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Mining Order-Preserving Submatrices
from Data with Repeated Measurements

Kevin Y. Yip, Ben Kao, Xinjie Zhu, Chun Kit Chui,

Sau Dan Lee, and David W. Cheung, Senior Member, IEEE

Abstract—Order-preserving submatrices (OPSM’s) have been shown useful in capturing concurrent patterns in data when the relative

magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from

microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the

experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data

noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of

OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-

RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the

computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed

up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of

experiments conducted on real microarray data.

Index Terms—Data mining, bioinformatics, mining methods and algorithms

Ç

1 INTRODUCTION

ORDER-PRESERVING submatrix (OPSM) is a data pattern
particularly useful for discovering trends in noisy data.

The OPSM problem applies to a matrix of numerical data
values. The objective is to discover a subset of attributes
(columns) over which a subset of tuples (rows) exhibit
similar rises and falls in the tuples’ values. For example,
when analyzing gene expression data from microarray
experiments, genes (rows) with concurrent changes of
mRNA expression levels across different time points
(columns) may share the same cell-cycle related properties
[2]. Due to the high level of noise in typical microarray data,
it is usually more meaningful to compare the relative
expression levels of different genes at different time points
rather than their absolute values. Genes that exhibit
simultaneous rises and falls of their expression values across
different time points or experiments reveal interesting
patterns and knowledge. As an example, Fig. 1 shows the
expression levels (y-axis) of two different sets of genes under
four experimental conditions (x-axis) in the two graphs. The
two sets of genes belong to different functional categories.
From the figure we see that genes of the same group exhibit
similar expression patterns even though their absolute
expression values under the same experiment vary.

The original OPSM problem was first proposed by Ben-
Dor et al. [3].

Definition 1. Given an n�m matrix (data set) D, an order-

preserving submatrix is a pair ðR;P Þ, whereR is a subset of the

n rows (represented by a set of row ids) andP is a permutation of

a subset of the m columns (represented by a sequence of column

ids) such that for each row in R, the data values are

monotonically increasing with respect to P , i.e., DiPj < DiPj0 ;

8i 2 R; 1 � j < j0 � jP j, where Drc denotes the value at row r

and column c of D.

For example, Table 1 shows a data set with 4 rows and

4 columns. The values of rows 2, 3, and 4 rise from a to b, so
ðf2; 3; 4g; ha; biÞ is an OPSM. For simplicity, in this study we

assume that all values in a row are unique.
We say that a row supports a permutation if its values

increase monotonically with respect to the permutation. In

the above example, rows 2, 3, and 4 support the permutation
ha; bi, but row 1 does not. For a fixed data set, the rows that

support a permutation can be unambiguously identified. In

the following discussion, we will refer to an OPSM simply by
its permutation, which will also be called a pattern.

An OPSM is said to be frequent if the number of
supporting rows is not less than a support threshold, � [4].

Given a data set, the basic OPSM mining problem is to

identify all frequent OPSM’s. In the gene expression
context, these OPSM’s correspond to groups of genes that

have similar activity patterns, which may suggest shared

regulatory mechanisms and/or protein functions.
In microarray experiments, each value in the data set is a

physical measurement subject to different kinds of errors. A
drawback of the basic OPSM mining problem is that it is

sensitive to noisy data. In our previous example, if the value

of column a is slightly increased in row 3, say from 65 to 69,
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then row 3 will no longer support the pattern ha; bi, but will

support hb; ai instead.
To combat errors, experiments are often repeated and

multiple measured values (called replicates) are recorded.

The replicates allow a better estimate of the actual physical

quantity. Indeed, as the cost of microarray experiments has

been dropping, research groups have been obtaining repli-

cates to strike for higher data quality. For example, in some of

the microarray data sets we use in our study, each experiment

is repeated three times to produce three measurements of

each data point. Studies have clearly shown the importance of

having multiple replicates in improving data quality [5].
Different replicates, however, may support different

OPSM’s. For example, Table 2 shows a data set with two

more replicates added per experiment. From this data set, we

see that it is no longer clear whether row 3 supports the ha; bi
pattern. For instance, while the replicates a1, b1 support the

pattern, the replicates a1, b2 do not.
Our example illustrates that the original OPSM definition

is not robust against noisy data. It also fails to take advantage

of the additional information provided by replicates. There is

thus a need to revise the definition of OPSM to handle

repeated measurements. Such a definition should satisfy the

following requirements:

1. If a pattern is supported by all combinations of the
replicates of a row, the row should contribute a high
support to the pattern. For example, for row 3, the
values of column b are clearly smaller than those of
column c. All 3� 3 ¼ 9 replicate combinations of band
c values ðb1; c1Þ, ðb1; c2Þ; . . . ; ðb3; c3Þ support the hb; ci
pattern. Row 3 should thus strongly support hb; ci.

2. If the value of a replicate largely deviates from other
replicates, it is probably due to error. The replicate
should not severely affect the support of a given
pattern. For example, we see that row 2 generally
supports the pattern ha; ci if we ignore a3, which is
abnormally large (130) when compared to a1 (67) and
a2 (54), and is thus likely an error. The support of ha; ci
contributed by row 2 should only be mildly reduced
due to the presence of a3.

3. If the replicates largely disagree on their support of a
pattern, the overall support should reflect the
uncertainty. For example, in row 4, the values of b
and c are mingled. Thus, row 4 should neither
strongly support hb; ci nor hc; bi.

The first two requirements can be satisfied by summar-
izing the replicates by robust statistics such as medians, and
mining the resulting data set using the original definition of
OPSM. However, the third requirement cannot be satisfied
by any single summarizing statistic. This is because under
the original definition, a row can only either fully support
or fully not support a pattern, and thus the information of
uncertainty is lost. To tackle this problem, we propose a
new definition of OPSM and the corresponding mining
problem based on the concept of fractional support.

Definition 2. The fractional support siðP Þ of a pattern P

contributed by a row i is the number of replicate combinations

of row i that support the pattern, divided by the total number
of replicate combinations of the columns in P .

For example, for row 1, the pattern ha; b; di is supported
by eight replicate combinations: ha1; b2; d1i, ha1; b2; d2i,
ha1; b3; d1i, ha1; b3; d2i, ha2; b3; d1i, ha2; b3; d2i, ha3; b3; d1i, and
ha3; b3; d2i out of 33 ¼ 27 possible combinations. The frac-
tional support s1ðha; b; diÞ is therefore 8/27. We use sniðP Þ
and sdiðP Þ to denote the numerator and the denominator of
siðP Þ, respectively. In our example, sn1ðha; b; diÞ ¼ 8 and
sd1ðha; b; diÞ ¼ 27.

If we use fractional support to indicate how much a row
supports an OPSM, all the three requirements we stated
above are satisfied. First, if all replicate combinations of a row
support a certain pattern, the fractional support contributed
will be one, the maximum fractional support. Second, if one
replicate of a column j deviates from the others, the replicate
can at most change the fractional support by 1

rðjÞ , where rðjÞ is
the number of replicates of column j. This has small effects
when the number of replicates rðjÞ is large. Finally, if only a
fraction of the replicate combinations supports a pattern, the
resulting fractional support will be fuzzy (away from 0 and
1), which reflects the uncertainty.

Based on the definition of fractional support, the support
of a pattern P is defined as the sum of the fractional supports
of P contributed by all the rows: sðP Þ ¼

P
i siðP Þ. A pattern

P is frequent if its support is not less than a given support
threshold �. Our new OPSM mining problem OPSM-RM
(OPSM with repeated measurements) is to identify all
frequent patterns in a data matrix with replicates.

Definition 3. Given a data set, the OPSM-RM problem asks for

the set of all OPSMs each of which having a total fractional
support from all rows not less than a given support threshold.
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TABLE 1
A Data Set without Repeated Measurements

TABLE 2
A Data Set with Repeated Measurements

Fig. 1. Concurrent expression patterns of two sets of genes from
different functional categories.



From the definition of fractional support, we can observe
the combinatorial nature of the OPSM-RM problem—the
number of replicate combinations grows exponentially with
respect to the pattern length. The objective of this work is to
derive efficient algorithms for mining OPSM-RM. By
proving a number of interesting properties and theorems,
we propose pruning techniques that can significantly reduce
mining time.

2 RELATED WORK

The conventional order-preserving submatrix mining pro-
blem was motivated and introduced by Ben-Dor et al. [3] to
analyze gene expression data without repeated measure-
ments. They proved that the problem is NP hard. A greedy
heuristic mining algorithm was proposed, which does not
guarantee the return of all OPSM’s or the best OPSM’s.

