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Abstract 

Mesenchymal stem cells (MSCs) are one of a few stem cell types to be 

applied in clinical practice as therapeutic agents for immunomodulation and 

ischemic tissue repair. In addition to their multipotent differentiation potential, 

a strong paracrine capacity  has been proposed as the principal mechanism that 

contributes to tissue repair. Apart from cytokine/chemokine secretion, MSCs 

also display a strong capacity for mitochondrial transfer and microvesicle 

(exosomes) secretion in response to injury with subsequent promotion of tissue 

regeneration. These unique properties of MSCs make them an invaluable cell 

type to repair damaged tissues/organs. Although MSCs offer great promise in 

the treatment of degenerative diseases and inflammatory disorders, there are 

still many challenges to overcome prior to their widespread clinical application. 

Particularly, their in-depth paracrine mechanisms remain a matter for debate 

and exploration. This review will highlight the discovery of the paracrine 

mechanism of MSCs, regulation of the paracrine biology of MSCs, important 

paracrine factors of MSCs in modulation of tissue repair, exosome and 

mitochondrial transfer for tissue repair and the future perspective for MSC-

based therapy. 

 

Key words: Mesenchymal stem cells, mechanism, paracrine effects 

 

Introduction 

The initiative of stem cell research can be traced back to 1963 when James 

and Ernest first identified stem cells in mouse bone marrow (12). A subsequent 

growing body of evidence that confirms the existence and function of stem 

cells now makes them the optimal source for tissue engineering and 

regenerative medicine. According to statistical data registered on Clinical 



Copyright © 2013 Cognizant Communication Corporation 

CT-1016 Cell Transplantation Epub; provisional acceptance 04/22/2013        3 

 

Trials.gov to date, stem cell-based therapeutic approaches now total 4230 

globally: the transition from laboratory bench to bedside has begun. Based on 

the technical feasibility, promising curative effects, reduced economic cost and 

circumvention of ethical issues, mesenchymal stem cells (MSCs), that account 

for up to 300 cases of the 4230 (7.0%, 300/4230), have become the most 

common and effective cell source in cell-based treatment. The fascinating 

therapeutic effects of MSCs in various life threatening human diseases, 

including cerebral spinal cord injury, hematological disorders, cardiovascular 

diseases, diabetes, immune diseases, GvHD (graft versus host diseases), and 

cancer are well documented. Nonetheless the in-depth mechanisms of how 

MSCs act remain a matter for debate and exploration. The generally putative 

concepts cover trans-differentiation, cell fusion, paracrine effects, 

microvesicles carrying mRNA or miRNA and mitochondrial transfer (figure 1) 

(8,9,16,30,33,34,42,96,100,134). This review will focus on the paracrine effects 

of MSCs, the most comprehensive and enduring mode of action that ascribes to 

functional recovery in both acute and chronic responses. 

 

1. Discovery of paracrine mechanism of MSCs 
The secretion of cytoprotective factors by MSCs was first reported by 

Gnecchi and colleagues (33,34,56). The novel observation that modified MSCs 

overexpressing Akt (Akt-MSCs) could prevent ventricular remodeling and re-

establish heart function in less than 72 hours following surgical myocardial 

infarction (MI) and cell transplantation raised the possibility of an action other 

than a myogenic pathway that would not be evident in such an extremely brief 

time period. Previous studies also pointed out that the limited frequency of the 

transplanted stem cell-derived cardiomyocytes (CMCs) was unlikely to be the 

main contributor to the marvelous amelioration of the ischemic organs 

(5,47,58,81). Thus a new mechanism was proposed in which the injected MSCs 

might release trophic factors that contribute to myocardial protection following 

an ischemic insult. This hypothesis was then confirmed by evident 

improvement in cardiac performance following injection of conditioned 

medium (CM) collected from hypoxic Akt-MSCs (Akt-MSCs-CM) into an induced 

MI model. In vitro experiments also demonstrated that the hypoxic Akt-MSCs-

CM could protect ventricular CMCs against apoptosis when subjected to a 
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hypoxic challenge. Other valuable factors were also identified, including VEGF 

(vascular endothelial growth factor), bFGF (basic fibroblast growth factor), HGF 

(hepatocyte growth factor), and TB4 (thymosin beta 4), that were upregulated 

in the Akt-MSCs compared with the vector-MSCs. The paracrine effects of MSCs 

not only emerged as an original mechanism of action, but also inspired the 

future biological and clinical application of purified cytokines in ischemic injury. 

Kinnaird et al. reported that growth of endothelial cells (EC) and smooth 

muscle cells (SMC) could be stimulated by the conditioned medium of MSCs 

(MSCs-CM) in a dose dependent manner. This phenomenon could be partly 

explained by the high level of VEGF and bFGF detected in the MSCs-CM. 

