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Abstract

Virtualization based cloud computing hosts networked applications in virtual machines (VMs), and provides each VM
the desired degree of performance isolation using resource isolation mechanisms. The current resource sharing methods
for virtual machines (VMs) mainly focus on resource proportional share such as CPU amount, memory size and I/O
bandwidth, whereas ignore the fact that I/O latency in VM-hosted platforms is mostly related to resource provisioning
rate. Even the VM is allocated with adequate resources, if they can not be provided in a timely manner, problems
such as network jitter will be very serious and significantly affect the performance of cloud applications like internet
audio/video streaming. This paper systematically analyzes the causes of unpredictable network latency and proposes
a combined solution to guarantee network performance isolation: (1) in the hypervisor, we design a proportional share
CPU scheduling with real-time support to reduce scheduling delay for network packets; (2) in network traffic shaper, we
introduce the concept of smooth window with feedback control to smooth the packet delay. We implement our solutions in
Xen 4.1.0 and Linux 2.6.32.13. The experimental results with both real-life applications and low-level benchmarks show
that our solutions can significantly reduce network jitter, and meanwhile effectively maintain resource proportionality.

1. Introduction

Cloud computing is a new computing paradigm to trans-
form computing services into a utility, just as providing
electricity in “pay-as-you-go” model. Virtualization tech-
nologies are increasingly adopted in modern data centers
to host cloud applications. By giving virtual machines
(VMs) the illusion of owning dedicated physical resources,
multiple VMs can share the single physical infrastructure.
In order to guarantee the performance isolation of co-
located VMs, Virtual Machine Monitors (VMM, also called
hypervisor) such as VMware [1], Xen [2] and KVM [3], or-
chestrate sophisticated resource controls to CPU, memory
and I/O allocations.

Effective management of networking resource is funda-
mental to data centers, which offers significant benefit of
performance predictability for applications. The burgeon-
ing of various types of cloud applications like audio/video
streaming, interactive online gaming and e-commerce, have
fueled research interest to focus on the design of virtualization-
based service provisioning with satisfactory Quality-of-Service
(QoS) guarantee. For example, Amazon CloudFront [4]
uses a global network of edge locations to deliver streaming
content. Since these applications are typically I/O inten-
sive with special requirements for I/O latency, arbitrary

∗Corresponding author. Tel: +852 2857 8463; Fax: +852 2559
8447

Email addresses: lwcheng@cs.hku.hk (Luwei Cheng),
clwang@cs.hku.hk (Cho-Li Wang)

URL: http://www.cs.hku.hk/~lwcheng (Luwei Cheng),
http://www.cs.hku.hk/~clwang (Cho-Li Wang)

sharing of resource infrastructure can lead to significant
performance interference among VMs. Nowadays, running
forty to sixty VMs per physical host is not rare. With
hardware becoming more and more powerful, the consoli-
dation level will be much higher in the future, which makes
the I/O problems more challenging. The inevitable trend
requires more effective I/O isolation techniques to provide
predictable I/O performance for VMs.

Unlike most other applications which are comparatively
more tolerant of underlying platform performance, me-
dia applications are far more demanding. Early studies
[5, 6, 7] showed that network delay with small variation is
tolerable and does not affect user-received media quality.
This is because the clients usually adopt buffer mecha-
nism to store certain amount of media data before playing
them. However, the network delay with large jitter (varia-
tion in packet arrival time) will make the commonly used
buffer mechanism ineffective and significantly degrade the
received video quality.

In this paper, we systematically analyze the causes of
unpredictable network latency in VM-hosted platforms,
in both technical discussion and experimental illustration.
We identify that the I/O latency is jointly caused by VMM
CPU scheduler and network traffic shaper, and then ad-
dress the problem in these two parts. In our solutions, we
consider the design goals of resource provisioning rate and
resource proportionality as two orthogonal dimensions. In
VMM CPU scheduler, we characterize VM’s I/O as two
types: self-initiated I/O and event-triggered I/O. We map
them into periodic domains and aperiodic domains, and
then propose an algorithm which supports both real-time
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scheduling and CPU time proportional. In network traf-
fic shaper, we introduce the concept of smooth window to
mitigate the network jitter caused by varied packet send-
ing delays. Meanwhile, in order to guarantee maintain net-
work bandwidth allocation is not violated, the closed-loop
feedback control theory is applied to adaptively control the
packet sending rate by dynamically adjusting the smooth
window position.