Since then, mining efficiency has been the main research
issue. Cheung et al. [4] proved the monotonic and transitive
properties of OPSM’s. Based on the properties, a candidate
set generation-and-test framework was proposed to mine all
OPSM’s. It makes use of a new data structure, the head-tail
trees, for efficient candidate generation. The study by Gao
et al. [6] concerned the high-computational cost of mining
OPSM’s from massive data. They defined the twig clusters,
which are OPSM’s with large numbers of columns and
naturally low supports. They proposed a KiWi framework to
efficiently mine the twig clusters. In the study by Bleuler and
Zitzler [7], the problem of mining OPSM’s over multiple time
points was considered. There are different experimental
conditions in each time point, and a pattern is required to be
consistent over the time points. An evolutionary algorithm
was proposed to explore the search space. None of the above
studies, however, handle data with repeated measurements.

The OP-clustering approach by Liu and Wang [8] gen-
eralizes the OPSM model by grouping attributes into
equivalent classes. A depth-first search algorithm was
proposed for mining all error-tolerated clusters. The model
attempts to handle error in single expression values rather
than exploiting extra information obtained from repeated
measurements.

More generally, OPSM is related to the problems of
pattern-based subspace clustering [9], biclustering [10], [11]
and sequence mining [12], [13], all of which look for patterns
in specific subspaces/subsequences. Comparisons of the
different methods have been reported by other groups
previously [14], [15].

3 BASIC ALGORITHM

In this section, we discuss a straightforward algorithm for
solving the OPSM-RM problem. We use an alternative
representation of data sets that is more convenient for our
discussion [6]. For each row of a data set, we sort all the
values in ascending order, and record the resulting column
names as a data sequence. For example, row 1 in Table 2 is
represented by the data sequence hb; a; d; b; a; c; a; b; d; c; d; ci.
The advantage of such a representation is that given a row i
and a pattern P , the count sniðP Þ is equivalent to the
number of subsequences in the data sequence that match P .
For example, sn1ðha; b; diÞ ¼ 8 because there are eight

subsequences in hb; a; d; b; a; c; a; b; d; c; d; ci that match the
pattern ha; b; di. In the following discussion, when we
mention a row, we refer to the row’s sorted data sequence.

Theorem 1. Let P1 and P2 be two patterns such that P1 is a
subsequence of P2. For any row i, siðP2Þ � siðP1Þ.

Proof. It is sufficient to show that the theorem is true for
patterns whose lengths differ by 1, i.e., jP2j ¼ jP1j þ 1. We
can repeat the argument to prove the theorem for
patterns of arbitrary lengths. Let j be the column that is
in P2 but not in P1, and rðjÞ be the number of replicates in
column j. Each subsequence of row i that matches P1 can
potentially be extended to match P2 by inserting a
column j replicate. Since there are only rðjÞ such
replicates, at most rðjÞ such extensions are possible.
Hence, sniðP2Þ � rðjÞ � sniðP1Þ. On the other hand, the
total number of possible replicate combinations is multi-
plied by a factor of rðjÞ, i.e., sdiðP2Þ ¼ rðjÞ � sdiðP1Þ.
Therefore, siðP2Þ ¼ sniðP2Þ

sdiðP2Þ �
rðjÞ�sniðP1Þ
rðjÞ�sdiðP1Þ ¼ siðP1Þ. tu

The above monotonic property implies the following
Apriori property.

Corollary 1. Let P1 and P2 be two patterns such that P1 is a
subsequence of P2. P2 is frequent only if P1 is frequent.

Proof. If P1 is infrequent, sðP1Þ < �. By Theorem 1, siðP2Þ �
siðP1Þ for all row i. So, sðP2Þ ¼

P
i siðP2Þ �

P
i siðP1Þ ¼

sðP1Þ < �. Pattern P2 is therefore infrequent. tu

The Apriori property ensures that an OPSM can be
frequent only if all its subsequences (i.e., subpatterns) are
frequent. This suggests an iterative mining algorithm as
shown in Fig. 2.

As in frequent item set mining [16], the algorithm
iteratively generates the set Candk of length-k candidate
patterns, and verifies their supports. Patterns that pass the
support threshold are added to the set Freqk, which are then
used to generate candidates of the next iteration.

We remark that in the original OPSM problem (without
data replicates), all candidates are by definition frequent and
thus support verification is not needed. This is due to the
transitivity property: if a row supports both patterns ha; b; ci
and hb; c; di, the value at column a must be smaller than that
at column d, and so it must also support ha; b; c; di. However,
when there are replicates, the fractional support of a pattern
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Fig. 2. An Apriori algorithm for OPSM-RM.



can be smaller than those of all its subpatterns. For example,
the sequence hb; a; d; b; a; c; a; b; d; c; d; ci has a fractional
support of 4=9 for ha; bi; 8=9 for hb; ci, and 8=9 for ha; ci, but
the support for ha; b; ci is only 9=27 ¼ 3=9, which is smaller
than its supports of all three length-2 subpatterns. Support
verification is thus necessary for OPSM-RM.

The efficiency of the algorithm depends on the two core
functions, generate, and verify. For example, significant
speedup can be achieved if effective pruning techniques are
applied so that generate produces a smaller set of candidate
patterns. In the following, we describe the basic algorithms
for implementing the generate and verify functions.

3.1 Generate

A convenient way to generate length-k candidates from
length-(k� 1) frequent patterns is to use the head-tail trees.
We briefly describe the data structure here. Readers are
referred to [4] for details. For each length-(k� 1) frequent
pattern P , two length-(k� 2) subpatterns are derived, a head
pattern P1, and a tail pattern P2. P1 is obtained from P by
removing the last symbol of P while P2 is obtained by
removing the first symbol. For example, if P ¼ ha; b; ci then
P1 ¼ ha; bi andP2 ¼ hb; ci. All the head patterns derived from
all the length-(k� 1) frequent patterns are collected and are
stored as strings in a compressed data structure. For each
head pattern P1, a reference to all the frequent patterns from
which P1 is derived is also stored. In our implementation, we
use a prefix tree [17] to store the head patterns. We call it the
head tree. Similarly, tail patterns are collected and are stored
in another prefix tree called the tail tree.

To generate length-k candidates, the two trees are
traversed in parallel to identify frequent patterns with
common substrings. For example, if both P1 ¼ ha; b; ci and
P2 ¼ hb; c; di are frequent patterns, then the common sub-
string hb; ciwill appear in both the head tree (due to P2) and
the tail tree (due to P1). References to P1 and P2 are
retrieved. The two patterns are then joined to derive the
candidate ha; b; c; di.

Notice that since the pattern ha; b; c; di is frequent only if
all four length-3 subpatterns of it are frequent, one may also
check if ha; b; di and ha; c; di are frequent before adding
ha; b; c; di to the candidate set. This can be done by
following the corresponding paths of their heads in the
head tree and check if they are linked from the leaf nodes.
Although this checking can potentially further reduce the
number of candidates, the number of patterns to check is
enormous when k is large, and the saving may not be worth
the cost. This additional checking is thus not performed in
our implementation.

3.2 Verify

To verify whether a candidate pattern is frequent, we need
to compute its total fractional support. Directly computing
the support from the database D would require a lot of
database scans and thus take a long time. The computa-
tional overhead can be broken down into two parts: the
time to locate and access the relevant rows for each pattern,
and the time to compute the fractional support of each row.

In Section 3.2.1, we briefly describe a straightforward
verification procedure that uses a prefix tree. While the use of
the tree helps avoid excessive access of irrelevant patterns, it

is not very efficient in computing fractional support from
individual rows. In Section 3.2.2, we propose a data structure
called counting array that can greatly speed up the
computation of fractional support. Finally, in Section 3.2.3,
we describe a data compression scheme that can further
improve the efficiency of the verification process.

3.2.1 Prefix-Tree

Candidate patterns obtained from generate are stored as
strings in a prefix tree. To count the candidates’ supports, we
scan the data set. For each row i, we traverse the candidate
tree and locate all candidate patterns that are subsequences
of the data sequence of row i. For each such candidate pattern
P , we increment its support sðP Þ by siðP Þ. Since the process
traverses only the portion of the tree that contains sub-
sequences of row i, it is more efficient than a brute-force
database scan. However, since each column label could
appear multiple times in row i due to the replicates, support
counting requires a lot of backtracking during tree traversal,
which is not efficient. To avoid backtracking completely, we
propose a data structure called counting array for computing
the exact support efficiently.

