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Abstract

Secretin (SCT) is a classical peptide hormone that is synthesized and released from the gastrointestinal tract after a meal. We
have previously shown that it acts both as a central and peripheral anorectic peptide, and that its central effect is mediated
via melanocortin system. As peripheral satiety signals from the gastrointestinal tract can be sent to the brain via the vagal
afferent or by crossing the blood-brain barrier (BBB), we therefore sought to investigate the pathway by which peripheral
SCT reduces appetite in this study. It is found that bilateral subdiaphragmatic vagotomy and treatment of capsaicin, an
excitotoxin for primary afferent neurons, could both block the anorectic effect of peripherally injected SCT. These
treatments are found to be capable of blunting i.p. SCT-induced Fos activation in pro-opiomelanocortin (POMC) neurons
within the hypothalamic Arcuate Nucleus (Arc). Moreover, we have also found that bilateral midbrain transaction could
block feeding reduction by peripheral SCT. Taken together, we conclude that the satiety signals of peripheral SCT released
from the gastrointestinal tract are sent via the vagus nerves to the brainstem and subsequently Arc, where it controls central
expression of other regulatory peptides to regulate food intake.
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Introduction

SCT, a 27-amino acid peptide hormone primarily produced

from duodenal S cells, belongs to the vasoactive intestinal

polypeptide (VIP)/secretin/glucagon/growth hormone-releasing

hormone (GHRH) peptide family [1]. The physiological role of

this gastrointestinal hormone is to provide an optimum condition

for food digestion in the intestine by regulating gastric secretion

and emptying [2–5] and stimulating the release of bicarbonate-

enriched fluid from the pancreas [6,7] and bile from the liver [8,9].

Plasma SCT levels increase postprandially [10–13], suggesting

that SCT may function as a peripheral satiety signals. We have

recently identified SCT and its receptor expression in the

hypothalamus [14,15], which is a region implicated in energy

homeostasis, and that SCT is an anorectic peptide, which inhibits

food intake in mice when administered peripherally or centrally

[16]. SCT could also activate POMC neurons by augmenting

POMC mRNA levels in the Arc, suggesting a role for Arc POMC

in mediating the anorectic action of SCT.

Vagal afferent fibres of the vagus nerve are the major

neuroanatomical structure connecting the alimentary tract to the

nucleus of the solitary tract (NTS) in the hindbrain. Gut hormones

transmit satiety signals to the brain via the vagal afferent pathways,

bloodstream or both. SCT is capable of crossing the BBB and

reach the brain by transmembrane diffusion via a non-saturable

mechanism [17] and SCTR transcript and protein are detected in

the Arc and PVN [16], suggesting that circulating SCT may

directly activate neurons in hypothalamic centres for appetite

control. However, SCTR was found in vagal afferents, and also

subdiaphragmatic vagotomy was able to block i.p.-SCT-induced

Fos expression in the rat brain [18], suggesting an alternative

pathway that peripheral SCT may communicate with the central

feeding centre via vagus nerve. In this study, we investigated the

potential role of vagus nerve in relaying SCT-induced signal for

satiety to the brain. We studied the effect of peripherally

administered SCT on food intake in mice with subdiaphragmatic

vagotomy and capsaicin, a specific afferent neurotoxin, treatment.

We also examined the effect of these procedures on SCT-induced

Fos expression in POMC neurons in the Arc.

Materials and Methods

Animal Handling
The procedures of animal care and handling were in

accordance with the protocol approved by the Committee on

the Use of Live Animals in Teaching and Research (CULATR) of

the University of Hong Kong. All experiments were carried out

using wild-type adult male mice (20–25 g), which were kept in a

temperature-controlled room with a 12-h light/dark cycle. Mice

were fed ad libitum with standard rodent chow (no. 5010, Test

Diet, IN) and water, unless otherwise stated, and for those that

were subjected to surgical experiment, subcutaneous burenorphine

(0.1 mg/kg, q12 h) and amoxicillin (100 mg/kg, 12–24 hourly)

were administered for the 5 days of recovery time as analgesia and

anti-flammatory drug.

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e64859



Subdiaphragmatic Vagotomy
Mice were anesthetized and surgery was conducted in aseptic

conditions. The stomach and lower oesophagus were exposed after

an upper midline laparotomy. The stomach was gently retracted,

and the anterior and posterior vagal trunks were exposed and

transected. In sham-operated mice, a similar abdominal incision

was made; the vagal trunks were identified but not transected. All

operated mice were allowed to recover 2 weeks prior to ICV

experimentation.

