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Abstract Over the last decade, the authors have extended the classical boundary element methods 
(BEM) for analysis of the fracture mechanics in functionally gradient materials. This paper 
introduces the dual boundary element method associated with the generalized Kelvin fundamental 
solutions of multilayered elastic solids (or Yue’s solution). This dual BEM uses a pair of the 
displacement and traction boundary integral equations. The former is collocated exclusively on the 
uncracked boundary, and the latter is collocated only on one side of the crack surface. All the 
singular integrals in dual boundary integral equations have been solved by numerical and rigid-body 
motion methods. This paper then introduces two applications of the dual BEM to fracture 
mechanics. These research results include the stress intensity factor values of different cracks in the 
materials, some fracture mechanics properties of layered rocks in rock engineering. 
 
Keywords boundary element method, generalized Kelvin solution, FGMs, fracture mechanics, 
singular integrals 
 
1. Introduction 
 
The functionally gradient materials (FGMs) are applicable to many engineering fields. In FGMs, 
the composite medium is processed in such a way that the material properties are continuous 
functions of the depth or thickness coordinate. The knowledge of fracture mechanics in FGMs is 
important in order to evaluate their integrity. Crack problems in FGMs have become one of the 
hottest topics of active investigation in fracture mechanics [1]. 
 
The boundary element method (BEM), also known as the boundary integral equation method, has 
firmly established in many engineering disciplines and is increasingly manifested to be an effective 
numerical approach. The attraction of BEM can be largely attributed to the reduction in the 
dimensionality of the problem and to the efficient modeling of the stress concentration. Thus, BEM 
can overcome the limitations associated with FEM or other numerical methods in accurately and 
efficiently analyzing the crack problems. Aliabadi [2] pointed out that fracture mechanics has been 
the most active specialized area of using BEM and probably the one mostly exploited by industry. 
 
If the material properties of FGMs vary in a complicated form along a given direction, it would be 
difficult to obtain their fundamental solutions. This limits the application of the BEM to analyze 
fracture mechanics of FGMs. Yue [3] obtained the fundamental solutions for the generalized Kelvin 
problems of a multilayered elastic medium of infinite extent subjected to concentrated body force 
vectors, which is referred to as Yue’s solution. The potential application of the solutions is to 
formulate the BEM suitable for the multilayered media and graded materials encountered in science 
and engineering. 
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Over the last decade, the authors have extended the classical boundary element methods (BEM) for 
analysis of the fracture mechanics in FGMs. The new BEM method incorporates Yue’s solution into 
the classical BEM methods. The BEM developed by the authors can be classified into two types: 
multi-region BEM and single region BEM (i.e., dual BEM). In this paper, we introduce mainly the 
some developments of the Yue’s solution based dual BEM and their applications in the fracture 
mechanics of the layered and graded materials. 
 
2 A brief introduction of the multi-region BEM based on Yue’s solution 
 
Mathematical formulation and computational procedures of the multi-domain BEM have been 
published by Yue et al. [4,5]. The BEM discretizes a FGM layer as a system of n number of fully 
bonded dissimilar sub-layers. The Yue’s solution is used as the fundamental solution to replace the 
classical Kelvin point load solution in conventional three-dimensional boundary element methods. 
As a result, any FGMs with arbitrary property gradient in depth can be examined using this BEM. 
 
Since Yue’s solution satisfies the continuous conditions at any interface, there is no need to consider 
any sub-layer interfaces as boundary surfaces or sub-domain interfaces in the numerical formulation 
of BEM. In other words, the crack problem can be straightforwardly carried out using the similar 
BEM procedure for the same crack in a homogeneous elastic solid of infinite extent. It is only need 
to generate the BEM meshes for the crack interfaces and their associated auxiliary surfaces. The 
auxiliary surfaces are needed since the conventional multi-region method is used in the BEM. In the 
computational formulation, the eight-node isoparametric elements are usually employed to 
discretize the boundary surfaces. The so-called traction-singular elements are used to model the 
singular fields around the crack tip. 
 
Authors [5,6] used the multi-region BEM to analyze the stress intensity factors of a penny crack 
parallel or perpendicular to the interfacial layer of FGMs and the growth of the penny crack under 
remote inclined loads. Besides, authors [7,8] further analyzed the stress intensity factors of an 
elliptical crack parallel or perpendicular to the interfacial layer of FGMs and the growth of the 
penny crack under remote inclined loads. 
 