Nonetheless neutralization using anti-VEGF and anti-bFGF antibodies could 

only partly impair this effect, suggesting other potential beneficial chemokines 

or cytokines needed to be determined (54). Subsequent studies located more 

salutary factors essential for remission of injury that could be classified into 5 

categories as follows: 

 

1.1  Immunomodulation factors 
Bartholomew et al. first observed the immunomodulatory function of MSCs 

as evidenced by their dose-dependent inhibitory effect on the cell proliferative 
response of allogeneic mitogen-stimulated lymphocytes in mixed lymphocyte 
culture (MLC) (11). The skin transplantation model also verified prolonged skin 
graft survival following intravenous administration of MSCs compared with a 
saline injection group. Contrary to this, Di Nicola’s data demonstrated that this 
immunosuppressive feature was in part due to soluble factors as shown by the 
continued suppressive effect on the proliferation of T-lymphocytes in a 
transwell system, and excluded the possibility of cell-cell communication (20). 
The proliferation of T-cells could be sectionally restored with the addition of 
monoclonal antibody TGF-β1 (transforming growth factor-β1) or HGF, 
suggesting both cytokines were involved in the process. Inducible IDO 
(indoleamine 2,3-dioxygenase), an enzyme that catalyzes conversion from 
tryptophan to kynurenine and subdues the T-cell response to autoantigens and 
fetal alloantigens, was detected in MSCs simulated by IFN-γ (interferon γ) (76). 
With respect to IFN-γ primed MSCs, another article proposed that IFN-γ played 
a crucial rule in the MSC-T lymphocyte interplay by up-regulating the 
expression of B7-H1 on MSCs, a known co-inhibitor molecule of the immune 
response (108). Selmani et al. discovered that HLA-G5 (human leukocyte 
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antigen class I molecule 5) secreted by MSCs, possessing the ability to contact 
with allo-stimulated T cells, was responsible for the immunosuppressive 
functions of MSCs on T-lymphocyte and NK (natural killer) cells, as well as the 
expansion of the inducible CD4+CD25highFOXP3+ regulatory T cells (106). Apart 
from the influence on lymphocytes, the bioactive components of MSCs were 
shown to facilitate the transition of macrophages from the pro-inflammation 
phenotype M1 (classical activated macrophage) to the anti-inflammation 
phenotype M2 (alternative activated macrophage). This was proposed as one 
of the mechanisms that occurs in the early stage of tissue deterioration (2,17). 
As there are three major stages of the immune response- 1. antigen 
recognition and presentation; 2. T cell  activation, proliferation and 
differentiation; 3. effective stage. The immunosuppressive privilege of MSCs 
not only exists during the 2nd stage on T cells, but also modulates the very first 
step by interaction with antigen-presenting cells(APCs). Jiang et al. presented 
evidence that MSCs inhibited the differentiation, maturation, and function of 
dendritic cells (DCs) derived from CD14+monocytes (45). The mature DCs that 
underwent MSCs co-culture showed reduced expression of CD83 and CD1a, 
both markers of DC maturity. The co-stimulative molecules such as CD80 and 
CD86, as well as secreted IFN-γ, IL-12, were also down regulated by MSC 
treatment, thus rendering T-cells anergic downwards. To distinguish cell-cell 
contact from cytokine secretion, they set up a transwell system with different 
MSC/monocyte ratios. The MSCs plated in the lower compartment were able to 
fully prevent monocytes from differentiation and maturation at a high 
MSC/monocyte ratio(1:10). It can thus be concluded that MSCs play the part of 
regulator throughout the immune response, including different phases, various 
cell types, and diverse modes of action.  

Most recently, MSCs were found to act as immune-modulators, rather like a 

double-edged sword. The article published by W Li proposed that the degree of 

NO (nitric oxide) production elicited by pro-inflammatory cytokines in the 

surrounding environment could influence MSCs to be either potently 

immunosuppressive or highly immune-enhancing (65). While inducible nitric 

oxide synthase (iNOS) production was blocked, the immunosuppressive 

property of MSCs diminished and reverted to promote T-cell proliferation, as 

well as the delayed-type hypersensitivity response by their chemotactic effect 

on immunocytes. This immunoenhancing effect of MSCs might be attributed to 

chemokines such as CXCR3 (chemokine C-X-C motif receptor 3) and CCR5 

(chemokine C-C motif receptor 5) derived from MSCs. To some extent, this 

gained support from the evidence that iNOS-/-MSCs failed to promote 
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proliferation of CXCR3-/-CCR5-/- splenocytes. These results highlight the 

importance of evaluating inflammation status and intervention with regard to 

iNOS/IDO levels before MSCs can be broadly applied for immunological disease 

in both rodent models and human clinical trials. Other than suboptimal timing 

and dose of administered MSCs, it might partially explain the reasons why the 

manipulation of MSCs in GvHD showed mixed results with some indicating an 

immunosuppressive potential and others not (21,112).  