The rest of this paper is organized as follows. In Section
2, we systematically analyze the causes of network delay in
VM-hosted platforms, and in Section 3, we introduce our
design and architectures. The Implementation is presented
in Section 4 and evaluation results are shown in Section 5.
Section 6 discuss related work and Section 7 concludes. In
appendices, we give detailed descriptions of the algorithms.

2. Problem Analysis

We take Xen as the example to systematically analyze
what factors affect the network latency perceived by end
users in VM-hosted platforms. Figure 1 illustrates how
guest domain transmits network data to the outside world
under split-driver model. Specifically when the guest do-
main is scheduled ( 1⃝), the I/O from VM will firstly be
sent to its frontend driver ( 2⃝); the frontend driver will
transfers the ownership of the memory pages to its corre-
sponding backend driver and notify the driver domain via
event channel mechanism ( 3⃝). When the driver domain
is scheduled by VMM CPU scheduler ( 4⃝), it will see the
pending I/O and get data from shared memory ( 5⃝); then
the data will be handed over to the network traffic shaper
for rate limiting ( 6⃝), before sending it to real device driver
for transmitting ( 7⃝).
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Figure 1: The path of outgoing I/O in VM-hosted platform

The data travel path from end users to virtual ma-
chine follows the reverse path, as shown in Figure 2. Com-
pared with Figure 1, the main difference for ingress I/O
is that network administrators seldom set restrictions on
the server side for rate limiting. First, the requests from
users are usually small network packets whereas the replied
data from the server can be quite big, most commonly zone
transfers; Second, since the number internet users is huge

and they are mostly anonymous, in most cases it is unnec-
essary and also impractical to control the users’ behaviors
each and every.
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Figure 2: The path of ingress I/O in in VM-hosted platform

It can be seen that both guest domains and driver do-
main suffer scheduling delays from VMM CPU scheduler,
which will be imposed on I/O packets’ sending delays. For
outgoing I/O from guest domains, since the driver domain
acts as the I/O proxy, only when the driver domain is
scheduled the traffic shaper inside it can take effect. In
network traffic shaper, rate limiting is achieved by delay-
ing packets: if the VM’s bandwidth consumption does ex-
ceed its allocation in a certain period, the current packet
can be processed immediately; otherwise, the packet has
to be delayed for some time before transmission.

Lattotal = Latvmm + Latshaper (1)

Latvmm = Latdom0 + LatdomU (2)

The network bandwidth can be easily controlled in net-
work traffic shaper, but network latency can be unpre-
dictable as both VMM CPU scheduler and network traf-
fic shaper contribute to it. The current resource sharing
methods for VMs mainly focus on resource proportional-
ity maintaining, whereas ignore the fact that I/O latency
is mostly related to resource provisioning rate. The re-
source isolation with only quantitative promise does not
sufficiently guarantee performance isolation, as resource
provisioning with different time granularity can result in
different response speed to VM’s I/O. Even the VM is al-
located with adequate resources such as CPU time and
network bandwidth, large I/O latency can still happen if
the resources are provisioned at inappropriate moments.
So in order to achieve performance isolation, the prob-
lem is not only how many resources each VM gets, but
more importantly whether the resources are provisioned
in a timely manner.

From the perspective of VMMCPU scheduler, the schedul-
ing entity it faces is virtual CPU (vCPU) and once the
vCPU is scheduled, batches of I/O packets can be han-
dled immediately with almost no delay. Therefore, the
VM’s I/O latency is actually VM’s scheduling delay. Since
VMM CPU scheduler has no direct control on I/O packets,
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it is infeasible to ‘smooth’ the latency. More reasonably
the scheduling delay should be ‘reduced’ in a best-effort
way or in the user-specified manner, because if the delay
can be reduced to a low level, the network jitter will also
be low. In network traffic shaper, the situation is different
in that it directly schedules network packets so it can ex-
plicitly control the delay of each packet, thus it is possible
for us to apply smoothing policy.