Capsaicin Treatment
Mice were treated with increasing doses of capsaicin in one

daily intra-peritoneal (i.p.) injections over 3 consecutive days

(8 mg/kg, 20 mg/kg and 30 mg/kg). Capsaicin was dissolved in

10% ethanol and 10% Tween 80 in 0.9% sterile saline. To

counteract respiratory impairment associated with capsaicin

administration, mice were pretreated with atropine (0.2 mg/kg),

terbutaline (0.2 mg/kg), and aminophylline (20 mg/kg). Control

mice underwent the same experimental procedure described

above, but were injected with vehicle without capsaicin. Feeding

studies were performed 2 weeks after the last capsaicin injection.

To check the effectiveness of capsaicin pretreatment, the

abdominal constrictions in response to i.p injection of 0.01%

acetic acid were evaluated. Mice that didn’t display abdominal

constrictions to the injection had the vagal afferent successfully

lesioned.

Bilateral Midbrain Transection
Bilateral midbrain transection was performed at a site rostral to

the NTS to investigate whether the ascending efferents of the NTS

are necessary in mediating i.p. SCT effects on food intake. Briefly,

the head of the mouse was fixed in a stereotaxic instrument. A steel

knife (1 mm wide) was lowered into the brain in a coronal plane,

bilaterally 0.5 mm from the midline, 3.5 mm caudal to the

bregma, and 4.5 mm ventral to the dura. For sham operation, the

skull was exposed and two holes were drilled on both sides of the

midline, while the brain was left intact. After the feeding test, the

brains were removed and the exact location of the lesion was

verified histologically.

Intracerebroventricular (i.c.v.) Cannulation and Injection
Mice were implanted with a permanent 11-mm-long, 21-gauge

stainless steel cannula projecting to the lateral ventricle, according

to the co-ordinates of Paxinos and Franklin (2001). (Coordinates

relative to bregma were as follows: i.c.v, 1.00 mm lateral, 0.5 mm

posterior, and 2.0 mm ventral). Cannula placement was confirmed

by injection of a dye and injections were done using PE-10 tubing

attached to an injector and a 10-ml Hamilton syringe. All animals

were allowed to recover from surgery for a minimum of 5–7 days,

then artificial cerebrospinal fluid (aCSF; prepared according to

Alzet protocol, 5 ml) and SCT (454 ng/5 ml; 60677; AnaSpec, San

Jose, CA) were injected into the lateral ventricle.

Feeding Studies
Experimental mice (sham-operated, vagotomized and capsaicin-

treated) were fasted for 18 h before study. During the early light

phase (10:00), mice were injected with SCT (i.c.v.: 0.15 nmol; i.p.:

5 nmol), whereas control mice were treated either i.c.v.-aCSF or

i.p.-PBS. After injection, mice were individually put in metabolic

cages provided with preweighted amount of chow. Cumulative

food intakes were measured at specific time points after injection.

Immunohistochemistry
Immunohistochemical staining was performed on paraffin-

embedded brain sections (7 mm). Briefly, sections were deparaffi-

nizated, rehydrated, and permeabilized in PBS-BT (phosphate-

buffered saline supplemented with 2% bovine serum albumin and

0.5% Triton X-100). Thereafter, endogenous peroxidase activity

was blocked by treatment with 3% hydrogen peroxide, followed by

microwave antigen retrieval. After blocking with normal serum,

sections were incubated with primary antibody, and immunore-

active signals were detected using either the Vectastain ABC Elite

kit (PK-6101, Vector Laboratories, Burlingame, CA), or proceed

to fluorescence secondary antibody incubation for visualization

using Zeiss LSM 510 Meta computerized image analysis system.

The number of positive immunoreactive cells was counted from

both sides of the brain. The sum of the number of Fos-expressing

cells on both sides was calculated in each animal and used for

statistical analysis. Primary antibodies used were: 1:500 rabbit

anti-Fos Ab (Santa Cruz Biotechnology, Santa Cruz, CA) and

1:5000 goat anti-POMC Ab (Abcam, Cambridge, MA; Raised

against synthetic peptide C-NAIIKNAYKKGE, corresponding to

C terminal amino acids 256–267 of Human POMC). Secondary

antibodies used were: 1:300 Alexa Fluor 488 donkey anti-rabbit

IgG (Invitrogen, Carlsbad, CA) and 1:300 Alexa Fluor 555 donkey

anti-goat IgG (Invitrogen).

Statistical Analysis
All data are shown as means 6 SEM and were analyzed by two-

way ANOVA with Bonferroni posttests using the computer

software PRISM (version 4.0; GraphPad).