 

1.2  Angiogenic and arteriogenic factors 
It has been proven that angiogenic and arteriogenic support accounts for 

amelioration of coronary artery disease (CAD) following bone marrow cell 
transplantation (88,89). Angiogenesis is evidenced by formation of a new blood 
network from the pre-existing capillaries by sprouting and proliferation, while 
arteriogenesis is demonstrated by the collateral enlargement and 
muscularization of small arterioles to form larger arteries (27). Angiogenesis is 
tightly regulated by a competitive balance of the angiopoietins and inhibitors, 
known as “angiogenic switch” (84). Only when the increasing cytokines and cell 
adhesion receptors that impel neovascularization reach a certain level and 
concentration in the locoregional environment can they incrementally initialize 
the process of angiogenesis. It has been reported that the HIF-1 (hypoxia-
inducible factor) signaling pathway can switch on this angiogenesis process in 
ischemic disease (122). HIF-1 is a nucleoprotein with transcription properties 
that regulates the expression of a variety of target genes with the ability to 
acclimatize and promote cell survival in an oxygen-deficient environment, 
including glycolytic enzymes that provide ATP for cell metabolism, and pro-
angiogenetic factors such as VEGF, FGF, NO, IGF (insulin-like growth factor) 
(28,43,75,99). It is only under hypoxic conditions that HIF-1 can be stabilized 
and activate expression of the downstream proteins. The transcriptional 
activation mediated by HIF-1 results in an escalating concentration of the 
biological cytokines that trigger the vascular endothelial cells to proliferate, 
sprout, migrate and infiltrate to develop new vasoganglion. Accompanied by 
pericytes, as well as optimal differentiation and apoptosis of the endothelial 
cells, the newborn vessels begin to form lumens. It is this physiological 
mechanism that led to the initiative to utilize MSCs for the treatment of 
ischemia: they express and produce VEGF, HGF, MCP1 (chemokine C-C motif 
ligand 2), and SDF1 (stromal cell-derived factor 1) that are critical for vascular 
network remodeling (53,54). Several studies attempting to explore the 
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potential of MSCs for vascular regeneration have consistently reported 
increasing capillary density and better collateral perfusion following MSC 
manipulation, although whether the secretion of cytokines represents the 
paramount mechanism of action remains under dispute 
(40,49,61,78,82,107,109). In particular, a recent study by Feng Dong et al. 
concerning the SDF1:CXCR4 axis revealed that CXCR4 expression in CMCs was a 
necessity for the trophic effects generated by MSCs following left anterior 
descending artery (LAD) ligation (22). The researchers injected MSCs into wild 
type mice or conditional CMC-CXCR4 knockout mice post MI induction. They 
observed an increased number of CMCs undergoing apoptosis and decreased 
cardiac progenitor cell (CPC) recruitment in the absence of CMC-CXCR4 
expression, leading to depletion of MSC-mediated functional restoration. This 
was despite equivalent levels of implanted MSC infusion and increases in 
capillary density. It is reasonable to conclude from these results that the 
protective and restorative benefits mediated by MSCs are partially due to 
angiogenesis factors that lead to increasing vascular density and recovery of 
blood supply in the ischemic area. Nonetheless the importance of coordination 
of the hibernating or susceptible cells in the vicinity cannot be underestimated. 
 

1.3  Anti-apoptotic factors 
To prevent programmed cell death, MSCs not only restore the micro-

hemodynamics, but also  synthesize and secrete proteins that are classic 
inhibitors of apoptosis, such as Bcl-2 (B-cell lymphoma 2), survivin, and Akt 
(86,123). The ratio of Bcl-2 to Bax (Bcl-2-associated X protein) determines the 
sensitivity of the cells to a pathological stimulus (87). The predominantly 
expressing Bcl-2 will prevent the release of caspase activators, thus cells are 
less likely to respond to the apoptotic signaling, and vice versa (35). Tang et al. 
detected down-regulated Bax expression in the ischemic myocardium following 
autologous MSC transplantation (116). Zhang et al. showed lower expression of 
Bax, FAS (TNF receptor superfamily, member 6), and CASP3 (caspase 3) at both 
a transcriptional and translational level in MSC-CM treated LO2 (a human 
normal liver cell line) subjected to H2O2 challenge, a laboratory setting intended 
to mimic ischemic-reperfusion (IR) injury in liver, resulting in protection of 
hepatocytes against apoptosis (92). It is also worth noting that as well as the 
ability of MSCs to synthesize proteins that directly repress apoptosis, they are 
also able to secrete cytokines that either neutralize the apoptotic pathway or 
enhance survival. Gerber et al. established that VEGF could prevent serum 
starvation-induced apoptosis by upregulating Bcl-2 expression in vascular 
endothelial cells (32). VEGF also participated in an anti-apoptotic process by 
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phosphorylated activation of FAK (focal adhesion Kinase), a critical pro-survival 
signal that acts by suppressing p53-mediated apoptosis (41,71,72). The 
bioactive molecules against apoptosis secreted by MSCs not only affect nearby 
cells, but also fulfill their own mission. Studies by Wang and colleagues showed 
that hypoxic preconditioning repressed the apoptotic index of MSCs by 
stabilizing mitochondrial membrane potential and elevating the secretion of 
VEGF and Bcl-2 (93). 
 