3. Yue’s solution based dual boundary element method 
 
3.1 General 
 
As mentioned in Section 2, the multi-region BEM based on Yue’s solution has been applied for the 
analysis of penny and elliptical cracks in a FGM system. It can be found that the proposed method 
has the following drawbacks: (1) The introduction of artificial boundaries is not unique and thus 
cannot be implemented into an automatic procedure. (2) The method generates a larger system of 
algebraic equations than strictly required. (3) If artificial boundaries are located in FGMs, the 
unknown quantities of linear equations increase greatly because of the variations of material 
properties. Dual BEM can overcome the above drawbacks. Dual boundary element formulation is 
based on a pair of boundary integral equations (BIE), namely, the displacement and traction BIEs. 
The method is a single-region based, thus it can model the solids with multiple interacting cracks or 
damage. Although dual BEMs have been widely applied, few of the crack problems in 
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non-homogeneous media may be not involved. In the following, we will present a numerical 
implementation of the dual boundary integral equations based on Yue’s solution [9]. 
 
3.2. Yue’s solution based Dual BIEs 
 
Fig. 1 shows a three-dimensional crack in a multilayered solid. By collocating the source point on 
the uncracked boundary, the conventional displacement BIE can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),, ,
  

QdSQtQPuQdSQuQPtPuPc
S jS

Y
ijS jS

Y
ijSjSij ∫∫ −+−+ Γ+Γ+Γ+Γ+

=+     zyxji ,,, =  (1) 

where Ps and Q are the source and field points, 

respectively; ( )QPt S
Y
ij ,  and ( )QPu S

Y
ij ,  are the tractions 

and displacements of Yue’s solution, respectively; ( )Qt j  

and ( )Qu j  are the tractions and displacements of the 

field point Q on the boundaries; S is the uncracked 
boundary of the cracked body; +Γ  and −Γ  are two 

crack surfaces; ( )Sij Pc  is a coefficient dependent on the 

local boundary geometry at the source point Ps. 
 

Before loading, the points −Γ
Q  and +Γ

Q  on two crack surfaces are completely coincident and 

there are opposite outward normal directions on the two points. Thus, there exist the following 
relationships of kernel functions of the points on two crack surfaces 

( ) ( ),,, −+ ΓΓ
−= QPtQPt S

Y
ijS

Y
ij  ( ) ( )−+ ΓΓ

= QPuQPu S
Y
ijS

Y
ij ,,                (2) 

Assume that there is a balanced relationship of tractions: ( ) ( )−+ ΓΓ
−= QtQt jj . The relative crack 

opening displacement (COD) can be described as 

( ) ( ) ( ) zyxjuuu jjj  , ,,QQQ =−=Δ −++ ΓΓΓ
                 (3) 

Using the above relationships, the two integrals in equation (1) can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )QdSQuQPtQdSQuQPtQdSQuQPt jS
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Thus, equation (1) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )QdSQtQPuQdSQuQPtQdSQuQPtPuPc
S jS

Y
ijjS

Y
ijS jS
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The integral equation (5) is a general form of the displacement boundary integral equation based on 
Yue’s solution. 

Fig. 1 A three-dimensional crack in a 
multilayered solid 

x+ 
x-

Γ + 

x 

Γ - 

iu

it

n 

S 

 y 

 z 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-4- 
 

 

By collocating the stress boundary integral equation on the source point +Γ
P  on the crack surface 

+Γ  shown in Fig. 1, the conventional stress BIE can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  ., ,
2
1

2
1

  
QdSQtQPTQdSQuQPTPP

S k
Y

ijkS k
Y

ijkijij ∫∫ −+ +−+ +−+
Γ+Γ+ ΓΓ+Γ+ ΓΓΓ

=++ σσ  (6) 

where Y
ijkT  and Y

ijkU  are the new kernel functions obtained by using the numerical difference of 

the derivatives of Yue’s tractions and displacements. 
 

Multiplying equation (6) by the outward unit normal ( )+Γ
Pni  and noticing that ( ) ( )−+ ΓΓ

−= PnPn ii , 

the traction boundary integral equation on the crack surface results in 
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The points −Γ
Q  and +Γ

Q  on two crack surfaces are completely coincident and there are opposite 

outward normal directions on the two points. Thus, there exist the following relationships of kernel 
functions of the points on two crack surfaces 

( ) ( ) ( ) ( ).,,    ,,, −+−+ ΓΓΓΓ
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Applying expressions (8), the two integrals in equation (7) can be written as 
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Using expressions (8) and (9), equation (7) can be further written as 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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The integral equation (10) is a general form of the traction boundary integral equation based on 
Yue’s solution. 
 