2.1. Characterizing VM’s I/O type

In virtualized environment, the notifications from VMM
to VMs or between VMs are mostly delivered through
event mechanism. Xen adopts event mechanism to replace
hardware interrupt for asynchronous I/O delivering. The
VM is marked with external event pending so it perceives
the waited I/O. VMM CPU scheduler also takes advan-
tage of event mechanism to make scheduling decisions.
Xen’s credit CPU scheduler adopts boost mechanism to
accelerate I/O speed which favors to schedule the domain
that receives external events. This works well for VMM to
schedule the driver domain because all I/O events must be
delivered to the driver domain first for proxy, no matter
it is incoming I/O to guest domain or outgoing I/O from
guest domain. However, the vulnerability of boost mech-
anism is that, not all I/O for guest domains are event-
triggered. In the following two subsections, we character-
ize VM’s I/O into two types: external event-triggered I/O
and self-initiated I/O. We use real examples to illustrate
the rationality of this classification.

2.1.1. I/O Triggered by External Events

This type of I/O is identified as that the end users
are not only the I/O receivers but meanwhile, they are
also I/O initiators. A very good example can be found in
VM-hosted web servers. Each time when the users want
to obtain web pages, files and etc, they will send out an
HTTP request to the VM, and once the request arrives
the VM is notified by receiving external events. In this
way, the hypervisor knows that there is pending I/O for
VM, so it can take advantage of this knowledge to schedule
the VM as soon as possible. After the VM is scheduled,
it can immediately satisfy the users’ requests by sending
back the specified files.

End User VMM VM

1: request for data
2: deliver external event

3: schedule the VM

4: push the data

5: trasmit the data

Figure 3: The data delivery model of event-triggered I/O

It is easy to control the latency of this I/O type be-
cause it follows the “request-reply” model. The end users
will explicitly notify the hypervisor which VM needs to be
scheduled, so the I/O delay can be precisely determined
by controlling the scheduling delay of the VM. From the
perspective of the VM, it needs to be scheduled in the real
time way only when the external events are received. In
other cases, the VMM CPU scheduler can simply focus on
CPU time proportional share, regardless of the scheduling
frequency of VMs.

2.1.2. Self-initiated I/O from Inside VM

This type of I/O has no external triggering source but
it must also be issued in a timely manner. Examples
can be found in applications for the purpose of control-
ling and monitoring: the server periodically sends instruc-
tions/requests to the clients to perform status polling, in-
formation updating and etc. Since the actions of the clients
are totally driven by the server, if the instructions can
not be issued by the server within the expected period,
the job of the clients will inevitably be delayed. Another
common example can be seen in UDP-based applications,
such as RTP [8] media streaming. The end users are only
I/O receivers and never tell the server which frames they
currently need. But user-perceived video quality totally
depends on the way that media data is delivered by the
server. If the desired data frame does not arrive at the
expected moment, the user experience will be seriously af-
fected. Unlike event-triggered I/O, this type of I/O is actu-
ally “self-initiated” from inside VM. The VMM scheduler
has no knowledge of when the VM should be scheduled,
but the user-perceived I/O latency completely relies on
how the VM is scheduled. Once the VM yields the CPU
time (the idle process in guest OS), it can only rely on
system virtual interrupts (such as VIRQ TIMER in Xen)
to make the VMM CPU scheduler aware that it needs to
be scheduled again.

End User VMM VM

1: schedule the VM

2: push the data

3: transmit the data

Figure 4: The data delivery model of self-initiated I/O

To illustrate the effect of different scheduling delays on
self-initiated I/O, we use RTP video streaming as a case for
evaluation. Since RTP streaming data are UDP packets
and no external events from clients are involved during
streaming period, it is typically self-initiated I/O. The VM
runs alone on a dedicated physical core so that it owns the
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whole CPU cycles of that core. In each test, when the VM
voluntarily yields CPU time, we activated it again after
every 1ms, 10ms, 20ms and 40ms respectively, as shown
in Figure 5. During all four tests, the VM only consumes
about 60% CPU time. Experimental results show that
even the VM is provided with enough CPU resource, if
the CPU cycles are not provisioned in a timely manner,
the I/O performance will also be significantly affected.
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(c) delay=20ms
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Figure 5: The effect of different scheduling delays on self-initiated
I/O