1.4  Anti-oxidative factors 
The concept of oxidative stress (OS) was derived from the free radical 

theory of Sohal et al. in their research on aging and life span (90,110). OS is 
initiated by disequilibrium of oxidation and anti-oxidation in response to 
physiochemical or physiological stimuli. When an oxidative reaction prevails, 
the following process should occur: infiltration of inflammatory cells, release of 
protease, and accumulation of oxidative byproducts referred to as ROS (reactive 
oxygen species), including oxygen ions, oxygen free radical and peroxides. 
Insufficient or surplus ROS may give rise to pathogenesis known as ROS-related 
diseases, such as carcinogenesis, immune disorders, inflammation, 
neurodegeneration, or angiocardiopathy (26,46,48,73). Studies by Shinya et al. 
highlighted the protective function of MSC-derived STC1 (stanniocalcin1) by 
reducing ROS-related apoptosis. STC1 also featured in another article with 
regard to its anti-oxidative activity in CMCs. This indicates that the successful 
harvest of MSCs in heart disease was mediated partially by releasing STC1 
(68,85). Another study described xenogenic MSC engraftment that ameliorated 
the redox environment in a LPS-induced acute lung injury (ALI) model by 
enhancing expression of anti-oxidative enzyme HO-1 (hemeoxygenase-1) and 
reducing expression of MDA (malondialdehyde), an indicator of lipid 
peroxidation (63). The enriched concentration of pro-inflammatory cytokines 
TNF-α (tumor necrosis factor α), IL-1β (interleukin-1β), IL-6 (interleukin-6), but 
not IL-10 (interleukin-10), existed in the MSC-treated group and may play a role 
in this modulatory activity. Studies by Zarjou et al. supported the importance of 
HO-1 by the use of HO-1-/-MSCs, in which less effective production of SDF1, 
VEGF, and HGF was detected (133). With respect to ischemic-reperfusion (IR) 
injury, MSCs were beneficial; they encouraged expression of HO-1 in renal IR 
induced by cisplatin or surgery (70,133). Another group who studied 
neurodegenerative dysfunction reported a similar “shield/barrier” effect 
conferred by MSCs on monoaminergic perikarya and monoamine 
neurotransmitter transporter function exposed to NO (nitric oxide) induced OS. 
They identified another trophic factor, GDNF (glial derived neurotrophic factor) 
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(125). The operative molecules secreted by MSCs vary in different experimental 
settings, probably due to non-uniform ROS inductors leading to different levels 
of ROS production. Nonetheless it is evident that MSC therapy has an extensive 
influence on the redox context due to these anti-oxidative factors.  

 
1.5  Cell migration, homing/targeting and stimulation 

Several studies using different cell tracking approaches have revealed that 
following intravenous administration, MSCs are widely distributed to non-
hematopoietic tissues, including the gastrointestinal tract, kidney, skin, lung, 
thymus, and liver. This suggests that MSCs patrol the body until triggered by 
what might be metaphorically compared to “criminal behavior” (18,19). Indirect 
evidence supporting this hypothetical notion has been well documented in 
various disease models, in which MSCs showed faster mobilization and better 
retention at sites of injury following systemic or local intra-tissue infusion 
(10,44,51,94). The inherent tumor-trophic migratory properties of MSCs have 
been employed  as gene/drug carriers to deliver therapeutic, effective, targeted 
therapy to carcinomas and metastatic diseases (127). Thus, investigations 
oriented towards the motivation of this migration behavior proliferated. The 
intention was to maximize the therapeutic potential of MSCs by establishing a 
more efficient platform of stem cell homing and/or targeting. Several pathways 
or attractants have been discovered. Kitaori et al. demonstrated that inducible 
SDF1 expression in the periosteum of a live bone graft was required to recruit 
MSCs for endochondral bone repair (55). By neutralizing SDF1 with anti-SDF1 
antibody or antagonizing CXCR4 with TF14016, new bone formation was 
significantly reduced following intravenous injection of MSCs. This suggests the 
involvement of SDF1:CXCR4 axis in MSC-mediated tissue repair and 
regeneration. Under hypoxic conditions, MSCs exhibited enhanced mobility 
towards SDF1 in a concentration-dependent manner, accompanied by elevated 
cellular CXCR4 expression (132). In accordance with the in vitro experiments, 
the in vivo study showed increased MSC retention in the infarct region 5 days 
after MI, when ischemic-related SDF1 reached the fastigium. When cells were 
pre-treated with LY294002 (a reagent that selectively inhibits PI3K/Akt), a 
smaller number of implanted cells targeted the injured area with enlargement 
of the infarcted fibrotic area compared with non-treated cells. This indicated 
that the PI3K/Akt pathway was involved in the chemotactic response of MSCs to 
the SDF1:CXCR4 axis. In a separate but similar experiment, the LAD occlusion-
induced SDF1 expression in the infarcted myocardium resulted in accumulation 
of bone marrow–derived cells delivered by intravenous injection (1). This time 
the author employed AMD3100, an antagonist of CXCR4, to confirm the 
instrumental role of the SDF1:CXCR4 signaling pathway in regard to stem cell 
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homing. Another noteworthy finding in this study was that SDF1 alone could 
not trigger the grafted cells to migrate, indicating the requirement for another 
concomitant secretion or pathway stimulation. In addition, SDF1 serves as a 
chemo-attractant signal to the endogenous CXCR4+ stem cells. Otsuru’s paper 
stated that the expression of SDF1 in vascular endothelial cells promoted 
migration of CXCR4+ bone marrow-derived osteoblast progenitor cells from 
circulating blood to the region of osteogenesis (91). In another study, Tang et al. 
reported that CM of genetically modified MSCs with VEGF expression 
containing more SDF1, achieved better left ventricular performance than  un-
modified MSCs by massive mobilization and homing of bone marrow stem cells 
and cardiac stem cells (115). While mounting evidence revealed that up-
regulated SDF1 is a required though not unique signal for better localization of 
stem cell targeting, other studies focused on the other side of this axis, that is, 
CXCR4. Contrary to expectations, forced expression of CXCR4 into the 
myocardium by direct gene transfer prior to MI surgery resulted in increased 
infiltration of inflammatory cells and apoptosis of CMCs (14). If the 
manipulation of CMC-CXCR4 is not beneficial as predicted, it is likely that CMC-
CXCR4 expression serves as an indication of CMCs that are in a self-protective 
state of reduced energy consumption, or even hibernating as a means of 
surviving  the ischemic episode. The necessity of myocardial CXCR4 expression 
was analysed recently using a conditional CMC-CXCR4 null mouse model (22). In 
the CMC-CXCR4 null mice, increased numbers of CMCs underwent programmed 
cell death in the border zone following MI plus stem cell therapy. This 
phenomenon diminished in the absence of stem cell infusion. In addition, far 
more CPCs accumulated and localized in response to MSCs in the wild type 
mice compared with CMC-CXCR4 null mice. Consequent to this, the concept 
was proposed that CMC-CXCR4 expression is required in MSC-mediated 
cytoprotection and CPC recruitment. Based on these data, it is possible to 
decipher a reciprocal relationship between the cells, either endogenous or 
exogenous, and surrounding milieu regarding SDF1:CXCR4 binding in the 
presence of MI: the increasing MI-induced SDF1 in the infarct region helps to 
attract endogenous CXCR4+ stem cells, in addition to migration of exogenous 
MSCs to the lesion as a result of the increasing concentration of SDF1; the 
localized and stabilized distribution of stem cells then augments the SDF1 signal 
by synthesizing and releasing more SDF1; this process  works as an amplifying 
hierarchy, within which CM-CXCR4 expression is required for the implanted 
MSCs to recruit cardiac stem cells.  