Equations (5) and (10) give explicit expressions of the dual boundary integral equations based on 
Yue’s solution. These two integral equations do not contain the integrations on the interfaces of 
multilayered media because Yue’s solution strictly satisfies the interface conditions. Collocating 
equation (5) on the uncracked boundary S and equation (10) on +Γ  constitutes the dual boundary 
integral equations for crack problems. In these equations, the unknown quantities are the tractions 
and displacements on the uncracked boundary and the discontinuous displacements on the crack 
surfaces. When the dual BIEs are applied for the study of the crack problems in a multilayered 
medium of infinite extent, the displacement boundary integral equation is not required and then dual 
BEM degenerates into the discontinuous displacement method (DDM) [10,11]. 
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3.3 Numerical implementation of the dual BIEs 
 
In the context of the dual boundary integral equations, we apply four- to eight-node isoparametric 
elements to discretize the uncracked boundary and three types of nine-node quadralateral curved 
elements to discretize the crack surface. Once these quantities are determined, the displacements, 
tractions and CODs on boundary are known everywhere. Thus, we can now rewrite the dual 
boundary integral equations in a discretized form in terms of these parameters to be determined 
using the shape functions. According to the nature of the kernel and the relative position of the 
source point with respect to the element on which the integration is carried out, the integrals in the 
discretized dual BIEs are regular or non-regular. All these integrals have been calculated carefully 
[9]. 
 
Based on the numerical method, computer programs have been written in Fortran to calculate 
displacements, tractions and the CODs of a multilayered dissimilar elastic solid of finite or infinite 
extent containing cracks. The stress intensity factors (SIFs) can be calculated by using the CODs on 
the crack surface. We have examined the accuracy of the proposed DBEM in [9]. 

4 A square crack in the FGM interlayer 

In Fig. 2, a square crack is located in the FGM interlayer bonded to the two homogeneous 
half-spaces and parallel to the interfaces between a homogeneous half-space and the FGM interlayer. 
The square crack has the side length 2c. The crack surfaces are subjected to uniform compressive 
stress p. Among three materials, materials 1 and 3 are homogeneous media and material 2 is a 
gradient medium. The elastic modulus of the materials is approximated by 

 ( ) zeEzE α
12 =  and ( )13 /ln/1 EEh=α                        (11) 

where h is the thickness of the interfacial layer, the constant α can be positive or negative, and E1, 
E2 and E3 are the elastic moduli of three layers.  
 
Let 2=cα , 5.0/ =ch  and ν1=ν2=ν3=0.3. The five 
cases, 45.0 ,35.0 ,25.0 ,15.0 ,05.0/ =cd , are 
analyzed. The crack surface is discretized into 100 
nine-node elements. For the FGM described in 
expression (11), the FGM is closely approximated 
by n bonded layers of elastic homogeneous media. 
Each layer has the thickness equal to h/n and shear 
modulus equal to E2(z) at the top depth of the layer, 
i.e. for the i-th layer, z=Hi, where Hi=ih/n, ( ni  , ,2 ,1 Λ= ). Two homogeneous materials bonded 
through the FGM are considered as semi-infinite domains for the layers H0 and Hn+1 respectively. 
For all the layers, the Poisson’s ratios are the same and equal to 0.3. It can be observed that a close 
approximation of the elastic modulus variation can be obtained using a large number of n [5]. 
 
Figs. 3 and 4 illustrate the variations of the SIF values with the crack distance d to the FGM 
interlayer. In these figures, KI and KII are symmetrical to the x′ -axis. It can be found that the crack 
distance d increasing, the KI and KII values increase. From 0=d  to hd = , the elastic modulus on 

Fig. 2 A square crack in the FGM interlayer 
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the crack position becomes large and the constraint of the crack opening becomes strong so that the 
KI values decrease. At the same time, the relative sliding of the crack surfaces along the x and y 
directions occurs so that the KII values are not equal to zero and increase with the crack distance d 
increasing. Referring to the results of the case 2=cα  and 5.0/ =ch , the variations of the SIF 
values for the case 2−=cα  and 5.0/ =ch  can be obtained easily from Figs. 3 and 4. For the 
case 2−=cα  and 5.0/ =ch , the crack position d should be calculated from the plane 5.0/ =cz , 
the KI values are positive and the KII values are negative, and the KI values and the absolute values 
of KII are the same as the case 2=cα  and 5.0/ =ch . 
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Fig.3 Variation of KI with the crack distance     Fig. 4 Variation of KII with the crack distance 