2.2. The Deficiency of Xen’s Credit CPU Scheduler

Xen’s credit scheduler introduces a boost mechanism
to improve VM’s I/O performance. The basic idea is to
temporarily give the vCPU that receives external events
a BOOST priority with preemption, which is higher than
other vCPUs in UNDER and OVER state. However, the cur-
rent implementation sets the limitation that the vCPU is
boosted only when it is in block state and has not used
up its credits. This is because it assumes that the I/O-
intensive VMs usually consume little CPU cycles and stay
in block state most of time. The assumption may hold in
traditional process scheduling of OS, but may not always
be true in virtual machine scheduling. With applications
encapsulated in one VM, multiple processes/threads exist
in guest OS. Take media streaming application for exam-
ple, one I/O-bound thread is responsible for sending data
frames and consumes little CPU time, meanwhile another
CPU-bound thread performs encoding/decoding function-
alities. So from the perspective of VMM CPU scheduler,
the VM is both I/O-intensive and CPU-intensive. It is
very possible that the vCPU is already in runqueue when
I/O events arrive. In this case, the events can be handled
only when the vCPU gets next scheduled, resulting in in-
creased response time. Besides, when the VM yields the
CPU time it may have used up its credit. Since the blocked
VM stops earning credits, it may not get boosted due to

credit shortage when it receives I/O events. It is not fair
because the VM voluntarily yields CPU time in sacrifice of
its own share, thus it should be compensated when it needs
CPU cycles next time. Therefore, even for event-triggered
I/O, the original CPU scheduler can not effectively sched-
ule the VM to serve it, let alone self-initiated I/O.

2.3. Latency Caused by Network Traffic Shaper

In order to avoid performance interference among co-
located VMs which share the same network resource, and
also fit the “pay-as-you-go” model of cloud computing, the
network traffic shaping (rate limiting) is widely adopted
to shape network bandwidth of each VM. However, traffic
shaping is always achieved by delaying packets, which has
significant effect on user-perceived network latency.

1 2 3 4 5

1 2 3 4 5

Sender

Receiver

Arrival time

delay

Network packets

. . .

. . .

Sending time

Traffic shaper

delay

Figure 6: The unpredictable network delay in token-bucket algorithm

Xen implements token-bucket algorithm [9] to perform
rate limiting among VMs. token bucket algorithm works
in the way that if the remaining tokens (credits) in the
bucket are enough to send the current packet, the packet
will be issued immediately without delay. Whereas if the
tokens are in lack, the packet has to be postponed for
certain time to wait for tokens to be replenished. The ma-
jor disadvantage is that it is bandwidth-oriented but not
packet-oriented, which means that it works well in band-
width maintenance but has no guarantee for the delay of
each packet. As shown in Figure 6, with some packets de-
layed and some others not, the packets’ arrival times can
be quite different from their sending times. The large vari-
ation network latency leads to significant network jitter.

3. Proposed Solution

To provide network performance isolation, we intro-
duce our new resource isolation methods which guarantee
both resource provisioning rate and resource proportional-
ity. Our approach includes two components: VMM CPU
scheduler and network traffic shaper, which work together
to smooth the network latency.

3.1. Proportional Share CPU Scheduling with Real-time
Support

As explained in Section 2, for event-triggered I/O, the
VMs need to be scheduled in the real-time way only when
the external events are received, so we map this type of VM
to aperiodic real-time domains; for self-initiated I/O, the
VMs have no external notification for scheduling but they
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must also be scheduled in the real-time way, therefore they
are mapped to periodic real-time domains, which means
that the scheduler will periodically wake them up to serve
I/O.

3.1.1. Double-runqueue with Differential Time Slice

We introduce the double-runqueue design for each phys-
ical CPU core, as shown in Figure 7. EDF (Earliest Dead-
line First) runqueue is responsible to satisfy real-time VMs,
sorted by their vCPUs’ deadlines. Credit-runqueue takes
the role to maintain CPU time proportionality, sorted by
their remaining credits. For periodic domains, they can
stay in both EDF-runqueue and Credit-runqueue. For
aperiodic domains, only when external events are received
they are considered as real-time domains and can enter
EDF-runqueue; otherwise, they are regarded as normal
domains which can only stay in Credit-runqueue. To avoid
that the credit consumption of EDF-vCPUs affect the CPU
time proportionality, the vCPUs from EDF-runqueue are
assigned with small time slice whereas the vCPUs from
Credit-runqueue will get long time slice. Since we allow
the real-time vCPUs to preempt the others, the length
of time slice that each vCPU receives will not affect the
scheduling latency of real-time domains.

vCPU 3

8ms

EDF-runqueue (real-time domains)

Credit-runqueue (all active domains)