3.2.2 Counting Array

Our goal is to compute the fractional support of a pattern P

by row i; sðP Þ ¼ sniðP Þ
sdiðP Þ . Since the denominator sdiðP Þ ¼QjP j

j¼1 rðP ½j�Þ is simply the product of the number of replicates

of the involved columns, the only difficulty is the computa-

tion of the numerator sniðP Þ.
For each suffix P 0 of P , we construct a counting array to

store 1) the positions of the first label in P in the sequence of

row i, and 2) the number of occurrences of P 0 starting from

that position. We illustrate it by an example. Suppose the

sequence for row i is

1 2 3 4 5 6 7 8 9 10 11 12
Si ¼ h b; c; a; a; a; b; d; c; d; b; c; d i

(label positions are shown for ease of reference), P ¼
ha; b; c; di, and we want to calculate sniðP Þ. We first consider

the first (i.e., shortest) suffix of P; d. The counting array is

d : 7ð3Þ; 9ð2Þ; 12ð1Þ:

The array contains three entries. The first one indicates

that the first d occurs at position 7, and there are in total three

occurrences of d in i from position 7 onward. Similarly, the

second and third ds occur at positions 9 and 12, respectively,

and there are in total 2 and 1 occurrences from the two

positions onward.
Next, we consider the second suffix of P; cd. The

counting array is

cd : 2ð6Þ; 8ð3Þ; 11ð1Þ:

Again, the three entries indicate that there are three cs in

the sequence, at positions 2, 8, and 11, respectively. Also,

from these three positions onward, there are 6, 3, and 1

occurrences of cd.
The counting arrays for the remaining two suffixes, bcd

and abcdð¼ P Þ are
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bcd : 1ð10Þ; 6ð4Þ; 10ð1Þ;
abcd : 3ð12Þ; 4ð8Þ; 5ð4Þ:

With the counting array for abcd; sniðP Þ is simply the
value in parentheses of its first entry, i.e., 12. This is
because the value states the number of times P occurs in
the sequence from the position at which the first a occurs
onward—precisely the definition of sniðP Þ.

The reason that we need the counting arrays for all
suffixes is that each array can be constructed easily from
the previous one. For example, to construct the array for abcd,
we start from the last entry and work backward. Suppose we
already know that the last occurrence of a in the sequence is
at position 5 (which can be easily predetermined and cached
before staring the mining process by a single scan of the
sequence), we want to know how many abcds are there from
this position onward. This is equivalent to asking how many
bcds are there after the position. From the second entry of the
array for bcd, we know the answer is 4. Next, we work on the
second entry of the abcd array. The question is how many
occurrences of abcd are there from position 4 onward. This is
equivalent to asking the number of occurrences of bcd after
position 4 (which will be prefixed by this a to become the
whole abcd pattern), plus the number of occurrences of abcd
after position 4. In other words, it is the sum of the second
entry of the bcd array, and the third entry of the abcd array,
which is equal to 4þ 4 ¼ 8. Finally, we work on the first entry
of the abcd array. Using the previous logic, the entry is equal
to the second entry of the bcd array, plus the second entry of
the abcd array, which is equal to 4þ 8 ¼ 12.

In general, the value of each entry of an array can be
computed by summing a proper entry in the previous array
and the next entry of the current array. The proper entry in the
previous array is the first one with a position after the current
position. Algorithmically, a pointer can be used to keep track
of this proper entry. Let CAðP Þ be the counting array for
pattern P , where for each entry k; CAðP Þ½k�:pos is the
occurrence position of the kth P ½1� in the sequence and
CAðP Þ½k�:count is the number of occurrences of P from that
position onward, then CAðP Þ is constructed using the
algorithm shown in Fig. 3.

Assuming that all label positions are cached, the algo-

rithm has a time complexity of OðrðP ½1�ÞÞ, and does not

require scanning the data set. Although in our illustration the

counting arrays of all suffixes are involved, only the one for

the tail P 0 (which was computed in the previous iteration

when P 0 was the candidate pattern) is needed in action when

computing the fractional support of P . Therefore, the space

requirement is OðrðP 0½1�ÞÞ (the length of the array) for each

candidate pattern P .

3.2.3 Data Compression

Support counting can be made even more efficient by pre-

compressing data sequences using run-length encoding.

Given a data sequence of a row, consecutive occurrences of

the same column symbol are replaced by one single symbol

and an occurrence count. For example, the data sequence

hd; d; d; a; a; b; b; c; c; b; c; aiof row 2 in Table 2 is compressed to

hdð3Þ; að2Þ; bð2Þ; cð2Þ; bð1Þ; cð1Þ; að1Þi. The advantage of com-

pressing data sequences is that the compressed sequences are

shorter (in our example, seven symbols) than the originals

(12 symbols). The shorter data sequences allow more efficient

subsequence matching in support counting. For example, the

pattern hd; c; ai matches the above compressed data se-

quences two times (instead of nine times against the

uncompressed sequence): hdð3Þ; :; :; cð2Þ; :; :; að1Þi and

hdð3Þ; :; :; :; :; cð1Þ; að1Þi. To determine sniðP Þ, we multiply

the occurrences for each match and sum the results. In the

above example, we have sn2ðhd; c; aiÞ ¼ 3 � 2 � 1þ 3 � 1 � 1 ¼ 9.

4 MINBOUND

From Theorem 1 we know that the support of a pattern
contributed by a row cannot exceed the corresponding
supports of its subpatterns. We can make use of this
observation to help deduce an upper bound to the support
of a candidate pattern. If this upper bound is less than the
support threshold �, the candidate pattern can be pruned
before support verification. Fewer candidates result in a
smaller workload in the verification step, and thus a more
efficient mining algorithm.

In this section, we first discuss a simple bounding

technique called MinBound. In the coming sections we

develop a tighter bound by using a more advanced

bounding technique.
Recall that in candidate generation, a candidate pattern P

is generated by joining two subpatterns, the head P1 and the

tail P2. For example, the candidate ha; b; c; di is obtained by

joining ha; b; ci and hb; c; di. Note that both P1 and P2 must be

frequent and therefore their fractional supports given by each

row of the data set should have already been previously

computed. We can then determine an upper bound of sðP Þ by

sðP Þ ¼
Xn
i¼1

siðP Þ �
Xn
i¼1

minfsiðP1Þ; siðP2Þg:

For example, for row 1 in Table 2, s1ðha; b; ciÞ ¼ 9=27 and

s1ðhb; c; diÞ ¼ 7=27. Therefore, an upper bound of s1ðha; b;
c; diÞ is minf9=27; 7=27g ¼ 7=27. Note that the exact value of

s1ðha; b; c; diÞ is 6=81 ¼ 2=27.
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5 COMPUTING SUPPORTS BY HEAD-TAIL ARRAYS

The upper bounds derived by MinBound are not very tight in
general. In this section, we introduce head-tail arrays, a data
structure that allows the calculation of the exact support of
candidate patterns. Although powerful, head-tail arrays are
very memory demanding and are thus impractical. Fortu-
nately, the arrays can also be used to derive fairly tight
bounds for the support, in which case the memory require-
ments can be substantially reduced by maintaining only
certain statistics. The details will be given in Section 6.

Recall that a length-k candidate pattern P is generated by
two length-(k� 1) frequent subpatterns P1 and P2, which
correspond to the head (i.e., P1 ¼ P ½1::k� 1�) and tail (i.e.,
P2 ¼ P ½2::k�) of P . Given a row i, our goal is to compute the
fractional support siðP Þ based on certain support count
information we have previously obtained about P1 and P2

with respect to row i. To illustrate, let us use row 1 in Table 2
and P ¼ ha; b; c; di as a running example. The data sequence
of row 1 is as follows:

1 2 3 4 5 6 7 8 9 10 11 12
S1 ¼ h b; a; d; b; a; c; a; b; d; c; d; c i:

Also, suppose we have P1 ¼ ha; b; ci and P2 ¼ hb; c; di. The
fractional support siðP Þ can be computed by constructing
the following two auxiliary arrays.

The head array H concerns the head subpattern P1. It
contains rðP ½1�Þ entries (recall that rðP ½1�Þ is the number of
replicates of column P ½1�). The lth entry of the head array
records the number of times P ½2::k� 1] appears after the lth
occurrence of P ½1� in Si. In our example, P ½1� ¼ a and there
are rðP ½1�Þ ¼ rðaÞ ¼ 3 replicates, so the head array has three
entries. Also, P ½2::k� 1] = hb; ci. The three entries of the head
array thus record the number of times hb; ci occurs in S1 after
each of the 3 as:

The first entry is 5 because after the first a (position 2),
there are five occurrences of hb; ci in S1, at positions
ð4; 6Þ; ð4; 10Þ; ð4; 12Þ; ð8; 10Þ, and ð8; 12Þ. Similarly, the second
entry is 2 because after the second a (position 5), there are two
occurrences of hb; ci, at ð8; 10Þ and ð8; 12Þ.

The tail array T concerns the tail subpattern P2. It consists
of sniðP ½2::k� 1�Þ entries. The lth entry records the number
of times P ½k� appears after the lth occurrence of P ½2::k� 1� in
Si, where the occurrences are in lexicographic order
according to the positions of the occurrences. In our example,
P ½2::k� 1� ¼ hb; ci and there are sn1ðhb; ciÞ ¼ 8 occurrences
of hb; ci in S1. In lexicographic order, the positions of these
occurrences are: ð1; 6Þ; ð1; 10Þ; ð1; 12Þ; ð4; 6Þ; ð4; 10Þ; ð4; 12Þ,
ð8; 10Þ, and ð8; 12Þ. The tail array thus has eight entries, one
for each occurrence of hb; ci. For our example, P ½k� ¼ d. Each
entry in the tail array thus records the number of ds that
appear after the corresponding hb; ci in S1:

Since the first occurrence of hb; ci is (1,6) and there are
2 ds after it (at positions 9 and 11), the first entry of the tail
array is 2. The other entries are determined similarly.