Results

Peripheral SCT Decrease Food Intake via the Vagal
Afferent Nerve

We have previously demonstrated that both centrally injected

and peripherally administered SCT decreases food intake in mice,

and that the anorectic effect of centrally injected SCT is mediated

by the melanocortin system [16]. To investigate the pathway

through which peripherally injected SCT reduces food intake, the

effect of vagotomy on SCT-injected and control mice was studied.

A single i.p. administration of SCT (5 nmol) was shown to

significantly decrease food intake in sham-operated mice, but this

inhibitory effect on food intake was abolished in vagotomized mice

(Figure 1A). Since the subdiaphragmatic vagus is composed of a

number of branches, including the thick myelinated fibers, which

carry information mainly from the mechanoreceptors of the heart

and blood vessels [19], and a number of efferent and afferent

signals to and from a variety of abdominal organs, a specific

afferent neurotoxin, capsaicin, that kills only the unmyelinated

fibers, was used to further characterize if vagal afferent is involved

in the inhibition of food intake by SCT. Vehicle-treated mice

exhibited significant suppression of food intake after i.p. SCT

(5 nmol); whereas in capsaicin-treated mice, i.p. SCT failed to

suppress feeding (Figure 1B). This suggested that unmyelinated

fibers in the vagus nerve are responsible for carrying the signals

from i.p.-injected SCT to the higher center. Furthermore, as

vagotomy and capsaicin treatment were only effective in

abolishing the effect of peripherally administered SCT but not

centrally injected SCT (Figure 1C, 1D), therefore, these data

suggest that the vagal afferent is essential in mediating the

anorectic action induced by peripherally SCT.

Vagal Input Mediates Anorectic Effects of Secretin
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Peripheral SCT Activates POMC Neurons in the Arc via
the Vagal Afferent Nerve

We have previously shown that peripherally injected SCT

elevates POMC and Fos expression in POMC neurons in the Arc

[16], suggesting peripheral SCT modulates food intake in part via

the POMC neurons. To study if this signal is sent via the vagus

nerve to Arc, vagotomy and capsaicin treatment were again used.

In POMC neurons of sham-operated mice, i.p.-SCT could

consistently induce Fos expression, whereas in both capsaicin-

treated and vagotomized mice, i.p.-SCT-induced Fos expression

in POMC neurons was reduced (Figure 2), suggesting that SCT

signals its satiety effects to the higher centre through the vagus

nerve.

Peripheral SCT Causes Neuronal Activation in the
Brainstem

The brainstem and the hypothalamus are reciprocally connect-

ed. Within the brainstem, the dorsal vagal complex (DVC),

consisting of the area postrema (AP), NTS, and the dorsal motor

nucleus of the vagus nerve (DMV), is crucial for interpretating and

relaying of peripheral signals including the vagal afferents to the

hypothalamus. To determine if the anorectic effect of peripheral

SCT is sent via the brainstem to the Arc, Fos expression, a marker

for neuronal activation, was monitored by immunohistochemical

examination after peripheral injection of SCT. We found that i.p.-

SCT could increase the number of Fos-positive cells in the AP,

NTS and DMV, whereas subdiaphragmatic vagotomy significant-

ly decreased the number of i.p.-SCT-induced Fos positive cells in

these areas (Figure 3A). This data is consistent with the previous

Figure 1. Effect of vagotomy (A,C) and capsaicin treatment (B,D) on i.p. 5 nmol SCT (A,B)- and i.c.v. 0.15 nmol SCT (C,D)-induced
food intake. Food intake amount were represented as cumulative value at different time points (1, 2, 4, 6, and 8 h) after SCT treatment. Data are
expressed as the means 6 SEM (n = 10/group). * p,0.05, ** p,0.01 compared with the sham-operated mice injected with i.p.-PBS/i.c.v.-aCSF. N
p,0.05, NN p,0.01 compared with surgical/chemical-treated mice injected with i.p.-PBS/i.c.v.-aCSF.
doi:10.1371/journal.pone.0064859.g001
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Figure 2. The effect of vagotomy, capsaicin treatment, and sham operation on SCT-induced Fos expression in POMC neurons.

doi:10.1371/journal.pone.0064859.g002
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finding that showed a dose-dependent increase in the number of

Fos-positive neurons in AP, NTS, and DMV [18], and indicated

that the vagus nerve is responsible for relaying the peripheral SCT

anorectic signal to the central nervous system via the brainstem.

To further substantiate the role of vagus pathway in mediating

i.p.-SCT effect on food intake, midbrain transection was

performed at a site rostral to the NTS to cause lesion in areas

containing the ascending efferents of the NTS. Our data showed

that transection of all ascending NTS projection could block the

ability of i.p.-SCT in reducing food intake (Figure 3B), supporting

that neural pathway ascending from the NTS play a role in the

transmission of SCT-induced anorectic signals to the hypothala-

mus, and that the route for i.p.-SCT induced anorectic behaviour

is gut vagus nerve NTS forebrain regions.