Physical 
CPU

vCPU 1

5ms

vCPU 2

10ms

vCPU 4

300

vCPU 6

100

vCPU 2

80

vCPU 1

270

vCPU 3

280

vCPU 4

15ms

vCPU 5

50

Figure 7: The double runqueue design for per physical CPU core

3.1.2. Credit Allocation

A very important cause of non-deterministic I/O la-
tency is that the VM can not be scheduled to serve I/O
due to credit shortage. In guest OS, I/O-bound processes
usually have higher priority than CPU-bound processes
and consume little CPU time. But if we simply allow all
credits consumed by the CPU-bound processes and then
put the VM in block state, even when the external events
come, they can not be handled by I/O processes because
the VM can not be scheduled by VMM. In order to avoid
the possible credit shortage which may prevent the VM
from serving the external events, we propose a credit reser-
vation mechanism. Each VM will reserve certain amount
of credits within the credit accounting period, and these
credits can only be used when the VM receives I/O events
in block state. To guarantee that CPU time proportional-
ity is not affected, if the VM does not use up its reserved
credits in the current accounting period, the remaining
credits will be added to its next accounting period.

3.1.3. Domain Placement Policy

Since both ingress and outgoing I/O traffic of guest
domains must traverse the driver domain, the scheduling

delay of the driver domain has much more serious effect
on the I/O latency than that of guest domains, which has
been pointed out in [10, 11, 12]. We propose a simple do-
main placement policy by favoring the scheduling of driver
domain in multi-core platform. Specifically, the domains
are classified as three different types: the driver domain,
real-time guest domains and normal guest domains. First,
the driver domain can preempt any other domain but can
not be preempted by the others. Second, real-time guest
domains can not reside on the same physical core with the
driver domain, so as to avoid competition for scheduling
opportunities. The original load balancing mechanism is
still kept to distribute vCPUs across all available physical
CPU cores.

3.2. Latency Smoothing in Network Traffic Shaping

The original token-bucket algorithm mainly focuses on
bandwidth maintaining, regardless of the delays of network
packets. Our algorithm keeps the merits of limiting aver-
age bandwidth, but outperforms it by providing smoothed
network latency as shown in Figure 8.

delay

1 2 3 4 5

Network packets

Traffic shaper

. . .

. . .1 2 3 4 5

Sending time

Arrival time

delay delay delay delay

Sender

Receiver

Figure 8: The proper way to delay packets

3.2.1. Smooth Window with Feedback Control

To guarantee that the network delay does not largely
vary, the smooth window w = [dmin, dmax] is introduced.
The imposed delay value di on each packet pi, must be
within the range of smooth window: di ∈ w. The dis-
crete packet flow is converted into continuous stream flow
in the flowing way: for each packet pi of size si, the equiv-
alent credit consuming rate ri =

si
di
, thus ri ∈ [ si

dmax
, si
dmin

].
So in order to guarantee that the bandwidth consumption
does not exceed the limit, the average credit consump-
tion rate must be no more than the credit replenish rate
(derived from bandwidth allocation). However, due to
unpredictable characteristics of bypassing packages (e.g.
varied packet size and packet arriving speed), it is very
hard to rule the relationship between package’s delay and
the credit consumption rate. If the packets are issued too
fast with low delays, the high credit consumption rate will
violate bandwidth allocation; whereas if they are issued
too slowly with high delays, it will result in low band-
width utilization. Therefore, to dynamically tune pack-
ets’ delay level and the credit consumption rate, we adopt
closed-loop feedback method to construct a Proportional-
Integral-Derivative (PID) controller, as illustrated in Fig-
ure 10.
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Figure 9: Closed-loop feedback control in network traffic shaper

The controller measures the error e(t) between the con-
sumed credit and allocated credit (set point). The propor-
tional part reacts to the current value of the error, the in-
tegral part accounts for the recent history in error, and the
differential part calculates the recent change in error. The
weighted sum of these values is used as control input to
adjust the position of smooth window (w = [dmin, dmax]).
Specifically, during each window adjusting interval, we
first use a pure proportional controller to perform a raw
feedback control on the credit consumption rate: if the cur-
rent consumed credit level is lower (greater) than the set
point, the package’s delay will be set to the dmax (dmin).
In this way, the packets’ delays won’t largely vary since
they are all within the smooth window range. However,
such a raw adjustment may introduce overshoot (e.g. os-
cillation of credit level) in the long term. In next adjusting
period, the smooth window position will be automatically
adjusted according to the credit deviation level from the
set point of last period. Therefore in general, the feedback
controller corrects the credit over-consumption when there
is a sustained positive error and vice versa.