By arranging the occurrences of hb; ci in lexicographic
order, we ensure that all occurrences of hb; ci that appear after

a certain position in S1 are associated with the rightmost

entries of the tail array. This helps us determine the number of

occurrences of a pattern. For example, let us determine the

number of ha; b; c; di inS1 that start with the first a (position 2).

From the head array, we know that there are 5 hb; cis after the

first a. Because of the lexicographic order, these 5 hb; cis must

be associated with the five rightmost entries of the tail array.

According to the tail array, there are 2, 1, 0, 1, and 0 ds after

those 5 hb; cis, respectively. Therefore, there are 2þ 1 þ
0þ 1þ 0 ¼ 4 hb; c; dis after the first a. Similarly, there is

1 hb; c; di after the seconda and 1 after the thirda. In total there

are 4þ 1þ 1 ¼ 6 occurrences of ha; b; c; di in S1.
We can generalize the above computation for any head

array H and tail array T . We call the resulting sum the “HT-

sum,” which has the following formula:

HT -sumðH;T Þ ¼
XjHj
p¼1

XH½p�
q¼1

T ½jT j � q þ 1�: ð1Þ

As discussed before, since sdiðP Þ, the total number of

replicate combinations, is given by
QjP j

j¼1 rðP ½j�Þ, the fractional

support siðP Þ ¼ sniðP Þ=sdiðP Þ can be readily determined.
In order to avoid redundant summations of the last

entries of the tail array, we can construct a cumulative tail
array with the same length as the tail array and the lth
entry being the sum of the last entries of the tail array
starting the lth one. Since it is easier to explain various
properties using the original tail array, we will keep using
it in our coming discussion, but remark that the cumulative
version is more efficient if we are to compute the exact
support using HT-sum.

6 HTBOUND

In Section 5 we show that given a length-k candidate pattern
P and its generating subpatterns P1 and P2, if we have
constructed the head arrayH and the tail array T , then sniðP Þ
(and thus the fractional support siðP Þ) can be computed by
HT-sum. However, the tail array contains sniðP ½2::k� 1�Þ
entries, which, in the worst case, is exponential to the
pattern’s length. It is thus impractical to construct or store all
the tail arrays. In this section we show that it is possible to
compute an upper bound of the HT-sum by storing only three
numbers without ever constructing the head and tail arrays.
We call this bound the HTBound. Similar to the idea of
MinBound, the HTBound allows us to prune candidate
patterns for a more efficient mining algorithm. We will show
at the end of this section that HTBound is tighter than
MinBound. To better illustrate the concepts, we continue
with our running example considering the data sequence S1,
the length-k candidate pattern P ¼ ha; b; c; di, its head
subpattern P1 ¼ ha; b; ci and tail subpattern P2 ¼ hb; c; di.

To determine the HTBound of P , we need the following

three values, all obtainable in previous iterations of the

mining algorithm. (We show the corresponding values of

our running example in parentheses.)

. sniðP1Þ (sn1ðha; b; ciÞ ¼ 9). This value has been
obtained in the (k� 1)st iteration. Note that it is also
equal to the sum of the entries in the head array.
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. sniðP2Þ (sn1ðhb; c; diÞ ¼ 7). This value has been
obtained in the (k� 1)st iteration. Note that it is
equal to the sum of the entries in the tail array.

. sniðP ½2::k� 1�Þ (sn1ðhb; ciÞ ¼ 8). This value has been
obtained in the (k� 2)nd iteration. Note that this
value is equal to the number of entries in the tail array.
Also, no entry in the head array can exceed this value.

We assume that the number of replicates for each column is
stored as metadata, i.e., we know rðjÞ for all column j. In
particular, we know rðP ½1�Þ and rðP ½k�Þ. Note that the
former equals the number of entries in the head array, while
no entry in the tail array can exceed the latter. In our
example, rðP ½1�Þ ¼ rðaÞ ¼ 3, so H has three entries, and
rðP ½k�Þ ¼ rðdÞ ¼ 3, so no entry in T exceeds 3.

The above five values thus constrain the sizes, sums, and
maxima of H and T . For convenience, we call them the
“constraint counts.” The following property, easily verifiable
by the definition of head array, states another constraint onH.

Property 1. The entries in the head array H are nonincreasing
(from left to right).

Our idea of upper bounding HT-sum(H,T ) is to show that
there exists a pair of arrays H� and T � that can be obtained
from H and T through a series of transformations. We will
prove that 1) each transformation will not reduce the HT-sum
and hence HT-sumðH;T Þ � HT-sumðH�; T �Þ; 2) H� and T �

can be constructed using solely the constraint counts. Because
of 2, H and T need not be materialized and stored. We will
show a closed-form formula for HT-sum(H�,T �), which
serves as an upper bound of HT-sum(H,T ), in terms of the
constraint counts. The transformations are based on the
following “push” operations.

Definition 4. A push-right operation on an array A from entry l
to entry l0 reduces A½l� by a positive value v and increases A½l0�
by v, where l < l0.

Definition 5. A push-left operation of an array A from entry l
to entry l0 reduces A½l� by one and increases A½l0� by one,
where l0 < l.

Essentially, the push operations push values toward the
right and left of an array, respectively. Here are two useful
properties of the push operations.

Lemma 1. With a fixed head array, each push-right operation on
the tail array T cannot reduce the HT-sum.

Proof. A formal proof is given in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2011.167. In
summary, in the procedure of computing the HT-sum
(Section 5), for each entry in the head array, a number of
rightmost entries of the tail array are summed. Since each
push-right operation on T transfers a positive value from
an entry to another entry on its right, the sum cannot be
reduced. tu

Lemma 2. If the tail array is nonincreasing, push-left operations
on the head array cannot reduce the HT-sum.

Proof. A formal proof is given in Appendix A, available in

the online supplemental material. Here, we illustrate the

proof by an example. Consider our example head array

H ¼ ½5; 2; 2�. If we push-left on H from entry H½3� to H½2�
by a value of 1, we get Ĥ ¼ ½5; 3; 1�. In calculating the HT-

sum, the entries H½2� ¼ 2 and H½3� ¼ 2 each requests the

sum of the two rightmost entries in T , i.e., T [t� 1] and

T ½t� where t ¼ jT j. On the other hand, the entries Ĥ½2� ¼
3 and Ĥ½3� ¼ 1 request the sum of the three rightmost

entries in T (i.e., T ½t� 2::t�Þ and the value of the

rightmost entry in T (i.e., T ½t�), respectively. So the net

difference HT-sumðĤ; T Þ �HT-sumðH;T Þ ¼ T [t� 2� �
T ½t� 1�. If T is nonincreasing, T ½t� 2� � T ½t� 1� and thus

HT-sumðH;T Þ � HT-sumðĤ; T Þ. tu
Note that Lemma 2 is applicable only if the tail array is

nonincreasing. In our running example, however, T does
not satisfy this requirement. Fortunately, we can show that
by applying a number of push-right operations, we can
transform T to a T 0 that is nonincreasing. With T 0, Lemma 2
applies, and we can perform a number of push-left
operations to transform H to an H�. Finally, we apply
push-right operations to transform T 0 to a T �. In this
transformation process, by Lemmas 1 and 2, we have

HT-sumðH;T Þ � HT-sumðH;T 0Þ �
HT-sumðH�; T 0Þ � HT-sumðH�; T �Þ:

We can thus use HT-sum(H�; T �) as an upper bound of
sniðP Þ.

To complete the discussion, we need to define the contents
of T 0; H�, and T �, and to show that 1) T 0 so defined is
nonincreasing and that it can be obtained by transforming T
via a number of push-right operations; 2)H� can be obtained
from H via a number of push-left operations, each of which
preserves the nonincreasing property of the entries, and the
content of H� so defined can be derived from the constraint
counts; and 3) T � can be obtained from T 0 via a number of
push-right operations and its content so defined can be
derived from the constraint counts. To accomplish the above,
we need to prove a few properties of T first.

Recall that T contains sniðP ½2::k� 1�) entries and that the
lth entry of T records the number of P ½k� that appears after
the lth occurrence of P ½2::k� 1� in the data sequence Si. In
our example, P ½2::k� 1� ¼ hb; ci and there are eight occur-
rences of it in S1 at positions ð1; 6Þ; ð1; 10Þ; ð1; 12Þ; ð4; 6Þ,
ð4; 10Þ; ð4; 12Þ; ð8; 10Þ, and ð8; 12Þ. Let us group the entries
together if they correspond to the same occurrence of P [2]. In
our example, P ½2� ¼ b. The three occurrences of b are
positions (1), (4) and (8). So we group the first three entries
(which correspond to hb; ci at ð1; 6Þ; ð1; 10Þ; ð1; 12Þ) together.
Similarly, the remaining entries in T are divided into two
more groups. We note that each group forms a segment in the
T array, called an interval. In our example, the intervals are:

Given an interval I in T , we define the interval average of I
as the average of the entries in I. For example, the interval
averages of the three intervals in our example T are 1, 1, and
0.5, respectively. Here is an important property of the
interval averages.