In addition to chemotactic-like properties, MSCs also help revitalize 

endogenous stem cells to accumulate and proliferate. Using in situ 
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chromosome Y FISH technique, Lin et al. distinguished male donor bone 

marrow cells from female host cells, and established that bone marrow cells 

accounted for only 11% of the proliferating epithelial cells in a kidney IR model. 

This suggests a regenerative capacity generated by the inherent hibernating 

stem via revitalization or rejuvenation (67). In the pig MI model, Ckit (v-kit 

Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) and Ki-67 (antigen 

identified by monoclonal antibody Ki-67) were detected at the peri-infarct 

region in the MSC-treated group, implying endogenous stem cell recruitment 

and re-entry of CMCs to the cell cycle and duplicate status (6). MSC-CM were as 

able as MSCs to mobilize cardiac stem cells in the first 3 days, suggesting that 

the paracrine signaling accounted for part of the stem cell homing effects in the 

acute phase, though not comparable with what could be achieved from direct 

MSC delivery in long-term results (36). In addition to SDF1, other members of 

the MSC secretion pool, such as HGF and IGF, were also shown to enhance 

mobilization and proliferation of cardiac stem cells (120). 

 

2. Regulation of paracrine biology of MSCs 
Gnecchi’s group reported approximately 650 transcripts that expressed 

differentially between Akt-MSCs and vector-MSCs. This suggests that genetic 

modification of MSCs by overexpression of one pivotal gene that acts as a 

“switch” might alter the profile of the released factors and thus maximize the 

therapeutic potential. Intense efforts have been made to hone MSCs and make 

them more effective and efficient. The paracrine effects should hold most 

appeal because of the wish to have an extensive, stable and lasting mode of 

action.  

 

2.1 Preconditioning of MSCs 
Gnecchi et al. testified that hypoxic treatment of the Akt-MSCs facilitated 

release of trophic factors such as VEGF, bFGF, HGF, IGF, and TB4 (34). The 

hypoxic Akt-MSCs-CM provided cytoprotection and induced spontaneous 

contraction of the ARVC (adult rat ventricular cardiomyocytes) when exposed 

to prolonged hypoxia. Other groups compared the secretome in normal and 

hypoxic conditions: most suggested that the contents of the concentrated 
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medium of MSCs cultured in a hypoxic environment were superior. Chang et al. 