3.2.2. Packet Filtering

We do not impose delay on every bypassing network
packet. This is because for some types of packets are of
small size and only for management purpose. For example,
ARP who-has packet is 42 bytes and ARP reply packet is
60 bytes; ICMP echo packet is 98 bytes; TCP SYN packet
is 74 bytes; TCP ACK and FIN are both 66 bytes. Though
their sizes are quite small, delaying them can significantly
affect the network performance perceived by the clients:
(1) TCP SYN and ACK packets are quite important to
establish TCP 3-way handshake connection; (2) for each
application data transmission, an ACK packet needs to be
sent for notification. Compared with the packets which
carry the real application data such as RTP packet (1370
bytes) and normal TCP data packet (can be several kilo-
bytes), these packets consume very few credits, so letting
them pass immediately will not have too much negative
effect on bandwidth shaping.

4. Implementation

Our VMM CPU scheduler is implemented in Xen 4.1.0.
We firstly extend Xen tools to allow users to specify real-
time domains with desired deadline requirements in VM
configuration file. The vCPUs in EDF runqueue are sorted

by their deadlines and likewise in Credit runqueue, they
are sorted by the remaining credits. Each physical CPU in-
volves a timer to periodically check the first vCPU’s dead-
line in EDF runqueue. The timer period is currently set
at 0.5ms so the scheduling error of each real-time domain
won’t exceed 0.5ms. In order to avoid that the scheduling
behavior of EDF runqueue affects CPU time proportional-
ity, each vCPU from EDF runqueue will receive only 0.5ms
time slice while the vCPUs from Credit runqueue will re-
ceive 30ms time slice. Since we allow the EDF-vCPU to
preempt the current vCPU, a long time slice for Credit
runqueue won’t cause scheduling delay for real-time do-
mains. The credit accounting algorithm is also modified
to allow each real-time domain to reserve certain amount
of credits for I/O, under the circumstance that external
events arrive when they are in block state. The original
load balancing mechanism is still kept to distribute vCPUs
across all available physical CPU cores. For non-real-time
domains, the pervious BOOST mechanism is still kept to
improve their I/O performance. But even they are boosted
they can not enter EDF runqueue to compete for schedul-
ing opportunity with real-time domains. So only when
there are no real-time domains or the deadline of the first
vCPU in EDF-runqueue is not reached, the boosted vCPU
from Credit runqueue is scheduled.

The closed-loop feedback controller for network traf-
fic shaping is implemented in Linux 2.6.32.13. The tick
rate HZ in Linux kernel is modified from 100 to 1000, be-
cause with HZ set at 100 by default, the timer precision
of jiffies is only 10ms which is too coarse to control
the delay of network packets. The smooth window size
and window adjusting interval are two tunable parame-
ters, and choosing values for them is actually the tradeoff
between latency smoothing level and bandwidth maintain-
ing accuracy. In our current implementation, we set the
window size to be 3ms with window adjusting interval of 1
second, which seem to work well for most cases in practice.

5. Performance Evaluation

The server we use to host virtual machines is equipped
with two quad-core Intel Xeon 5540 2.53GHz CPUs, and
16GB physical memory. Several testing clients are con-
nected with the server through a Gigabit Ethernet switch.
For self-initiated I/O evaluation, we downloaded a video
from YouTube.com as the example, and use VLC media
player to deliver the streaming data from hosted VM to
the testing clients, based on RTP protocol. The network
packets are decoded usingWireshark for RTP stream qual-
ity analysis. For event-triggered I/O evaluation, we use
ApacheBench, a web site stress test benchmark, to mea-
sure HTTP service quality. Besides the two application-
level benchmarks, we also use low-level benchmarks such
Ping, Netperf and Iperf in the evaluation.
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Figure 10: Experimental Setup

5.1. Network Jitter over Internet

We first evaluate network delay characteristics over In-
ternet to see how serious network jitter is. If the Internet
jitter is already quite heavy, even we solve the problem of
unstable network delay in the VM-server side, the overall
jitter perceived by Internet end users will still be intolera-
ble. In Figure 11, the ping results with four different web
sites show that the Internet jitter is relatively low.
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Figure 11: Internet jitter