Lemma 3. The interval averages are nonincreasing.

Proof. A formal proof is given in Appendix A, available in
the online supplemental material. In summary, consider
any interval I and its immediate right neighbor interval I 0.
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We can show that I must contain I 0 as its rightmost entries
(e.g., the second interval ([2,1,0]) contains the third
interval ([1,0]) at its right end). We can also show that if
I contains additional entries (other than those of I 0), the
average of these additional entries must be at least as large
as the interval average of I 0 (e.g., the additional entry [2] in
the second interval is larger than the third interval’s
average, which is 0.5). Therefore, the interval average of I
must not be smaller than the interval average of I 0. Hence,
the interval averages are nonincreasing. tu
With the concept of intervals, we can now define T 0.

Definition 6. Array T 0 is the same as T in terms of its size, the
number of intervals, and the length of each interval. For each
interval I in T 0, the value of each entry in I is equal to the
average value of the corresponding interval in T .

With our running example, we have,

The following lemma states the desired properties of T 0.

Lemma 4. T 0 is (a) nonincreasing, and (b) obtainable from T via
a number of push-right operations.

Proof. (a) Within each interval, entries in T 0 share the same
value, so they are nonincreasing. Also, the entries in T 0

contain the interval averages of T . By Lemma 3, these
averages are nonincreasing. So, the entries in T 0 are
nonincreasing across intervals.

(b) A formal proof is given in Appendix A, available
in the online supplemental material. In summary, for
each interval of T , we use push-right operations to obtain
the corresponding interval of T 0. Here we use our
example to illustrate. The entries of the first interval of
T are nonincreasing, therefore we can repeatedly move
the excessive values above the interval average from the
leftmost entry to the next one by push-right operations,
forming ð1; 2; 0Þ and then ð1; 1; 1Þ. tu

Next, we define H�. Recall that the lth entry of H records
the number of times the pattern P ½2::k� 1� occurs after the
lth P ½1� in Si. So, no entry inH can exceed sniðP ½2::k� 1�).H�
is obtained from H by pushing as much value to the left as
possible, subject to the constraint that no entry inH� exceeds
sniðP ½2::k� 1�). H and H� thus have the same size and sum.
Let x be the number of entries in H; y ¼ sniðP ½2::k� 1�Þ, and
z be the sum of all entries in H. H� is given by

H�½m� ¼

y; 1 � m � z

y

� �
;

zmod y; m ¼ z

y

� �
þ 1;

0;
z

y

� �
þ 2 � m � x:

8>>>>>><
>>>>>>:

ð2Þ

In our example, x ¼ 3; y ¼ 8, and z ¼ 9. H� is thus,

Note that x; y, and z can be obtained from the constraint
counts, so H� can be constructed directly from these counts
based on (2) without materializing H.

Lemma 5. H� is obtainable from H by a number of push-left
operations that preserve the nonincreasing property.

Proof. There are three types of entries in H�: 1) 0-valued
entries, all rightmost; 2) max-valued entries, all leftmost;
3) zero or one remainder entry. For any entry j of H, we
call it a donor, a receiver, or a remainder entry if the jth
entry ofH� is of type-1, type-2, or type-3, respectively. We
repeatedly perform the following: take the rightmost
donor that is nonzero, and use a push-left operation to
move one from it to the leftmost receiver that is not equal
to the maximum value y yet, or to the remainder entry if all
receivers are already equal to y. After all the donors are
made 0 by the above procedure, if there is a receiver that is
still smaller than y by an amount w, we push w from the
remainder entry to the receiver to obtain H�. It is easy to
see that each operation preserves the nonincreasing
property of the array. tu
For our example, there is a donorH½3�, a receiverH½1�, and

a remainder entryH½2�. We first use two push-left operations
to move 2 from H½3� to H½1� to form ð7; 2; 0Þ. Then since the
receiver still has not reached the maximum value y ¼ 8, we
use a push-left to move 1 from H½2� to H½1� to form ð8; 1; 0Þ,
which is equal to H�.

Finally, we define T � and show how it can be obtained
from T 0. Recall that T has sniðP ½2::k� 1�Þ entries with a sum
of sniðP2Þ. Let x ¼ sniðP ½2::k� 1�Þ and z ¼ sniðP2Þ. T � is
constructed by distributing an integral amount of z evenly
among the x entries, with the reminder distributed to the
rightmost entries of T �. That is,

T �½m� ¼
z

x

j k
; 1 � m � x� ðz mod xÞ;

z

x

l m
; x� ðz mod xÞ þ 1 � m � x:

8<
:

In our example, x ¼ 8 and z ¼ 7. T � is thus,

It is obvious that T � can be constructed from the constraint
counts alone.

Lemma 6. T � can be obtained from T 0 by a number of push-right
operations.

Proof. Since the entries in T 0 are nonincreasing and those in
T � are nondecreasing, if T 0½1� ¼ T �½1�, then all correspond-
ing entries in the two arrays are equal and no push-right
operations are needed. Otherwise, T 0½1� > T �½1�, and we
can move the difference T 0½1� � T �½1� to T 0½2� by a push-
right operation. If we now ignore the first entry of each
array, the same argument then applies to the second entry.
We can repeat the process to equalize every pair of
corresponding entries of the two arrays. tu
One can verify the following closed-form formula of HT-

sum(H�,T �). For clarity, let us define a few values

h1 ¼
sniðP ½1::k� 1�Þ
sniðP ½2::k� 1�Þ

� �
;

h2 ¼ sniðP ½1::k� 1�Þ mod sniðP ½2::k� 1�Þ;

t1 ¼
sniðP ½2::k�Þ

sniðP ½2::k� 1�Þ

� �
;

t2 ¼ ðsniðP ½2::k�Þ mod sniðP ½2::k� 1�ÞÞ:
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Finally,

HT-sumðH�; T �Þ
¼ h1 � sniðP ½2::k�Þ

þ
h2ðt1 þ 1Þ; if h2 � t2;
t2ðt1 þ 1Þ þ ðh2 � t2Þt1; otherwise:

� ð3Þ

Note that the above computation only requires the constraint
counts. Therefore, HT-sum(H�,T �) can be calculated without
materializing any of H;H�; T ; T 0, or T �. For our running
example, h1 ¼ 1; h2 ¼ 1; t1 ¼ 0; t2 ¼ 7, and

HT-sumðH�; T �Þ ¼ 1� 7þ 1� ð0þ 1Þ ¼ 8:

Our HTBound thus equals HT-sumðH�; T �Þ=sd1ðP Þ ¼ 8=81.
Note that the exact support is 6/81 and the MinBound is
7=27 ¼ 21=81 (see Section 4). HTBound is thus much tighter
than MinBound in this example. This is not mere
coincidence. We can show that the HTBound is indeed
theoretically guaranteed to be better than the MinBound.

Lemma 7. HTBound is always at least as tight as MinBound.

Readers are referred to Appendix A, available in the
online supplemental material, for a formal proof.

6.1 An Improved HTBound

Using the ideas developed above, we have also identified a
simpler and slightly tighter HTBound. We keep the
description of how the old HTBound was derived as it
contains a lot of interesting ideas, and its proofs make it
easy to derive the following new bound.

The main ingredient of the improved HTBound is a new
T �, which is defined as follows.

Definition 7. Array T � is the same as T in terms of its size, and
each entry is equal to the average of T .

With our running example, we have,

Again, it is obvious that T � can be constructed from the
constraint counts alone. Since it is also nondecreasing, the
proof of Lemma 6 is also valid for showing that this T � can
be produced from T 0 by push-right operations.

The corresponding HT-sum based on this T � is simple:

HT-sumðH�; T �Þ ¼
XjHj
p¼1

XH½p�
q¼1

T ½jT j � q þ 1�

¼
XjHj
p¼1

XH½p�
q¼1

sniðP ½2::k�Þ
sniðP ½2::k� 1�Þ

¼ sniðP ½1::k� 1�ÞsniðP ½2::k�Þ
sniðP ½2::k� 1�Þ :

ð4Þ

For our example, the HT-sum is equal to ð9� 7Þ=8 ¼
63=8 ¼ 7:875, which gives the new HTBound of 7:875=81,
slightly better than 8=81 given by the old HTBound.

In fact, the new HTBound is guaranteed to be at least as
tight as the old one. It is easy to see that the old T � can be
produced from the current one using push-right operations.

Since each push-right operation on the tail array cannot
reduce the HTBound according to Lemma 1, the HT-sum
derived from the new T � is not larger than the old one, and
thus after normalizing by the same denominator sdiðP Þ, the
new HTBound is at least as tight as the old one.

7 EXPERIMENTS

In this section we describe experiments that we perform to
evaluate the validity of the new OPSM-RM model, and the
efficiency of our mining algorithm.