reported that both HGF and VEGF were elevated in the MSCs maintained in 

0.5% oxygen for 24 hours (13). They then concentrated the medium and 

injected it into the rat TBI (traumatic brain injury) model every 12 h 

consecutively for 3 days, with consequent findings of increasing neurogenesis 

as well as alleviation of motor and cognitive dysfunction. Another group 

highlighted the fact that under normal physiological conditions, MSCs originate 

in areas of low oxygen concentration such as bone marrow. They thus need to 

accommodate themselves to the higher oxygenation that is present when they 

are isolated and expanded ex vivo (21% oxygen) (103). They then  need to 

immediately re-acclimatize to a hypoxic state when applied as a cell source for 

ischemic disease models. Subjecting MSCs to a premature hypoxic period may 

allow them a “buffering period” and thus improve their tissue regenerative 

potential. In this project, it was shown that pre-culturing MSCs in a low oxygen 

environment activated the Akt and cMET (met proto-oncogene, receptor of 

HGF) signaling pathway, contributing to enhanced neovascularization and stem 

cell homing in a surgical hind limb ischemia model. Another study by Lionel et 

al. also went some way to confirm that hypoxic preconditioning of MSCs 

promoted their survival capacity, and vascular and tissue reconstruction, albeit 

via a Wnt4 (wingless-related MMTV  integration family, member 4)-dependent 

pathway (62).  

In addition to physiological preconditioning, another feasible method may 

be cytokines/chemicals. Application of cytokine/chemicals by three different 

ways improved the therapeutic efficiency of MSCs: administration of 

cytokines/chemicals to MSCs prior to transplantation, aimed at optimizing the 

secretome with better migration towards the injured tissue; pretreatment at 

the site of injury, with the objective of attracting more stem cells for tissue 

repair; or simultaneous injection of cytokines/chemicals and MSCs. As an 

example, Yong et al. pretreated MSCs with IL-1β and TGF-β, and showed 

synergistic advantages of this combination on VEGF production, as well as 

functional restoration post MI (74). Cui et al. indirectly up-regulated 

SDF1:CXCR4 expression with a nitric oxide donor, DETA-NONOate. They 

demonstrated that preconditioning of the animal with DETA-NONOate 24 

hours following middle cerebral artery occlusion promoted MSC engraftment. 
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In Pons’s study, VEGF and MSCs were co-injected to MI hearts, that then 

showed the expected congenerous improvement in stem cell mobilization and 

cardiac function (98). 

 

2.2  Genetic modification of MSCs 
Their ability to migrate towards damaged tissue makes MSCs the optimal 

vector for therapeutic agents. Gnecchi et al. not only defined the paracrine 

mechanism, but also demonstrated that genetically engineered MSCs with Akt 

expression were superior to vector-MSCs in many aspects (33,34). Since then, 

many attempts have been made to equip MSCs with curative genes to aid 

functional recovery. Li et al. engineered MSCs with Bcl-2, and the modified cells 

presented better apoptotic tolerance, cell survival and more VEGF secretion 

than control MSCs (64). Other genetically engineered MSCs, including survivin, 

SDF1, CXCR4, HGF, PI3K, IGF, showed similar results of improving angiogenesis, 

LVEF, endogenous stem cell recruitment, contractile function, and reducing LV 

remodeling effects (23,24,57,111,114,126). Most of these selected genes are 

considered to be trophic factors secreted by physiological MSCs, or possess the 

ability to activate Akt signaling directly or indirectly, based on maintaining the 

fundamental characteristics of MSCs and safety concern. Genetic manipulation 

could improve cell survival and control the MSC secretome by engineering the 

gene of interest; nonetheless overexpression could bring unexpected effects, 

either from the delivering approach or the targeting genes. For example, over 

expressing of bFGF or PDGF-β (platelet-derived growth factor β) lead to highly 

proliferating MSCs and increases in osteogenesis, while upregulation of TGF-β1 

hindered both osteogenic and adipogenic differentiation (25). It should 

nonetheless be noted that  while the genetically modified MSCs showed 

enhanced therapeutic efficacy, a very stringent evaluation of their physiological 

characteristics with regard to safety and undesired effects is required prior to 

their application in clinical trials . 

 

3. Important Paracrine factors of MSCs in modulation of tissue repairs 
 

3.1 Paracrine factors- activated MSCs in immunomodulation 
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Mesenchymal stem cells have the ability to suppress the immune response 

and can even induce immune tolerance in certain conditions through cell to cell 

contact and soluble factors. An increasing number of studies have suggested 

that the soluble factors of MSCs are a key requirement of their immune 

regulatory properties (29,113,128). Liu et al. demonstrated that the 

immunogenicity of MSCs was heightened during the increasing passage 

number and could not suppress lymphocyte proliferation in vitro (69). 

Nonetheless, soluble factors collected from the co-culture of MSCs and 

lymphocytes could suppress lymphocyte proliferation without the need for cell 

to cell contact. Ren et al. found that the pro-inflammatory cytokine-activated 

MSCs could secrete chemokines to recruit lymphocytes (101). Then the MSCs 

concentrated their action on the localized lymphocytes by secreting TGF-β and 

NO with two effects: inhibition of  proliferation and promotion of apoptosis.  

Yang et al. reported that soluble factors from the culture supernatant of MSCs 

could suppress T cell proliferation, in which IL-10 and IDO played important 

roles (131). TGF-β, HGF, Prostaglandin E2, HLA-G5, IL-6, CCL2, CCL5 and other 

chemokines have also shown that the paracrine mechanism of MSCs can 

modulate regulatory T cells (Tregs) and the immune response (38,83,104,117). 