5.2. Evaluation of our VMM CPU Scheduler

We first evaluate the effect of our new VMM CPU
scheduler on reducing latency of self-initiated I/O. In Fig-
ure 12, VM 1 runs as streaming server with two CPU in-
tensive VMs (VM 2 and VM 3) on the same physical core.
Since when VM 1 runs alone, it consumes about 55% CPU
time during streaming period. So in order to avoid that
the streaming quality will be affected by insufficient CPU
cycles, we allocate 60% CPU time to VM 1. The remain-
ing 40% CPU time is evenly allocated between VM 2 and
VM 3. With Xen’s default CPU scheduler, it can be seen
that after VM 2 starts, the RTP metric of VM 1 is signif-
icantly degraded; after VM 3 starts, the negative effect is
even more serious.

For comparison in Figure 13, we use our new CPU
scheduler and set VM 1 to be periodic real-time domain
with deadline set at 3ms and 5ms respectively. During the
whole video streaming period, VM 1 runs along with VM
2 and VM 3. It can be observed that the performance of
VM 1 only depends on user-defined deadlines, and is not
affected by co-located VMs.
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Figure 12: The effect of Xen’s credit scheduler on RTP video stream-
ing
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Figure 13: The effect of our VMM CPU scheduler on RTP video
streaming

We then evaluate the network latency behaviors of event-
trigger I/O under our new VMM CPU scheduler. On the
client side, we use Ping with 0.5 second interval to mea-
sure the RTT latency to the testing VM. For each test,
we also use Iperf to measure the network jitter (Iperf also
uses RTP protocol to calculate network jitter). In Fig-
ure 14, we illustrate how VM will suffer unpredictable and
long network latency in consolidation scenarios using Xen’s
credit scheduler: when the testing VM runs alone on the
physical core, the ping latency is quite small as shown in
Figure 14 (a); however, when the testing VM runs with
five co-located CPU-intensive VMs, the ping latency in-
creases significantly, as shown in Figure 14 (b). For net-
work jitter, it also increases along with more co-located
VMs. Take Figure 14 (c) for example, with five co-located
VMs, the ping latency to the testing VM can be as high as
150ms. This can be explained that Xen’s credit scheduler
uses 30ms time slice to schedule VMs, and with six VMs
running on the same CPU core, the maximum waiting time
of each VM is 5× 30 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

R
e
s
u
lt
 (

m
s
)

Time (s)

Ping RTT
Iperf Jitter

(a) run alone

 0

 40

 80

 120

 160

 200

 0  20  40  60  80  100

R
e
s
u
lt
 (

m
s
)

Time (s)

Ping RTT
Iperf Jitter

(b) run with 5 VMs

Figure 14: Evaluation results of Xen’s credit CPU scheduler

We evaluate our new VMM CPU scheduler in Figure
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15. We set the testing VM to be aperiodic real-time do-
main with deadline set at 3ms, 5ms and 8ms respectively.
We setup the stress tests by running the testing VM with
five CPU-intensive VMs on one physical core all the time.
Results show that the network latency can be well con-
trolled under the user-defined deadline requirements, and
is not affected by co-located VMs. Accordingly, the net-
work jitters are also much lower than that in Figure 14.
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Figure 15: Evaluation results of our new VMM CPU scheduler

In Figure 16, we evaluate the ability to keep CPU time
proportionality of our VMM CPU scheduler. We run six
VMs on a single physical core with each allocated the same
relative weight. The test lasted for 1000 seconds. Results
show that our CPU scheduler performs fairly on allocating
CPU time.
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Figure 16: CPU time proportional share

5.3. Evaluation of our Network Traffic Shaper

In RTP video streaming tests, we use a 128MB VM
as the streaming server, which runs alone at a dedicated
physical core so that it won’t be negatively affected by
CPU scheduler. The VM’s network bandwidth is set at
2Mb/s, which is consistent with the output rate of the
video we set at VLC scripts. We first illustrate how video
streaming suffers large jitter problem under Xen’s traffic
shaper, which adopts token-bucket algorithm. In Figure
17, we set the credit replenish interval to be 50ms, 30ms
and 5ms respectively. Results show that when the interval
tends to be small, RTP delta will decrease; however, RTP
jitter does not decrease at all. For example, when the
credit replenish interval is set at 5ms, the RTP jitter in
Figure 17 (c) is even more serious than that in Figure
17 (a) and (b). This proves that without smoothed packet
sending delays in token-bucket algorithm, only using small
credit replenish interval has no benefit in improving video
streaming quality.
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Figure 17: RTP video streaming using Xen’s traffic shaper