7.1 Validity of the New OPSM-RM Model

7.1.1 Setup

To justify the proposal of the more complex OPSM-RM
model as compared to the basic OPSM model, we need to
show that the mined frequent patterns of OPSM-RM are
potentially more biologically significant. We use real
microarray gene expression data sets to perform this test.
We randomly download seven microarray data sets of the
baker’s yeast Saccharomyces cerevisiae with replicates from
the Gene Expression Omnibus (GEO) database [18], as
shown in Table 3.

We use various ways to evaluate the biological sig-
nificance of mined patterns. First, we evaluate them using
protein-protein interactions (PPIs) [14], [19], [20]. It has been
shown, in various model organisms, that proteins encoded
by genes with correlated expression are more likely to
physically interact [21], [22], [23], [24], [25]. One concrete
way to evaluate the mined frequent patterns is to check
what fraction of genes having same patterns interact
physically. For OPSM-RM, by definition each gene has a
fractional support for a pattern. In this part of analysis we
define the set of genes associated with a pattern as those
with a fractional support no less than an inclusion threshold
t. If the patterns based on the OPSM-RM model have higher
fractions of PPIs than the traditional OPSM model, the
former is potentially capable of revealing more functional
relationships between proteins in terms of their interactions.

To ensure the generality of our conclusion, we use three
different sets of PPIs with different levels of precision and
coverage: BioGRID-10, BioGRID-200, and DIP-MIPS-iPfam
[26]. For each set, we compute the background probability of
finding a protein interaction between two random proteins,
by dividing the number of known interactions by the total
number of protein pairs. Then for each mined frequent
pattern, we compute the within-pattern probability of protein
interaction by dividing the number of known interactions
between the proteins supported by the pattern by the number

YIP ET AL.: MINING ORDER-PRESERVING SUBMATRICES FROM DATA WITH REPEATED MEASUREMENTS 1595

TABLE 3
Data Sets Used to Evaluate the OPSM-RM Model



of protein pairs. Finally, we compute the odd-ratio as the
within-pattern probability divided by the background prob-
ability. A large odd-ratio would indicate a pattern with
significantly more protein interactions than a random protein
set. We also use the numbers of genes in

1. the whole data set,
2. the set of genes that support the pattern,
3. the set of genes whose proteins interact, and
4. the intersection of 2 and 3

to form a 2� 2 contingency table, and compute the
probability of getting an intersection at least as large as
the observed value using Fisher’s exact test.

To eliminate the effect of gene set size on these p-values,
we sample equal number of genes from each gene set
before computing the PPI p-values. We then summarize
the p-values of all the gene sets involved by determining
the fraction of gene sets being statistically significant, with
a p-value less than 0.01.

Besides using PPIs, we also check the enrichment of
functional annotations within the gene sets using DAVID
[27], a popular tool for performing functional analysis. For
each pattern, from the associated set of genes the number of
genes that belong to various functional categories are
counted, and statistical enrichment is given by a Benjamini-
Hochberg corrected p-value [28]. Again, for OPSM-RM the
gene sets are determined based on the inclusion threshold t.
We summarize these p-values by counting the fraction of
statistically significant patterns. We use the whole set of
genes in a data set as the background, and adopt the default
parameter values on the DAVID web site.

We use the results from the PPI and DAVID analyses
to compare the frequent patterns mined from four
different procedures:

1. traditional OPSM, using only one set of replicates
(abbreviated as OPSM-x, where x is the replicate
number),

2. traditional OPSM, using the average of all replicates
(abbreviated as OPSM-avg),

3. traditional OPSM, using the median of all replicates
(abbreviated as OPSM-med), and

4. OPSM-RM.

We repeat the tests with multiple values for the cutoff t
and the support threshold � for frequent patterns.

7.1.2 Results

Table 4 shows the average odd ratios for the patterns mined
from GDS2003 at support threshold � ¼ 10%n (n is the total
number of rows in the data set), evaluated by the protein
interactions in BioGRID-10. Each row corresponds to the
patterns of a different iteration (i.e., pattern length), and

each column corresponds to one OPSM model. We include

results for two values of the inclusion threshold t.
From the results, we see that all methods have all

average odd ratios above 1, which suggests that proteins

supporting same patterns generally tend to interact more

often than random. However, the odd ratios differ between

iterations, and between different models. First, the odd

ratios correspond to later iterations are higher, which is

expected as a longer pattern guarantees that the supporting

proteins have similar gene expression trends across more

samples. Second, the odd ratios of the OPSM-RM model are

higher than the traditional OPSM model. In contrast, while

OPSM-avg and OPSM-med combine the information of

multiple replicates, they are only marginally better than

when only one of the replicates is considered. This

comparison shows that OPSM-RM is able to better utilize

the information provided by the repeated experiments than

applying OPSM on an averaged data set.
Since longer patterns are observed to be more biologi-

cally relevant, in the following we concentrate on the results

of the last iteration that all models contain frequent

patterns. For example, for the set of results corresponding

to Table 4, only the odd ratios of iteration 4 will be shown.
Figs. 4 and 5 show the fraction of significant patterns

based on PPI and DAVID, respectively. Again we see that

the patterns obtained by the OPSM-RM approach are more

biologically relevant. This is an encouraging result since the

default functional categories used by DAVID do not include

protein physical interactions, and thus the two types of

analysis are largely independent, yet the main conclusions

are consistent.
It is then natural to ask if the patterns from OPSM-RM

are also more biologically relevant than the traditional

OPSM model when other data sets, support thresholds, and

protein interaction sets are used. We first fix the other

parameters, and change the microarray data set. Fig. 6

shows the resulting odd ratios.
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TABLE 4
Odd Ratios of Patterns Mined from GDS2003 at � ¼ 10%n,

Evaluated by BioGRID-10

Fig. 4. Fraction of significant patterns mined from GDS2003 at
� ¼ 10%n, evaluated by PPI.

Fig. 5. Fraction of significant patterns mined from GDS2003 at
� ¼ 10%n, evaluated by DAVID.



The odd ratios from OPSM-RM are in general larger than
those from traditional OPSM, but the differences are data
set-dependent. More substantial differences are observed
for GDS1661(wt), GDS2002, and GDS2003 than the other
data sets. We conclude that while the quality of mined
patterns highly depends on the specific data set, OPSM-RM
has the potential to mine better patterns.

Next we vary the support threshold to see its effect on
the odd ratios. The results are shown in Fig. 7.

We again observe the general trend that OPSM-RM gives
patterns with larger odd ratios. The difference is more
apparent for smaller support thresholds. The main reason is
that when the support threshold is small, the frequent
patterns can grow longer, and longer patterns are more likely
to contain proteins that interact as we observed earlier. This
result indicates that while a larger support threshold is
intuitively equivalent to a more stringent requirement, the
pattern quality is not necessarily higher due to shorter
pattern lengths. In practical use of OPSM-RM, one should
thus try multiple support thresholds, and look for reasonably
stringent values that give sufficiently long patterns.

Finally, we test the effect of the protein interaction set for
evaluation. Fig. 8 shows the resulting odd ratios.

The results confirm that patterns from OPSM-RM have
higher odd ratios than OPSM regardless of the precision
and coverage of the evaluating protein interaction set.

Due to space limitation, we leave the results for other
parameter combinations and evaluation methods to Ap-
pendix B, available in the online supplemental material. The
general conclusions drawn from the above observations are
supported by most of the results. For the DAVID analysis,
since the DAVID API imposes limitations on the number of
genes per gene set and the total number of gene sets per
day, we resorted to performing the analysis by manually
entering the gene lists one by one. This time-consuming
process prohibited us from performing a complete evalua-
tion of all patterns, methods, and parameter choices.

Instead, for each method we could only sample 10 patterns
mined from GDS2003 at support threshold 0:1n. We hope
that in the future there will be simple ways to perform
large-scale DAVID evaluations efficiently.

7.1.3 Handling Replicates by Statistical Tests

We have shown that if we summarize the values from
different replicates by a single statistic (such as mean and
median), the resulting mined frequent patterns are not as
biologically relevant as the ones obtained by the OPSM-RM
approach. To further explore other possible ways to handle
replicates, we have also studied a method based on statistical
tests. For each row, we define the order a < b for columns a
and b if the values at a are significantly smaller than those at b
based on t-test and a p-value cutoff. Similarly, we define the
order a > b if the values at b are significantly smaller than
those at a. If the values at the two columns are not
significantly different, no ordering is defined between the
columns, and the row would not support any pattern that
involves an ordering of a and b. This results in a variation of
the original OPSM mining problem, with each row allowed
to refuse supporting both the patterns ha; bi and hb; ai.

We compared the resulting frequent patterns at different
p-value cutoffs with those returned by OPSM-RM. In
general, the patterns based on this statistical test approach
are slightly more biologically relevant, but the number of
frequent patterns is much smaller even at a loose significance
level such as 0.1. There is thus a tradeoff between precision
and coverage.