Polchert et al. found that IFN-γ pre-treated MSCs reduced GvHD more 
efficiently than the MSCs without IFN-γ pre-treatment (97). It has been 
suggested that the immunomodulatory ability of MSCs is activated by 
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inflammatory factors secreted by lymphocytes. In the acute HvGR (host versus 
graft reaction) and GvHR, the activated Th1 cell releases cytokines such as IL-2 
and IFN-γ to promote lymphocyte proliferation and amplify the immune 
response. Alternately, these pro-inflammatory cytokines also reverse the 
immunosuppressive properties of MSCs, which release soluble factors in turn to 
suppress HvGR and GvHR.  

 MSCs have demonstrated their practical application in terms of HvGR and 

GvHR in vivo. Aksu et al. reported that autologous MSCs could limit the toxicity 

of allogeneic bone marrow transplantation and delay GvHD onset when co-

infused four-times with unmodified donor bone marrow (3). Ge et al. found 

that infusion of MSCs with rapamycin achieved long-term cardiac allograft 

survival by inducing Tregs that could suppress the acute rejection response and 

induce immune tolerance (31). Other studies have demonstrated that soluble 

factors such as TGF-β can promote the viability of regulatory cells, indicating an 

indirect pattern to modulate the immune response (129,117). Despite these 

advances, the use of the paracrine effects of activated MSCs to treat organ 

transplantation and GvHD remains in its infancy and further animal and human 

studies are required.  

 

3.2 Paracrine factors and cardiovascular diseases 
MSCs have emerged as a very promising cell type for the treatment of 

cardiovascular disease both in small animal studies and large animal models 

(15,52,66,77,95,105,119,131). The exact extent to which these cells form new 

cardiac myocytes and improve cardiac function nonetheless remains highly 

controversial (7,80). The disproportion between tremendous functional 

recovery and low rates of cell engraftment and persistence suggests an indirect 

primary mechanism other than structural integration of transplanted cells into 

ischemic myocardium. Thus the ability of MSCs to produce a variety of trophic 
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and immunomodulatory factors that can directly promote cell survival and 

reduce inflammation post-transplantation has attracted great 

attention.(7,33,80,118). While Gnecchi and Kinnaird have already focused on 

the cardioprotective properties of MSCs via a paracrine effect, the current focus 

is to locate the most efficient factors with high tissue specificity, or optimal 

design with synergistic effects to maximize myocardial survival post infarction. 

For instance, Gnecchi’s research identified Sfrp2 (secreted frizzled related 

protein 2) as the most dramatically up-regulated protein (100 fold in 

transcriptional level) in the Akt-MSCs. As an extension of this research, He W 

and others confirmed the tissue regenerative capacity of Sfrp2 by simple 

administration to the infarcted areas (4,37,79). Zhang et al. proposed that 

combined treatment with Wnt11 (wingless-type MMTV integration site family, 

member 11) and BMP-2 (bone morphogenetic protein 2) increased the 

cardiomyogenic potential of MSCs and raised the possibility that 

preconditioning MSCs with inducible factors might augment the 

transdifferentiation odds (135). Indeed, the paracrine mechanism of MSCs 

facilitates the discovery and discrimination of the most powerful soluble 

factors, and above all, makes possible the broader future application and 

conversion of these factors into novel therapeutic applications for clinical off-

the-shelf therapy. Kanki et al. showed intracoronary injection of SDF-1 could 
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improve ventricular function in experimental ischemia/reperfusion injury even 

3 hours after the onset of ischemia (50). In a clinical trial of 178 patients, high-

dose VEGF administration improved treadmill tests, angina class, and quality of 

life assessments at day 120 (39). Nonetheless not all the beneficial cytokines 

identified from the MSC-CM (conditional medium of mesenchymal stem cells) 

achieved satisfactory consequences as expected. For example, G-CSF 

(granulocyte-colony stimulating factor) alone did not yield any encouraging 

alteration in MI patients, despite its definite safety and feasibility (102,121). 

The reasons for this contradiction might be varied: the dose, timing and 

delivery method need to be optimized; the combination of cytokines at 

different concentrations and time points might heighten the synergistic effects. 

Though these issues still wait to be addressed, it is worth noting that non-cell-

based alternative cytokine delivery does circumvent the major drawbacks such 

as quantification control, immunological rejection, concerns about infection 

and carcinogenesis, compared with direct stem cell injection. It also facilitates 

the establishment and optimization of curative standard.  

 
4. Exosome and mitochondrial transfer for tissue repair 

Tim and colleagues demonstrated that intravenous and intracoronary 

injection of MSC-CM significantly restored ventricular performance in a porcine 

model of IR injury (118). Of note, only the CM containing products >1000kDa 

(100-220nm) contributed to the cytoprotective effects, implying that the 

paracrine signaling might function as a large complex rather than a single small 



Copyright © 2013 Cognizant Communication Corporation 

CT-1016 Cell Transplantation Epub; provisional acceptance 04/22/2013        18 

 

molecule. Co-immunoprecipitation by ultracentrifugation identified that these 

particles contain plasma membrane phospholipids such as cholesterol, 

sphingomyelin, and phosphatidylcholine, as well as exosome-associated 

proteins CD81, CD9, and Alix. Electron microscopic examination of the size and 

morphology revealed that this group of bioactive particles released by MSCs 

were exosomes (59). The purified exosomes at a dose of 0.4ug were then 

delivered to an IR injury 5 minutes prior to reperfusion, and showed 

comparable capacity in reducing infarct size to that of a 3.0ug dose of MSC-CM. 

