f(pi)<f(pe)) then
6: pe=pi;
7: r∗(t′)=r∗(t′, pi);
8: end if
9: end for

According to Algorithm 1, Line 3 aims to perform a Local
Optimal divisible-resource Allocation Algorithm (LOAA)
on each physical node with low time complexity (to be
described in Algorithm 2). This is the most critical step in
that the rest part (Line 4∼7) just selects the node which can
achieve the shortest execution length.

The optimal solution to the local resource allocation could
leverage convex optimization theory [10]. We denote the
optimal resource fraction vector as r∗(tij) or r∗, i.e., the
resource vector that minimizes the task execution length,
subject to payment budget and resource availability. How-
ever, it is non-trivial to directly solve it as analyzed in our
previous work [16]). To this end we devise an algorithm
with only O(R2) to find the optimal solution. As follows,
we first present the optimal resource fraction without the
constraint (4) in Theorem 1, and then present the optimal
algorithm (LOAA) that takes into account constraint (4).

Theorem 1: In order to minimize f(r(tij)) subject to the
constraint (3), tij’s optimal received resource vector r(∗)(tij)
is shown as Equation (5), where k=1, 2, · · ·, R. (Note that
r(∗)(tij) is not subject to Inequality (4), unlike the notation
r∗(tij) that relies on Inequality (4).)

r
(∗)
k (tij) =

√
lk(tij)/bk(pi)

R∑
k=1

√
lk(tij)bk(pi)

·B(tij) (5)

Proof: Since ∂2f(r)
∂r2k

=2 lk
r3k
>0, f (r) is convex with a min-

imum extreme point. Then, we can easily derive Equation
(6) using the Lagrangian multiplier method.

r1 : r2 : · · · : rR =

√
l1
b1

:

√
l2
b2

: · · · :
√

lR
bR

(6)

In order to minimize f(r), the optimal resource vector r(∗)
should make b(pi)T · r(tij) equal to B(tij). By combining
this equation with Equation (6), we derive Equation (5).

Remark: By combining the constraint (4), r(∗) based
on Equation (5) is right the optimal solution as long as
r(∗)≼a(pi). However, if r(∗) does not fully satisfy the
constraint (4) (i.e., ∃ k: r

(∗)
k >ak(pi)), r(∗) should not be

a viable solution. Hence, we propose an efficient algorithm
(Algorithm 2) to find the optimal solution subject to the
constraint (4) with the provable time complexity O(R2).

Definition 1: Given a specific budget C for task tij’s
execution in a subset Γ(⊆Π, i.e., subset of the execution
dimension set), CO-STEP(Γ, C) is defined as the procedure
in computing the optimal solution of minimizing f(rΓ(tij))
subject to the constraint (7) by using convex optimization
(similar to the proof of Theorem 1), where rΓ(tij) and
bTΓ (pi) denote the resource fractions gained by tij and the
price vector assigned by pi w.r.t. Γ respectively.

bTΓ (pi) · rΓ(tij) ≤ C, where C is a constant. (7)

Algorithm 2 (namely LOAA) is devised for minimizing
f(r(tij)) subject to the constraints (3) and (4).

Algorithm 2 LOCAL OPTIMAL ALLOCATION ALGORITHM

function name: LOAA(Π, B(tij), l(tij), b(pi), a(pi));
Input: Π: the execution dimension set (universe)

B(tij): tij ’s budget
l(tij): tij ’s predicted workload vector
b(pi): execution node pi’s price vector
a(pi): execution node pi’s availability vector

Output: r∗(tij): tij ’s optimal resource allocation vector on pi
1: Γ = Π, C = B(tij), r∗ = ∅ (empty set);
2: repeat
3: r(∗)Γ = CO-STEP(Γ,C); /*Compute optimal r(∗) based on Γ with

unbounded capacity assumption*/
4: Ω={dk|dk∈Γ & r

(∗)
k >ak};/*select elements violating constraint

(4)*/
5: Γ = Γ\Ω; /*Γ takes away Ω*/
6: C = C −

∑
dk∈Ω (bk · ak); /*Update C*/

7: r∗ = r∗∪{r∗k = ak | dk∈Ω & ak is dk’s upper bound};
8: until (Ω = ∅);
9: r∗ = r∗ ∪ r(∗)Γ ;

In this algorithm, line 3 executes CO-STEP(Γ,C) in order
to find the optimal r(∗)Γ , without considering the constraint
(4). If r(∗)Γ happens to completely satisfy the constraint
(4) (i.e., Ω=∅), then it is the final result. Otherwise, the
resource fractions (rk) that violate the constraint (4) will
be set to the upper bounds (i.e., ak) and the corresponding
dimensions (i.e., Ω) will be taken away from Γ, then,
C = C −

∑
dk∈Ω (bk · ak) for the remaining dimensions.