We then use our new traffic shaper to smooth the net-
work latency, and see how video streaming quality is im-
proved. As shown in Figure 18 (a), with smoothed network
latency, both RTP delta and RTP jitter are significantly
reduced. Figure 18 (b) shows how smooth window posi-
tion is automatically adjusted according to the dynamic
bandwidth consumption. Since the packet sending delays
are all within the smooth window size (w = [dmin, dmax]),
the overall network jitter is greatly brought down.
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Figure 18: Latency smoothing effect on RTP video streaming

We also evaluate the smoothing effect on improving
HTTP service quality, in terms of HTTP connection time
(denoted by ctime) and HTTP waiting time (denoted by
wait). In Figure 19, we run a 128MB VM as HTTP web
server. In the client side, we use ApacheBench to send
1000 HTTP requests with a mixed workload, including
10% 2KB file, 20% 4KB file, 40% 8KB file, 20% 16KB file
and 10% 32KB file.

Results in Figure 19 show that with Xen’s default set-
ting: (1) HTTP connection time can be kept very low,
but when credit replenish interval becomes smaller, HTTP
connection time tends to increase as shown Figure 19; (2)
HTTP waiting time can vary significantly with different
credit replenish interval, the smaller the better;

The results with latency smoothing policy are shown
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Figure 19: HTTP service quality using Xen’s traffic shaper (mixed)

in Figure 20. It can be seen that our solution can auto-
matically smooth HTTP waiting time and reduce HTTP
connection time.
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Figure 20: Latency smoothing effect on HTTP service (mixed)

We use Netperf to evaluate the network rate limiting
effect of our solution. The testing VM is allocated with
4Mbps, 8Mbps, 16Mbps and 32Mbps respectively, with
each test lasting for 120 seconds. Figure 21 shows the
evaluation results with a micro-view which are recorded by
every two seconds. Experimental results with both TCP
and UDP tests show that, our solution has very effective
control on bandwidth shaping and meanwhile achieve high
resource utilization.
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Figure 21: Network bandwidth shaping

6. Related Work

Significant effort has been paid to address the I/O per-
formance of virtual machines in recent years. Hardware-
based solutions such as [13] use SR-IOV devices to as-
sign the VM dedicated device to guarantee its I/O per-
formance. However, the special hardware devices are usu-
ally expensive and complicate the common functionalities
such as live migration and checkpointing. Researches [14]
and [15] proposed task-level solutions to map VM’s I/O-
bound tasks directly to physical CPU. The drawback is
that additional hypercalls are needed and users have to
explicitly tell VMM which tasks they want to map. Our
approach is non-intrusive and do not need extra modifica-
tion to guest OS. Besides, The philosophy of our method
is different from other real-time schedulers such as [12] and
[16]. First, instead of scheduling real-time domains in an
best-effort way, we allow users to specify different level of
real-timeness. Second, our solution decouples the goal of
CPU time proportionality from CPU scheduling rate.

Resource sharing approaches can be classified as work-
conserving (WC) mode and non-work-conserving (NWC)
mode. WC approaches allow clients to consume more that
their allocations when there are idle resources, thus im-
prove the resource utilization. NWC solutions provides
clients predictable network bandwidth by forcing them to
consume no more than the allocations even when there are
idle resources, such as leaky-bucket [17] and token-bucket
[9] algorithm which are largely adopted in real-life systems.
Research [18] use “virtual time” proposed in [19], but they
focused on storage I/O instead of network I/O. Research
[20] did the similar work to smooth network latency, how-
ever their solutions are incomplete as they did not address
the VMM scheduling delays. Research [21] adopts play-
back buffer to smooth network delays, but they do not
guarantee unaffected bandwidth allocation; additionally,
play-back buffer brings extra memory overhead.

7. Conclusions and Future Work

The paper systematically addresses the network jitter
problem in VM-hosted platforms, which significantly af-
fect network performance isolation for certain cloud appli-
cations. Our design guarantees both resource proportion-
ality and resource provisioning rate. The solutions have
been implemented and thoroughly evaluated for single host
running multiple VMs. Our future work will explore their
utilities in: (1) storage subsystems; (2) network perfor-
mance isolation for large amount of distributed VMs in
datacenters.
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