This statistical test approach is equivalent to the ANOVA
F-test for two samples. For a pattern with more than two
columns, we need to perform a t-test for every pair of adjacent
columns in the pattern, and a row supports the pattern only if
the results of all the tests are statistically significant. This
requirement could be too strict as in some cases statistically
insignificant changes are still biologically meaningful, espe-
cially when the number of replicates is small. It is possible to
derive a method to test all involved columns at the same time,
but this cannot be done by a standard ANOVA analysis, as it
does not involve the total order of all the columns. We leave
the detailed investigation of more advanced statistical test
approaches to a future study.

7.2 Mining Efficiency

7.2.1 Setup

After showing the potential biological significance of the
patterns from OPSM-RM, our next concern is the mining
efficiency. In particular, we would want to test the speed
performance of our algorithm in terms of four scalability
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Fig. 6. Odd ratios of patterns mined from various microarray data sets at
� ¼ 10%n, evaluated by BioGRID-10.

Fig. 8. Odd ratios of patterns mined from GDS2003 at � ¼ 10%n,
evaluated by various protein interaction sets.

Fig. 7. Odd ratios of patterns mined from GDS2003 at various support
thresholds, evaluated by BioGRID-10.



parameters, namely the number of rows, columns, repli-
cates, and the support threshold. We are interested in both
the absolute performance of our final algorithm with
HTBound, and the relative performance as compared to
other bounding techniques described.

In order to test the scalability of our algorithm, we start
with a small microarray data set, and generate more rows,
columns, and replicates based on the original data distribu-
tion as follows.

We choose the microarray data set that was also used in
some previous studies on mining data with repeated
measurements [29], [30]. It is a subset of a data set obtained
from a study of gene response to the knockout of various
genes in the galactose utilization (GAL) pathway of the
baker’s yeast [31].1 In our data set, the columns correspond
to the knockout experiments of nine GAL genes and the wild
type, growing in media with or without galactose, yielding a
total of 2ð9þ 1Þ ¼ 20 experiments (columns). Each experi-
ment has four replicates. There are 205 rows corresponding
to genes that exhibit responses to the knockouts. The genes
belong to four different classes according to their functional
categories. Fig. 1 in Section 1 shows some example values of
our data set from one of the replicates.

To synthesize additional replicates, for each gene and
each experiment, we follow standard practice to model the
values by a Gaussian distribution with the mean and
variance equal to the sample mean and variance of the four
replicates. The expression values of new replicates were then
sampled from the Gaussian. New columns are synthesized
by randomly drawing an existing column, fitting Gaussians
as described, and sampling values from it. This way of
construction mimics the addition of knockout experiments of
genes in the same subpathways of the original ones. Finally,
new rows were synthesized as in the synthesis of new
columns, but with an existing row as template instead of a
column. This way of construction mimics the addition of
genes that have similar responses as some existing ones, due
to cooccurrence in the same downstream pathways.

We compare the performance of three methods: 1) Basic,
which applies the basic Apriori algorithm (see Fig. 2) with
the counting array data structure and data compression,
2) MinBound, which is the Basic method plus candidate
pruning using MinBound, and 3) HTBound, which is the
Basic method plus candidate pruning using HTBound.

We use two different performance metrics: the number
of candidate patterns, and the actual running time. The
former shows the effectiveness of the bounding techniques,

while the later also takes into account the overhead of
computing the bounds.

Our programs are written in C. The experiments are
performed on a machine with 2 GHz CPU, 16 GB memory,
and Red Hat Linux as the operating system.

7.2.2 Results

We first test the speed performance with various numbers
of rows. Fig. 9 shows the results.

Fig. 9a shows how many candidate patterns are
generated as a multiple of the actual number of frequent
patterns. A smaller ratio indicates more effective pruning,
and an ideal algorithm that prunes away all infrequent
candidate patterns before the verification step would have a
ratio of 1. We observe that the bounding techniques are very
effective. HTBound, in particular, has a ratio constantly
very close to 1 for all numbers of rows. Fig. 9b further
suggests that this saving in support verification justify the
extra overhead incurred by computing the bounds. The
actual running time of the mining algorithm improves by
using better bounds. For instance, with HTBound, the
mining time is consistently less than half that without using
bounding techniques.

The absolute running time is also reasonable. For 25,000
rows, which is approximately the number of genes in the
human genome, the total mining time is only half a minute.
This suggests that the OPSM-RM model can be practically
applied to new data sets of date.

Next, we test the speed performance with various
numbers of columns. As more data sets are produced and
incorporated into single analyzes, being able to scale well
with respect to the number of columns is crucial to the
applicability of an analysis method. Fig. 10 shows the speed
performance of our algorithm.

Again, we observe strong pruning power of the bounding
methods, with the candidate to frequent pattern ratios for
HTBound always close to 1. The running time clearly reveals
the importance of the bounding methods when there are a
large number of columns. For instance, at 30 columns, the
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Fig. 9. Speed performance with respect to the number of rows, with 20
columns, 4 replicates, and � ¼ 20%n.

1. The data set can be downloaded at http://genomebiology.com/
content/supplementary/gb-2003-4-5-r34-s8.txt.

Fig. 10. Speed performance with respect to the number of columns, with
25,000 rows, 4 replicates, and � ¼ 20%n.

Fig. 11. Speed performance with respect to the number of replicates,
with 25,000 rows, 20 columns, and � ¼ 20%n.



algorithm takes only 2 minutes to complete with HTBound,
while the basic approach requires eight times more time.

The next set of tests concerns the number of replicates.
The results are shown in Fig. 11.

The general trends remain the same as before, with the
importance of the bounding methods clearly shown. We
observe that with HTBound, the running time remains
reasonable even with 10 replicates. As in real experiments it
is very rare to exceed this number of replicates, practically
the algorithm remains applicable.

Finally, we test the efficiency with respect to the support
threshold �. The results are shown in Fig. 12.

The running time is longer when a smaller support
threshold is used, as there are more patterns qualified as
frequent. While the basic approach takes almost 1,000 sec-
onds to complete when the support threshold is equal to
1 percent of the total number of rows, with HTBound it
requires only 1/5 of the time.

In summary, we have observed that our mining
algorithm with HTBound is efficient in practical settings,
and it is scalable with respect to the number of rows,
columns, replicates, and the support threshold. For very
large data sets, our algorithms could be quite demanding in
terms of memory usage. How efficient disk access can be
incorporated in the algorithms is an important follow-up
work for this study.

8 CONCLUDING REMARKS

In this paper, we have described the problem of high noise
level to the mining of OPSM’s, and discussed how it can be
alleviated by exploiting repeated measurements. We have
listed some practical requirements for a new problem,
OPSM-RM that takes into account the repeated measure-
ments, and proposed a concrete definition that fulfills the
requirements. We have described a basic Apriori mining
algorithm that utilizes a monotonic property of the
definition. Its performance depends on the component
functions generate and verify. We have proposed the
counting array data structure and a sequence compression
method for reducing the running time of verify. For
generate, we have proposed two pruning methods based
on the MinBound and the HTBound. The latter makes use
of the head and tail arrays, which are useful both in
constructing and proving the bound. We have performed
experiments on real microarray data to demonstrate the
biological validity of the OPSM-RM model, the effectiveness
of the pruning methods, and the scalability of the algorithm.

As sequencing-based methods have become more
popular, the noise level in new gene expression data sets
is expected to decrease and more distinct states of

expression can be identified. How this will affect the
advantages of OPSM-RM over OPSM is to be studied when
more sequencing data sets become available.

ACKNOWLEDGMENTS

A preliminary version of this paper was published in the
Eighth IEEE International Conference on Data Mining
(ICDM’08) [1]. The main additions in this extended version
are: 1) An efficient data structure for candidate verification
(Section 3.2.2); 2) A tighter version of HTBound (Section 6);
3) Completely new sets of experiments that involve the new
data structure, which scale much better to larger data sets
(Section 7.2); and 4) New experiments that show the mined
OPSM’s are potentially more biologically significant when
repeated measurements are considered in the OPSM model
(Section 7.1).

REFERENCES

[1] C.K. Chui, B. Kao, K.Y. Yip, and S.D. Lee, “Mining Order-
Preserving Submatrices from Data with Repeated Measurements,”
Proc. IEEE Eighth Int’l Conf. Data Mining (ICDM ’08), pp. 133-142,
2008.

[2] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders,
M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Compre-
hensive Identification of Cell Cycle-regulated Genes of the Yeast
Saccharomyces Cerevisiae by Microarray Hybridization,” Mole-
cular Biology of the Cell, vol. 9, no. 12, pp. 3273-3297, 1998.

[3] A. Ben-Dor, B. Chor, R.M. Karp, and Z. Yakhini, “Discovering
Local Structure in Gene Expression Data: The Order-Preserving
Submatrix Problem,” J. Computational Biology, vol. 10, nos. 3/4,
pp. 373-384, 2003.