The process will go on until all the remaining computed
optimal resource fractions satisfy the constraint (4). Since
the time complexity of CO-STEP(Γ,C) is O(|Γ|), the number
of computation steps of Algorithm 2 in the worst case is∑R−1

i=0 (R− i), thus the time complexity=O(R2).
Theorem 2: Given a submitted task tij with a workload

vector l(tij) and a budget B(tij) and a qualified node pi with
its resource price vector b(pi), Algorithm 2’s output r∗ is
optimal for minimizing tij’s execution length (i.e., f (r(tij))),
subject to the constraint (3) and constraint (4).

We can prove Algorithm 2’s output must satisfy the
sufficient and necessary conditions of optimal solution. We
omit the detailed proof, which can be found in [16].



IV. OPTIMALITY ANALYSIS WITH WORKLOAD
PREDICTION ERRORS

A. Problem Description

Although Algorithm 2 is proved optimal, such optimality
is subject to a strong assumption that the workload vector is
accurately estimated. In reality, task’s workloads may not
be precisely predicted by ordinary users. In this section,
we derive the upper bound of task execution length under
Algorithm 2 with possible workload prediction errors.

Definition 2: Suppose a task tij’s estimated workload
vector is l′(tij) but the real workload vector is l(tij). Then,
l′(tij) satisfies Inequality (8), where α and β are the lower
bound and upper bound for the estimation ratio.

α ≤ l′k(tij)
lk(tij)

≤ β, k = 1, 2, · · ·R (8)

We use the following example to illustrate the above
definition. Suppose the task tij’s real workload vector always
ranges in [125, 1000] single-core-length, and the workload
vector l′(tij) used by Algorithm 2 is based on the history of
the task’s execution. Each element l′k(tij) (k = 1, 2, · · ·R)
will be set to 250 if the corresponding true workload
fluctuates in [125, 500] and set to 750 if the true workload
ranges in (500, 1000]. Then, we could get Inequality (9)
below, where α=250

500=0.5 and β=250
125=2.

0.5 ≤ l′k(tij)
lk(tij)

≤ 2, k = 1, 2, · · ·R (9)

It is obvious that with the inaccurate prediction of task’s
workload, the output of Algorithm 2 will definitely be
skewed from the result with accurate information. Hence,
one question is how far the output produced by Algorithm
2 based on l′(tij) would be away to the result based on
l(tij). That is, our objective is to derive an upper bound of
task execution length for Algorithm 2 based on erroneous
workload information (i.e., Inequality (8)).

B. Analysis with Erroneous Workload Prediction

We analyze the worst execution performance with erro-
neous workload prediction in Theorem 3 and Theorem 4.

For simplicity of description, we denote r∗E (=(r∗E1, r∗E2,
· · ·, r∗ER)T ) and f∗

E (=
∑R

k=1
lk
r∗Ek

+△) as the output of
Algorithm 2 with the erroneous workload estimation and the
corresponding execution length respectively, and E indicates
“Estimation with error”. Similarly, we denote r∗I (=(r∗I1, r∗I2,
· · ·, r∗IR)T ) and f∗

I (=
∑R

k=1
lk
r∗Ik

+ △) as the output with
precise workload vector and the corresponding execution
length, respectively, and I indicates “Ideal case”. Hence,
our objective is to determine the upper bound of f∗

E

f∗
I

, a.k.a.,
approximation ratio.

Denote r(∗)E the optimal resource allocation with un-
bounded resource capacities. The output of Algorithm 2
could be split into two situations:

• case 1: r∗E(tij) = r(∗)E (tij).
• case 2: r∗E(tij) ̸= r(∗)E (tij).
The first situation indicates that in terms of the skewed

workload prediction, all of the resource fractions calculated
by the initial CO-STEP in Algorithm 2 happen to be no
greater than the corresponding resource capacities. That is,
the output of the first-round CO-STEP complies with the
Inequality (10).

r(∗)E (tij) ≼ a(pi) (10)

In contrast, the second situation means that the initial CO-
STEP cannot fulfill the above condition, and the optimal
allocation cannot be found until a few more adjustment steps
(line 4 ∼ line 7 of Algorithm 2).

We first derive the upper bound of task tij’s execution
length for the first case (i.e., Theorem 3), and then discuss
the upper bound (i.e., Theorem 4) for the second one.