Discussion

The hormone SCT is released from intestinal enteroendocrine

S-cells after a meal, and its action in regulating pancreatic exocrine

secretion of water and biocarbonate, gastric acid secretion, and

gastric motility are well studied. Recently, our laboratory has

demonstrated that the peptide, when injected peripherally, could

also act as a satiety signal, decreasing food intake and altering the

expression of neuropeptides within the Arc [16]. In this study, we

further substantiate this finding and demonstrate the role of the

vagus nerve, particularly the non-myelinated fibers in the afferent

pathway, in mediating SCT’s effect on appetite. We found that

vagus nerve pathway is specifically employed by peripheral SCT,

but not centrally expressing SCT in regulating the feeding

behavior, as bilateral subdiaphragmatic vagotomy and capsaicin

treatment could only block the anorectic effects, as well as the

induced activation of POMC neurons in the Arc, triggered by i.p.-

SCT, but not i.c.v.-SCT. This finding clearly indicates that vagal

afferents are required for the action of circulating SCT.

Supporting this notion, SCT was shown to regulate gastric

relaxation [20], pancreatic secretion [21], as well as gastric acid

secretion [22] via the vagal afferent pathways originating in the

gastrointestinal mucosa. In addition, its receptor was previously

found to be expressed in the nodose ganglion of the vagus nerve

[18], and is axonally transported and accumulated in vagus nerve

fibers that terminate in the forestomach [23,24]. All these findings

provide anatomical evidence to support the functional role of SCT

in modulating appetite via the vagus nerves.

The pathways through which vagus nerves transmit SCT-

induced pancreatic exocrine secretion of fluid and bicarbonate,

gastric acid secretion, and gastric motility have previously been

suggested [20–22]. The effect was believed to be mediated by

NTS, a region within the brainstem integrating and relaying

information between the gut via the vagus nerve and other second

order neurons in the higher centre, including Arc, dorsomedial

and PVN [25] in the hypothalamus. Previous report suggested that

i.p.-SCT could induce Fos expression in the NTS and Arc through

the vagal pathway [18], and depolarize NTS neurons through

activation of a nonselective cationic conductance [26]. Similarly,

we now show a direct neuronal activating effect of i.p.-SCT on AP,

NTS and DMV in sham-operated mice but not in vagotomised

and capsaicin-treated mice. In addition, we also show that bilateral

midbrain transection could block i.p.-SCT-induced feeding

reduction. Since we have previously shown the anorectic action

of SCT via its effects on hypothalamic arcuate POMC neurons

[16], we propose that SCT released from the gut may act in a

paracrine fashion to activate SCTR in the vagal afferents,

signalling to the NTS, which in turn communicates with the

hypothalamus so as to modify appetite.

Apart from SCT, many other gut peptides have also been

shown to influence appetite via the vagal afferent pathway.

Including in the list are glucagon-like peptide 1 (GLP-1) [27],

peptide YY [28], amylin [29], and cholecystokinin (CCK) [30,31].

However, among these, GLP-1, CCK, and amylin all exemplify

gut peptide that could inhibit appetite via vagal and non-vagal

routes of communication with the brain [29,32]. It was shown that

reduction of food intake by i.p. injection, but not intravenous

injection, of GLP-1 and CCK is abolished by capsaicin treatment

or vagotomy [27,32], whereas in the case of amylin, visceral

afferents do not even seem to be involved in mediating the

anorectic effect of i.p. administered amylin [29]. One possibility is

that these peptides may have access to specific brain sites,

including AP, where the BBB is incomplete as in the case of

amylin. The other possibility is that these peptides could directly

diffuse across the BBB as in the case of GLP-1 [33]. SCT have also

been shown to have the ability to cross the blood-brain barrier

[17]. However, as vagotomy and capsaicin treatment can both

completely attenuate its anorectic effect, as well as its neuronal

activating effect in AP, NTS and DMV, when i.p. was used as a

route for SCT administration, therefore, modulation of food

intake by i.p. SCT can be considered to neither involve a direct

binding of the peptide to its receptor in specific brain regions lying

outside the BBB, nor a direct diffusion of the peptide across the

BBB. In conclusion, we believed that the satiety signal of

peripheral SCT released from the gastrointestinal tract is sent

via the vagus nerves to the brainstem and subsequently Arc, where

it controls central expression of other regulatory peptides to

regulate food intake.
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