[4] L. Cheung, K.Y. Yip, D.W. Cheung, B. Kao, and M.K. Ng, “On
Mining Micro-Array Data by Order-Preserving Submatrix,” Int’l J.
Bioinformatics Research and Applications, vol. 3, no. 1, pp. 42-64,
2007.

[5] M.-L.T. Lee, F.C. Kuo, G.A. Whitmore, and J. Sklar, “Importance
of Replication in Microarray Gene Expression Studies: Statistical
Methods and Evidence From Repetitive Cdna Hybridizations,”
Proc. Nat’l Academy of Sciences USA, vol. 97, no. 18, pp. 9834-9839,
2000.

[6] B.J. Gao, O.L. Griffith, M. Ester, and S.J.M. Jones, “Discovering
Significant Opsm Subspace Clusters in Massive Gene Expression
Data,” Proc. 12th ACM SIGKDD Int’l Conf. Knowledge Discovery and
Data Mining, pp. 922-928, 2006.

[7] S. Bleuler and E. Zitzler, “Order Preserving Clustering Over
Multiple Time Course Experiments,” Proc. Third European Conf.
Applications of Evolutionary Computing (EC ’05), pp. 33-43, 2005.

[8] J. Liu and W. Wang, “OP-Cluster: Clustering by Tendency in High
Dimensional Space,” Proc. IEEE Third Int’l Conf. Data Mining,
pp. 187-194, 2003.

[9] H. Wang, W. Wang, J. Yang, and P.S. Yu, “Clustering by Pattern
Similarity in Large Data Sets,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’02), pp. 394-405, 2002.

[10] Y. Cheng and G.M. Church, “Biclustering of Expression Data,”
Proc. Eighth Int’l Conf. Intelligent Systems for Molecular Biology,
pp. 93-103, 2000.

[11] L. Lazzeroni and A. Owen, “Plaid Models for Gene Expression
Data,” Statistica Sinica, vol. 12, pp. 61-86, 2002.

[12] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng., pp. 3-14, 1995.

[13] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed
Sequential Patterns in Large Databases,” Proc. Third SIAM Int’l
Conf. Data Mining, pp. 166-177, 2003.

[14] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, W.
Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A Systematic
Comparison and Evaluation of Biclustering Methods for Gene
Expression Data,” Bioinformatics, vol. 22, no. 9, pp. 1122-1129, 2006.

[15] K.-O. Cheng, N.-F. Law, W.-C. Siu, and A.W.-C. Liew, “Identifica-
tion of Coherent Patterns in Gene Expression Data Using an
Efficient Biclustering Algorithm and Parallel Coordinate Visuali-
zation,” BMC Bioinformatics, vol. 9, article 210, 2008.

YIP ET AL.: MINING ORDER-PRESERVING SUBMATRICES FROM DATA WITH REPEATED MEASUREMENTS 1599

Fig. 12. Speed performance with respect to the support threshold � (as a
fraction of the total number of rows, n), with 25,000 rows, 20 columns,
and 4 replicates.



[16] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases, pp. 487-499, 1994.

[17] D. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, third ed. Addison-Wesley, 1997.

[18] T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, D. Rudnev, C.
Evangelista, I.F. Kim, A. Soboleva, M. Tomashevsky, K.A.
Marshall, K.H. Phillippy, P.M. Sherman, R.N. Muertter, and R.
Edgar, “NCBI GEO: Archive for High-Throughput Functional
Genomic Data,” Nucleic Acids Research, vol. 37, pp. D885-D890,
2009.

[19] Y. Okada, K. Okubo, P. Horton, and W. Fujibuchi, “Exhaustive
Search Method of Gene Expression Modules and Its Application
to Human Tissue Data,” IAENG Int’l J. Computer Science, vol. 34,
no. 1, pp. 119-126, 2007.

[20] X. Liu and L. Wang, “Computing the Maximum Similarity Bi-
Clusters of Gene Expression Data,” Bioinformatics, vol. 23, no. 1,
pp. 50-56, 2007.

[21] N. Bhardwaj and H. Lu, “Correlation between Gene Expression
Profiles and Protein-Protein Interactions within and Across
Genomes,” Bioinformatics, vol. 21, no. 11, pp. 2730-2738, 2005.

[22] S.D. Bodt, S. Proost, K. Vandepoele, P. Rouze, and Y.V. de Peer,
“Predicting Protein-Protein Interactions in Arabidopsis Thaliana
through Integration of Orthology, Gene Ontology and Co-
Expression,” BMC Genomics, vol. 10, article 288, 2009.

[23] H. Ge, Z. Liu, G.M. Church, and M. Vidal, “Correlation Between
Transcriptome and Interactome Mapping Data From Saccharo-
myces Cerevisiae,” Nature Genetics, vol. 29, no. 4, pp. 482-486,
2001.

[24] R. Jansen, D. Greenbaum, and M. Gerstein, “Relating Whole-
Genome Expression Data with Protein-Protein Interactions,”
Genome Research, vol. 12, no. 1, pp. 37-46, 2002.

[25] A.K. Ramani, Z. Li, G.T. Hart, M.W. Carlson, D.R. Boutz, and E.M.
Marcotte, “A Map of Human Protein Interactions Derived from
Co-Expression of Human Mrnas and Their Orthologs,” Molecular
Systems Biology, vol. 4, p. 180, 2008.

[26] K.Y. Yip and M. Gerstein, “Training Set Expansion: An Approach
to Improving the Reconstruction of Biological Networks From
Limited and Uneven Reliable Interactions,” Bioinformatics, vol. 25,
no. 2, pp. 243-250, 2009.

[27] D.W. Huang, B.T. Sherman, and R.A. Lempicki, “Systematic and
Integrative Analysis of Large Gene Lists Using DAVID Bioinfor-
matics Resources,” Nature Protocols, vol. 4, no. 1, pp. 44-57, 2009.

[28] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing,”
J. Royal Statistical Soc. Series B, vol. 57, no. 1, pp. 289-300, 1995.

[29] M. Medvedovic, K.Y. Yeung, and R.E. Bumgarner, “Bayesian
Mixture Model Based Clustering of Replicated Microarray Data,”
Bioinformatics, vol. 20, no. 8, pp. 1222-1232, 2004.

[30] K.Y. Yeung, M. Medvedovic, and R.E. Bumgarner, “Clustering
Gene-Expression Data with Repeated Measurements,” Genome
Biology, vol. 4, p. R34, 2004.

[31] T. Ideker, V. Thorsson, J.A. Ranish, R. Christmas, J. Buhler, J.K.
Eng, R. Bumgarner, D.R. Goodlett, R. Aebersold, and L. Hood,
“Integrated Genomic and Proteomic Analyses of a Systematically
Perturbed Metabolic Network,” Science, vol. 292, no. 5518, pp. 929-
934, 2001.

Kevin Y. Yip received the BEngg degree in
computer engineering and MPhil degree in
computer science from the University of Hong
Kong, in 1999 and 2004, respectively. He
received the PhD degree in computer science
from Yale University in 2009. He is an assistant
professor in the Department of Computer
Science and Engineering at the Chinese Uni-
versity of Hong Kong. His research interests
include bioinformatics and computational biol-

ogy, with a special focus on biological network inference and analysis
using data mining and machine learning techniques.

Ben Kao received the BSc degree in computer
science from the University of Hong Kong in
1989 and the PhD degree in computer science
from Princeton University in 1995. He is cur-
rently a professor in the Department of Compu-
ter Science at the University of Hong Kong.
From 1989 to 1991, he was a teaching and
research assistant at Princeton University. From
1992 to 1995, he was a research fellow at
Stanford University. His research interests in-

clude database management systems, data mining, real-time systems,
and information retrieval systems.

Xinjie Zhu has been working toward the MPhil
degree from the University of Hong Kong since
2011. He is a research assistant at the Uni-
versity of Hong Kong. His research interest
include area of data mining, uncertain data
management, and bioinformatics.

Chun Kit Chui is working toward the PhD
degree at the University of Hong Kong (HKU).
His research interests include data mining, data
warehousing, cloud computing, and uncertain
data management.

Sau Dan Lee received the BSc and MPhil
degrees from the University of Hong Kong in
1995 and 1998 and currently is working as a
postdoctoral associate at the University of Hong
Kong. He received the PhD degree from the
University of Freiburg, Germany in 2006. He has
also designed and developed backend software
systems for e-Business and investment banking.
His research interests include areas of data
mining, machine learning, uncertain data man-

agement, and information management on the WWW.

David W. Cheung received the MSc and
PhD degrees in computer science from
Simon Fraser University, Canada, in 1985
and 1989, respectively. Since 1994, he has
been a faculty member in the Department of
Computer Science at The University of Hong
Kong. He was the program committee chair-
man of PAKDD 2001, the program cochair of
PAKDD 2005, conference chair of PAKDD
2007 and 2011, and the conference cochair

of CIKM 2009. His research interests include database, data mining,
database security, and privacy. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1600 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 7, JULY 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