Theorem 3: Given a task tij with a budget B(tij), a node
pi whose resource price vector is b(pi), and a inaccurate
workload vector l′(tij) subject to Inequality (8), then the
tight upper bound of tij’s execution length under the re-
source allocation r(∗)E conforms to Inequality (11).

f
(∗)
E

f∗
I

≤
√

β

α
(11)

Main idea of proof : It is obvious that r(∗)I must be no
worse than r∗I (i.e., f (∗)

I ≤f∗
I must always hold), because r∗I

is the result with more constraints. Thus, we could get the
final conclusion as long as we could prove Inequality (12).

f
(∗)
E

f
(∗)
I

≤
√

β

α
(12)

Proof: As mentioned previously, we omit the notation
tij for simplicity of expression. For example, B indicates
B(tij). In terms of Theorem 1 and Equation (5), we could
get the following deduction:

f
(∗)
E =

R∑
k=1

lk
r
(∗)
Ek

+△ =
R∑

k=1

lk

B

√
l′k

/
bk

R∑
i=1

√
l′ibi

+△

= 1
B

R∑
k=1

lk(

R∑
i=1

√
l′ibi√

l′k/bk
) +△

≤ 1
B

R∑
k=1

lk(

R∑
i=1

√
(βli)bi√

(αlk)/bk
) +△ {due to Inequality (8)}

≤
√

β
α

1
B

R∑
k=1

lk(

R∑
i=1

√
libi√

lk/bk
) +

√
β
α △ {Note

√
β
α ≥ 1}

=
√

β
αf

(∗)
I ≤

√
β
αf

∗
I

Thus, the Inequality (11) holds.
We use a case to illustrate that Inequality (11)’s upper

bound is tight: Let l′ always be equal to 2l, then, α=β=2,



that is,
√

β
α=1. Then, f (∗)

E ≤f∗
I , according to Inequality (12).

On the other hand, suppose r(∗)E satisfies Inequality (10), then
f∗
E=f (∗)

E =f∗
I , which means that the upper bound is reached

in this situation.
Note that if the Inequality (10) does not hold, the output

of Algorithm (2) immediately becomes very non-trivial. This
is because the optimal allocated resource fractions will not
strictly conform to the Equation (6) any more, due to the fact
that some fractions (say rk(tij)) have to be set equal to the
corresponding available capacities (i.e., ak(pi)). However,
with the in-depth analysis, we can still find an upper bound
for such a situation, which will be proved in Theorem 4.
Before proving this new theorem, it is necessary to introduce
a new definition and Lemma 1, which will be used later.

Definition 3: Suppose Γ is a set of execution dimensions
selected from the complete set Π (i.e., Γ ⊆ Π). Considering
the dimensions dk ∈ Π\Γ, r

[∗]
Ik(Γ) denotes the convex-

optimal resource-share calculated by aiming to minimize the
target function fI(Γ) subject to the condition (13), where
Π\Γ denotes Γ’s complement.∑

dk∈Π\Γ
rIkbk = B −

∑
di∈Γ

r∗Iibi (13)

Based on Definition 3 and Theorem 1, we could derive
r
[∗]
Ik(Γ) as Equation (14), since

∑
di∈Γ

li
r∗Ii

and
∑

di∈Γ r
∗
Iibi

could be considered two constants here.

r
[∗]
Ik(Γ) = (B −

∑
di∈Γ

r∗Iibi)

√
lk/bk∑

di∈Π\Γ

√
libi

(14)

The key rule of the above definition is that the resource
fractions outside Γ are optimized stationary points while
those inside are not. For simplicity of description, we use
r
[∗]
Ik to substitute r

[∗]
Ik(Γ) in the following text, as long as thus

would not cause ambiguity. Further more, we denote f
[∗]
I (Γ)

as the execution time in terms of the resource fraction set
{r∗Ii|di ∈ Γ} ∪ {r[∗]Ik |dk ∈ Π\Γ}. Hence, f [∗]

I (Γ) could be
denoted as Equation (15).

f
[∗]
I (Γ) =

∑
di∈Γ

li
r∗Ii

+
∑

dk∈Π\Γ

lk

r
[∗]
Ik

+△ (15)

Lemma 1: f
[∗]
I (Γ) is no larger than f∗

I (i.e., Inequality
(16) must hold), where f∗

I is the task execution length with
r∗.

f
[∗]
I (Γ) ≤ f∗

I (16)

Proof: Denote r′I = (r′I1, r
′
I2, · · · , r′IR)T , where r′Ii is

selected from {r∗Ii|di ∈ Γ} ∪ {r[∗]Ii |di ∈ Π\Γ}, conforming
to the Equation (17).

r′Ii =

{
r∗Ii di ∈ Γ

r
[∗]
Ii di ∈ Π\Γ

(17)