Proteomics, transcriptomics, miRNA array or other high-throughput 

technologies are practical to exploit the content in the vesicles. With proteomic 

profiling using mass spectrometry and antibody array, Lai et al. reported 857 

proteins in the exosome proteome, in which 20S proteasome was determined 

as the main contributor to cardioprotection by reducing the amount of 

misfolded proteins during acute MI (60). It appears that MSCs are working in a 

more intelligent and efficient way than we expect by encapsulating functional 

proteins or regulatory RNAs into exosomes, via whose phospholipid envelop a 

rapid intracellular delivery pathway is created, thus allowing MSCs to mount an 

early response to stimuli.  

Contrary to this, the most recent work by Islam et al. provided in vivo 

evidence of mitochondrial transfer from MSCs to host cells in the ALI model 

induced by LPS (lipopolysaccharide) instillation (42). With live imaging, they 

observed instilled MSCs attached to the alveoli and intercellular dye exchange 

began, suggesting the involvement of gap junctional channels (GJCs). FRAP 

(fluorescence recovery after photobleaching) occurred in alveolus-attached 

MSCs, affirming the existence of GJCs. The FRAP could be blocked by a non-

specific GJC blocker or the specific connexin43 (Cx43) inhibitor, providing 

further reverse proof of the involvement of GJCs and Cx43 in cell-cell contact 

between MSCs and the alveolar epithelium. The expression of GJC-competent 

Cx43 was indispensable to mediate a successful mitochondrial transfer, 

supported by the evidence that either mutant Cx43 or ablation of Cx43 led to 

failure of GJC formation. The internalized mitochondria acted functionally by 

increasing the ATP concentration in the recipient pulmonary alveoli, leading to 

bioenergetic restoration and protection in the acute phase of lung injury. 

Nevertheless, this successful delivery also compromised the energy of MSCs 
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with a resultant decrease in other cell behaviors that benefit the surrounding 

or remote areas, such as secretion capability, migration ability, and exosome 

packaging. It was nevertheless certain that MSCs played multiple roles, trying 

to repair or normalize the tissue during disease emergencies, though the 

combined or neutralized effects and the proportions of each substation among 

these different modes of action require further investigation. 

 

5. Perspective 
It is undisputable that MSC therapy contributes to restoration of structural 

integrity and functionality of damaged tissue, but their fundamental and 

detailed biological mechanisms require further elucidation. The many effects of 

MSCs , including trans-differentiation, cell-fusion, paracrine, exosome secretion 

and mitochondrial transfer, each have drawbacks that need to be addressed 

before maximal benefit is obtained: trans-differentiation and cell fusion seem 

to occur in too low a frequency to account for the meaningful improvement; 

exosome secretion and mitochondrial transfer faces the problem of finding a 

robust and scalable cell source with sufficient quantity and quality to generate 

exosome encapsulation and energy transportation. With regard to paracrine 

actions, the limitations must not be overlooked. For instance, some cytokines 

or chemokines released from MSCs may be harmful, such as TNF-α (tumor 

necrosis factor α) and IL-6. This may explain the modest benefit of MSC 

transplantation observed in clinical trials (124). Nonetheless mounting 

evidence suggests that the secretion profile can be readily improved by 

preconditioning or genetic manipulation. Furthermore, the paracrine action 

provides the possibility to apply one trophic factor alone, or combined as a 

cocktail therapy for disease-orientated treatment. The advantage of MSC-

based therapy is that it can maintain a sustainable moderate release and 

concentration of the trophic factors that might be varied according to diverse 

microenvironments and situations. It seems that these cells are  working 

smartly and systematically, to adapt themselves in harsh disease conditions, 

with the aim restoring physiological status. Thus, the paracrine effects of MSCs 

hold great promise as a  controllable, manageable and feasible route, by which  

the transition from bench to bedside becomes more feasible in the near future. 
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Figure legend 

Figure 1. Action modes of MSCs.  

1) Trans-differentiation: Mesenchymal Stem Cells (MSCs) possess the ability to 

differentiate into another cell type, including ectoderm, mesoderm and 

endoderm; 2) Cell-fusion: MSC fuses with another cell to form a multinuclear 

cell known as syncytium; 3) Mitochondrial transfer: MSC makes contact with 

the adjacent cell, and a gap junctional channel (GJC) is built. MSC transfers its 

mitochondria to the impaired cell through this GJC; 4) Microvesicles: MSC 

releases microvesicles containing RNA, mRNA or/and protein to the 

microenvironment. The cell nearby engulfs these microvesicles through 

endocytosis process; 5) Paracrine: MSC secrets bioactive cytokines and 

chemokines that act on immunomodulation, angiogenesis/arteriogenesis, anti-

apoptosis, anti-oxidation and cell migration/stimulation. 
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