Based on Definition 3, r[∗]Ii (∀di ∈ Π\Γ) are all stationary
points such that fI(Γ) is minimized using convex opti-
mization. In contrast, r∗Ii (∀di ∈ Γ) may not be stationary
points based on the Definition 3. Note that all of r∗Ii
(i=1,2,· · ·,R) together also conforms to the Formula (13),
thus f [∗]

I (Γ) must be a better solution than f∗
I , which means

f
[∗]
I (Γ) ≤ f∗

I .
Theorem 4: Given a task tij with a budget B, a resource

node whose available resource vector and price vector are
a and b respectively, and an erroneous workload vector l′

subject to Inequality (8), then, the tight upper bound of
tij’s execution length with resource allocation r∗E conforms
to Inequality (18), where Ω refers to the set of dimensions
constructed at Line 4 of Algorithm 2 performed with the in-
accurate workload vector (l′) and r∗Ii is the optimal allocated
resource fraction outputted when using the real workload
vector (i.e., l).

f∗
E

f∗
I

≤ θ

√
β

α
, where θ =

B −
∑

di∈Ω r∗Iibi

B −
∑

di∈Ω aibi
(18)

Proof: If Inequality (10) holds (i.e., r(∗)E ≼ a), it is
obvious that r∗E = r(∗)E . That is, f∗

E = f
(∗)
E . Besides, since

r∗Ii (i=1,2,· · ·,R) indicates one solution (more specifically, it
is actually the optimal resource fraction with accurate work-
load vector) outputted by Algorithm 2, we have r∗Ii ≤ ai.
Hence, Inequality (19) must hold.

B −
∑

di∈Ω r∗Iibi

B −
∑

di∈Ω aibi
≥ 1 (19)

Based on the Inequality (11) and Inequality (19), we can get
Equation (18) when r(∗)E ≼ a.

As follows, we will intensively discuss the situation with
r(∗)E � a (i.e., there exists at least one resource dimension
dj ∈ Ω such that its convex-optimal resource fraction r

(∗)
j

after the first-round CO-STEP in Algorithm 2 is larger than
its available capacity aj). In this situation, Ω ̸= empty
set (∅) as the whole Algorithm 2 ends. Without loss of
generality, let the index numbers of the dimensions in Ω be
1, 2, · · ·, |Ω|.

As for r∗E , according to Algorithm 2, we know that r∗E1 =
a1, r∗E2 = a2, · · ·, r∗E|Ω| = a|Ω| and r∗E(|Ω|+1), · · ·, r

∗
ER are

right the stationary points computed by convex optimization
subject to the Equation (20).∑R

i=|Ω|+1
r∗Eibi = B −

∑|Ω|

i=1
aibi (20)

Hence, we could get Equation (21) as follows.

r∗E(|Ω|+1) · · · : r
∗
ER =

√
l|Ω|+1

b|Ω|+1
: · · · :

√
lR
bR

(21)

Then, we could get the following derivation.



f∗
E −

∑|Ω|
i=1

li
ai

−△ =
∑R

k=|Ω|+1
lk
r∗Ek

=
R∑

k=|Ω|+1

( lk√
l′k

/
bk

R∑
i=|Ω|+1

√
l′ibi

·(B−
|Ω|∑
i=1

aibi)

)

= 1

(B−
|Ω|∑
i=1

aibi)

R∑
k=|Ω|+1

(lk ·

R∑
i=|Ω|+1

√
l′ibi√

l′k/bk
)

(22)

Based on Equation (22), we could get Equation (23):

(f∗
E−

|Ω|∑
i=1

li
ai
−△)·(B−

|Ω|∑
i=1

aibi)=
R∑

k=|Ω|+1

(lk

R∑
i=|Ω|+1

√
l′ibi√

l′k/bk
) (23)

On the other hand, we should also study f∗
I and compare

it to f∗
E . First of all, as for the optimal allocation vector

r∗E , let us select the resource fractions whose dimensions
belong to Ω. Please note that this Ω is the one outputted
by Algorithm 2 using the “erroneous estimated workload
vector” instead of the accurate workload vector. Then, we
could easily get the identical equation (24).

f∗
I =

∑|Ω|

i=1

li
r∗Ii

+
∑R

i=|Ω|+1

li
r∗Ii

(24)

According to Lemma 1, i.e., Inequality (16), we have
f
[∗]
I ≤ f∗

I . To this end, in order to prove Formula (18),
we can switch the target to comparing f∗

E and f
[∗]
I .

Based on the Definition 3 (let Γ = Ω), we could derive
the following equations about f [∗]

I :

f
[∗]
I −

|Ω|∑
i=1

li
r∗Ii

−△ =
R∑

k=|Ω|+1

lk
r
[∗]
Ik

=
R∑

k=|Ω|+1

lk

(B−
|Ω|∑
i=1

r∗Iibi)

√
lk

/
bk

R∑
i=|Ω|+1

√
libi

= 1

(B−
|Ω|∑
i=1

r∗Iibi)

R∑
k=|Ω|+1

(lk ·

R∑
i=|Ω|+1

√
libi√

lk/bk
)

(25)

Then, we could get Equation (26).

(f
[∗]
I −

|Ω|∑
i=1

li
r∗Ii

−△) · (B −
|Ω|∑
i=1

r∗Iibi) =
R∑

k=|Ω|+1

(lk

R∑
i=|Ω|+1

√
libi√

lk/bk
)

(26)
Further more, we could get the following inequality based

on Inequality (8).

R∑
k=|Ω|+1

(lk

R∑
i=|Ω|+1

√
l′ibi√

l′k/bk
) ≤

√
β
α

R∑
k=|Ω|+1

(lk

R∑
i=|Ω|+1

√
libi√

lk/bk
) (27)

By combining Equation (23), Equation (26) and Inequality
(27), we could further get the Inequality (28).

(f∗
E −

|Ω|∑
i=1

li
ai

−△) · (B −
|Ω|∑
i=1

aibi)

≤
√

β
α · (f [∗]

I −
|Ω|∑
i=1

li
r∗Ii

−△) · (B −
|Ω|∑
i=1

r∗Iibi)

(28)

Consequently, we could get the following deductions:

f∗
E ≤

√
β
α ·

B−
|Ω|∑
i=1

r∗Iibi

B−
|Ω|∑
i=1

aibi

· (f [∗]
I −

|Ω|∑
i=1

li
r∗Ii

−△) +
|Ω|∑
i=1

li
ai

+△

=
√

β
α ·

B−
|Ω|∑
i=1

r∗Iibi

B−
|Ω|∑
i=1

aibi

·f [∗]
I +

|Ω|∑
i=1

li
ai
+△−

√
β
α

B−
|Ω|∑
i=1

r∗Iibi

B−
|Ω|∑
i=1

aibi

(
|Ω|∑
i=1

li
r∗Ii

+△)

≤
√

β
α ·

B−
|Ω|∑
i=1

r∗Iibi

B−
|Ω|∑
i=1

aibi

· f [∗]
I

Note that the last step in the above derivation is due to
the fact that α ≤ β and ∀di ∈ Ω, r∗Ii ≤ ai. By further
taking Inequality (16) into account, we get the conclusion

that f∗
E

f∗
I
≤ θ

√
β
α , where θ =

B−
∑

di∈Ω

r∗Iibi

B−
∑

di∈Ω

aibi
.

As follows, we will use a use-case to argue that the upper
bound is tight. Suppose the number of dimensions is 2, i.e.,
|Π|=2, and a task’s load vector is (l1, l2)

T . We consider the
following two cases, each of which makes f∗

E = f∗
I :

• If Ω is empty set and a1b1+a2b2 ≤ B, then the optimal
solution will always be a = (a1, a2)

T , regardless of the
values of α and β, thus f∗

E = f∗
I .

• If Ω is non-empty set and |Ω|=1 and let d1 ∈ Ω without
loss of generality, we take into account such a case that
l′1
l1 =

l′2
l2 , then we could get that α = β and r

(∗)
Ei =

r
(∗)
Ii where i=1,2. As such, we could easily deduce that
r∗Ei = r∗Ii, which also implies f∗

E = f∗
I .

V. PERFORMANCE EVALUATION

A. Experimental Setting

We evaluate our Optimal Divisible-Resource Allocation
(ODRA) algorithm in a real cluster environment, called
Gideon-II [17], which is the most powerful super computer
at Hong Kong. We are assigned 8 physical nodes connected
with 10Gbps high-speed intra-network. Each node has 8
2.45MHz-cores and 16GB of memory size. We deployed
XEN 4.0 [18] on each node. Since there must be one core
reserved for XEN hypervisor, we created 56(=8×7) VM
instances (centos 5.2) on the 8 physical nodes. Three types
of resource attributes (CPU rate, network bandwidth, and I/O
disk bandwidth) will be split on demand according to our
ODRA algorithm. Specifically, we make use of XEN’s credit
scheduler [12] to dynamically allocate various CPU rates (or
capabilities) to the VM-instances. The network bandwidth
and the disk reading/writing rate allocated to each user are
both reshaped by linux network traffic controller (TC) [13]
on demand at run-time.

In our experiment, each user task is constructed by
multiple subtasks, each corresponding to various web ser-
vices with heterogeneous workloads to process. The sub-
tasks could also be data transmission via network or data
read/write through disk. So, each subtask could be regarded



as an execution dimension with a particular workload to
process (such as number of float points, data to transmit)
and a resource capacity to allocate (such as CPU rate and
network bandwidth).

By leveraging ParallelColt [19] (a library of matrix-
computation), we implement 10 matrix computation pro-
grams in the form of web services (listed in Table I),
which can be further combined to construct more complex
matrix problems (i.e., user tasks). The number of subtasks
per task is randomly set in [5, 15], and each subtask is a
matrix computation selected in Table I. The matrices in our
experiments are randomly generated with the scales from
100×100 to 2500×2500, and their data sizes range from
192KB ({100×100}) to 115MB ({2500×2500}).

The tasks emulated in our experiment represent different
execution patterns, e.g., CPU bound, memory bound or
others. First, ten different matrix computations have various
workloads. In Table I, we show their heterogeneous single-
core execution lengths w.r.t. square matrices, where M
refers to matrix size and m(∈ [10, 20]) is the exponent
in the matrix-power computation. Second, each task exe-
cution involves three types of resources (CPU rate, network
bandwidth and I/O disk bandwidth) and possibly multiple
execution nodes. For a particular task, its first subtask is
reading one or more matrix data from disk drive. The
second subtask could be some matrix computation like
matrix product, decomposition, or others. As the entire
matrix computation is finished, its output (a new matrix)
will be transmitted to another VM instance through the
network. The data transmission is also a kind of subtask
whose workload and capacity is data size to transmit and the
network bandwidth controlled on demand. The last subtask
of one task is storing the final matrix result into the disk
drive. The CPU rate assigned to VMs is controlled by XEN’s
credit scheduler [12]. Network bandwidth and disk I/O rate
are both controlled within [10,300] Mb/s over NFS through
Linux network traffic controller (TC). The CPU capacity of
each multi-threaded program (e.g., matrix product, matrix
power) is set to 8-cores (i.e., the maximum processing ability
of one physical node), while that of any single-threaded
program (such as matrix decomposition) is set to 1-core in
that more resources cannot get further speedup on it.

We predict the workload of each matrix computation
based on history for simplicity, where α and β are set to
0.7 and 2 respectively based on our characterization about
prediction errors. In practice, one could use more accurate
methods like multi-variate polynomial regression method
[11], whose margin of prediction errors is 7-10%.

Each task is associated with a budget, which is a key factor
impacting task’s resource allocation. The prices of the 10
matrix operations are set to 1,2,· · ·,10 with the decrease of
their workloads. We evaluate our algorithm with different
budgets assigned, which are simulated based on Formula
(29), where b(Fi) and θ (=0.5∼3) refer to the price of the

function Fi and a coefficient to tune users’ various economic
strengths respectively.

τ ′s budget = θ
∑K

i=1
b(Fi) (29)

Upon receiving a task made up of multiple consecutive
matrix computations, our designed algorithm is triggered
to compute the optimal resource vector for it and perform
resource isolation (e.g., notifying corresponding VMM to
customize the CPU rates by credit scheduler).

We compare the experimental results under our algo-
rithm to two types of theoretically optimal results. The
first one is the ideal execution length (i.e., f

(∗)
I ) based

on the ideal convex-optimal resource vector calculated by
Theorem 1, with the assumption that the resource capacities
are unbounded. We call it ideal optimal time (IOT). The
second one is the execution length (i.e., f∗

I ) based on the
practical optimal resource vector under the limited capacities
in reality. We call it practical optimal time (POT).

B. Experimental Results

There are two key evaluation metrics. The first one is
called execution stretch (ES), aiming to evaluate task’s
execution performance. A task’s ES is defined as its real
execution length (with possibly erroneous workloads pre-
dicted) divided by its theoretically optimal execution length
calculated based on its real workloads recorded after its
execution. Smaller ES implies higher execution efficiency
and ES being equal to 1 implies that the task’s practical
execution length reaches its theoretically optimal result. The
other one is called performance-payment ratio (PPR), which
is used to evaluate the effectiveness of user’s payment. A
task τ ’s PPR is defined in Formula (30), where τ ’s payment
level is equal to τ ′s final payment

τ ′s budget . The smaller PPR, the
higher performance with lower payment meanwhile, indi-
cating higher satisfactory level.

PPR(τ) = ES(τ)× (τ ′s payment level) (30)

We first evaluate the impact of different budgets
assigned to a single task to its execution performance
and user’s final payment. The task is computing
||(A2

2000×2000×((A2000×2000×A2000×1000)×v1000))×v1000||2,
where A and v means a matrix and a vector respectively.
It is made up of 6 different matrix operations, including
M-M-Multi., M-V-Multi., V-V-Multi., and so on. In Figure
1 (a), we observe that the task’s ES compared to its IOT
increases linearly with the increase of the budgets assigned.
This can be explained by Formula (3) or Equation (5). That
is, higher budgets assigned will result in larger theoretically
optimal resource amounts allocated, leading to a shorter
IOT. However, the task has to be run atop the resources
with limited capacities in practice, so the practical optimal
time (POT) is actually also degraded correspondingly. We
compare task’s real execution length to its theoretically
practical optical value by taking capacity into account.



Table I
WORKLOADS OF 10 MATRIX OPERATIONS (SINGLE-CORE EXECUTION LENGTH, MEASUREMENT UNIT: SECOND)

Matrix Scale M-M-Multi. QR-Decom. Matrix-Power M-V-Multi. Frob.-Norm Rank Solve Solve-Tran. V-V-Multi. Two-Norm
500 0.7 2.6 m=10 2.1 0.001 0.010 1.6 0.175 0.94 0.014 1.7
1000 11 12.7 m=20 55 0.003 0.011 8.9 1.25 7.25 0.021 9.55
1500 38 35.7 m=20 193.3 0.005 0.03 29.9 4.43 24.6 0.047 29.4
2000 99.3 78.8 m=10 396 0.006 0.043 67.8 10.2 57.2 0.097 68.2
2500 201 99.5 m=20 1015 0.017 0.111 132.6 18.7 109 0.141 136.6
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Figure 1. Execution Performance under Different Payments. (a) Execution Stretch. (b) Performance-Payment Ratio

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

E
x
e
c
u
ti
o
n

 S
tr

e
tc

h
 (

E
S

)

Number of Tasks

Mean Value (compared to IOT)
Lowest Value (compared to IOT)
Highest Value (compared to IOT)
Mean Value (compared to POT)
Lowest Value (compared to POT)
Highest Value (compared to POT)

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40

P
e
rf

o
rm

a
n
c
e
-P

a
y
m

e
n

t 
R

a
ti
o

 (
P

P
R

)

Number of Tasks

(a) (b)

 0.8
1.0

 1.2
 1.4
 1.6
 1.8

 20  25  30  35  40

2.0

0.8

1.2

1.4

1.6

1.8
2.0

 20 25  30  35  40

1.0

Figure 2. Execution Performance with Different Number of Tasks. (a) Execution Stretch. (b) Performance-Payment Ratio

Figure 1 (a) shows that the average ES is always less than
1.2 in this situation, which confirms that our solution is
indeed able to optimize task’s performance. In addition,
the similar observation goes to the PPR metric, as shown
in Figure 1 (b), confirming the payment should also be
satisfied by users.

We also compare the results in the situation with adequate
resources and the short-supply situation with relatively in-
adequate resources respectively. Figure 2 (a) shows the
mean/lowest/highest values of the ES compared to IOT
and POT respectively. When only a few tasks (e.g. ≤10)
are submitted, the mean ES in both situations is always
below 1.1, while the highest value of ES (worst situation)
is up to 4. This is reasonable based on the following
explanation. Note that the computation workloads among
some subtasks (i.e., basic matrix operations) are largely
different (e.g., between M-M-Multi. and V-V-Multi.), thus
the resource amounts derived based on convex-optimization
could be quite different. This will make the ideal optimal
resource fractions of heavily-loaded subtasks be much bigger
than the resource capacities (8-cores for the multi-threaded
programs or 1-core for the single-threaded programs), such

that subtasks cannot run in its ideal optimal states.

With further increasing number of tasks (from 10 to 40),
the ES compared to IOT would decrease notably, yet the
ES compared to the POT still keeps pretty close to 1 under
this situation (as observed in Figure 2 (a)). This is attributed
to more and more tasks cannot be assigned with the ideal
optimal resource vectors (i.e., r(∗)) but only the practical
optimal ones (i.e., r∗) by considering the limitation of the
resource capacities. In fact, at such a situation with relatively
short resource supply, task’s practical optimal performance
would also be degraded correspondingly, and ES≈POT
means that the tasks under our resource allocation run as
efficiently as the practical optimal state with the capacity
limitation. The similar observation goes with the PPR metric,
as shown in Figure 2 (b). When comparing to IOT, the PPR
enhances with increasing number of tasks to process, yet it
increases more slowly than that of ES shown in Figure 2 (a),
because users’ payments are correspondingly reduced with
the smaller resource amounts allocated.

We finally analyze the fairness of task’s resource allo-
cation based on Jain’s fairness index [20] (Equation (31),
where xi is either ES or PPR.
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Figure 3. Fairness of Task’s Execution Performance. (a) Fairness Index of ES. (b) Fairness Index of PPR.

F (x) = (
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

(31)

The fairness of ES (PPR) which is compared to POT is
much higher than the one that is compared to IOT, as shown
in Figure 3 (a). This is because the basic matrix operations
in our experiment are with largely different workloads
(Table I), which could easily make the resource fractions
assigned at different dimensions are quite uneven. That is,
the resource amounts expected at some dimensions may be
extremely huge, finally succeeding the corresponding re-
source capacities to different degrees. Then, the degradation
of the practical execution compared to IOT could be very
arbitrary. However, we could still observe quite stable and
highly fair treatment on task’s resource allocation w.r.t. POT,
i.e., when comparing to the execution length to the practical
optimal state considering the capacity limitation.

VI. RELATED WORK

Cloud resource allocation problem has been extensively
studied for years, however, most of the existing work over-
looks the practical issue with possible erroneous workload
predictions. Usiao et al. [21] proposed a distributed load
rebalancing method for distributed file systems in Clouds.
Unlike the file system where data size is relatively easy to
predict precisely, we have to deal with erroneous prediction
issue in our computational cloud platform with multiple ex-
ecution dimensions. PACORA [22] is a performance-aware
convex optimization model for resource allocation problem,
assuming workload information could be known precisely in
advance. Goudarzi et al. [23] proposed a multi-dimensional
SLA-based resource allocation for multi-tier applications,
with the assumption that the average of user request and
resource power are pre-known exactly. Jalaparti et al. [24]
aims to optimize the resource allocation utilities between any
two clients or between client and provider. Their solutions
have a strong assumption that the resource capacities are
always large enough, while in our model, limited resource
capacity is a key constraint, leading to a huge challenge
especially in the bound analysis with prediction errors.
Meng et al. [25] explicitly endeavored to maximize resource
utilization by analyzing VM-pairs’ compatibility in terms
of the forecasted workload and estimated VM sizes. Their
solution is able to approximately identify the compatibility

of any pair of two VMs, but cannot resolve the situation
with more than two VMs on the same machine. Wei et
al. [26] formulated the Cloud resource allocation to be a
binary Integer programming problem and solved it using an
evolutionary method. A strong assumption in their work is
the precise prediction of task’s workload vector on multiple
execution dimensions.

In order to provide guaranteed service-level agreement
(SLA), it is crucial to analyze the possible situation with
inaccurately predicted information. A few works (not many)
also analyzed this issue for their approaches in the context
of Cloud platforms, but differ a lot from this paper. Mao’s
auto-scaling method [27] and Di’s approach [28] took into
account load prediction issue in Cloud systems, whereas they
both handled a different objective that aims to minimize
user payment with guaranteed task deadlines. Thus, the
problem formulation is fairly distinct, so is the following
solution. Wood et al. [29] adopted black-box and gray-
box strategies for virtual machine migration, in order to
alleviate hot spots based on statistical analysis. However,
statistical analysis cannot be used to derive the bound of task
execution performance at the worst case. In [30], AuYoung
et al. evaluated the impact of inaccurate prediction for vari-
ous utility-based scheduling approaches. They make use of
simulation to analyze the working efficiency of First-Come-
First-Serve (FCFS) scheduler and backfilling scheduler [31]
with possible skewed estimate of application utility function
and resource ability state. Although simulation work could
confirm the fault tolerance ability to a certain extent, it
cannot prove its effectiveness fundamentally.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel algorithm (namely ODRA) which
aims to minimize task execution length under a budget with
possible prediction errors is proposed and analyzed in depth.
We carefully derived the upper bound of task execution
length for a practical situation with erroneous prediction of
task workloads. The state-of-the-art derived bound of task
execution length is very concise, such that it can be easily
applied in practice. To the best of our knowledge, this is the
first paper to optimize the divisible-resource allocation with
in-depth analysis on upper bound of task execution length



with prediction errors. We evaluate the performance using a
real cluster environment with composite web services. These
services are of different execution patterns on multiple types
of resources. Experiments show that compared to the idea
execution length, task’s average execution stretch is less than
1.1 when submitting small number of tasks, and less than 1.2
when over-many tasks are submitted simultaneously. That is,
task execution lengths with our solution are fairly close to
their theoretically optimal results. In the future, we plan to
implement more practical web services for users under our
optimal algorithm.
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