5 A rectangular crack in layered rocks 

As shown in Fig. 5, an elastic layer is bonded to two semi-infinite domains and contains a 
rectangular crack parallel to its surfaces. The two elastic half-spaces are assumed to have the same 
elastic properties. Two types of rock, i.e., fine-grained sandstone and mudstone, are selected. The 
elastic parameters of fine-grained sandstone E1=56GPa and ν1=0.3, and the ones of mudstone 
E2=20GP and ν2=0.25. Thus, there are four types of layered rocks shown in Table 1. The thickness 
of the mid-layer h=2m. The side lengths of the square crack are 2m and 4m and the crack surface is 
parallel to the interface of the layered rocks. The crack surfaces are smooth and are subjected to a 
linear load shown in Fig. 6. The crack surface is discretized into 100 nine-node elements. 
 
 
 
 
 
 
 
 

 
In order to plot the values of the SIFs along crack front lines, a line coordinate L is used to measure 
the crack front lines from AB, BC to CD, shown in Fig. 6. The line coordinate L starts at the corner 
point A of the square crack (i.e. L=0). It increases along the line AB, BC to CD. Correspondingly, L 
increases from 0-2, from 2-6, and from 6-8, respectively. 

Fig.5 A rectangular crack in the interlayer of infinite domain 

h1 
h 

A homogeneous half-space 

A homogeneous interlayer 

A homogeneous half-space 
8M

8My′

Fig. 6 A rectangular crack subject to linear load 

D

C B

A

4m
2m O′ x′



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-7- 
 

Table 1 Cases of layered rocks containing a rectangular crack 

Case no. Layered rocks of infinite extent 

1 The homogeneous solid of infinite extent consists of fine-grained sandstone. 

2 
The sandwich solid consists of two semi-infinite extents of mudstone and the 
mid-layer of fine-grained sandstone. 

3 The homogeneous solid of infinite extent consists of mudstone. 

4 
The sandwich solid consists of two semi-infinite extents of fine-grained sandstone 
and the mid-layer of mudstone. 

(1) Case 1 and case 2 
For case 1, there are no relative sliding displacements along the crack surfaces because of symmetry 
of geometry and loads. Due to the same reasons, there are no relative sliding displacements for case 
2 (h1=1m). For case 2, the COD values increase and the KI values also increase in comparison with 
case 1. This is because the elastic module of mudstone in semi-infinite domain is less than the one 
of fine-grained sandstone. 
 
For case 2 (h1 ≠ 1m), the absolute values of displacements along the upper surface increase and the 
ones along the lower surface decrease. This leads to the appearance of the sliding discontinuous 
displacements along the crack surface. Due to the non-uniform load on the crack surfaces, there are 
different SIF values at the crack fronts mx 2±=′  whilst there are the same SIF values at the crack 
fronts my 1±=′ . In the following, the SIF values at the crack fronts mx 2±=′  and my 1−=′  are 
discussed. 
 
Fig. 7 shows the variation of the SIF values at the crack fronts mx 2±=′  and my 1−=′ . The KI 
values are positive and the KII values are negative. Obviously, these phenomena are related to the 
load on the crack surfaces and the relative position of the crack in this medium. Along the crack 
front my 1−=′ , the larger the load, the larger the absolute values of KI and KII. As the crack surface 
approaches to the interface, the absolute values of KI and KII increase. 
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Fig. 7 SIF values of rectangular crack subjected to linear loads (Cases 1 and 2) 

(2) Case 3 and case 4 
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Fig. 8 shows the variation of the SIF values at the crack fronts mx 2±=′  and my 1−=′ . Herein, the 
KI and KII values are positive. Along the crack front my 1−=′ , the KI and KII values become larger 
near the side mx 2=′ . As the crack surface approaches to the interface, the absolute values of KI and 
KII decrease. 
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Fig. 8 SIF values of rectangular crack subjected to linear loads (Cases 3 and 4) 

 
5 Concluding remarks 
 
This paper introduces a novel dual boundary element method associated with Yue’s solution. In 
analyzing the crack problems in FGMs and layered materials, the advantages of this approach are: 
(1) it is not necessary to introduce elements at the interface, (2) the method is applicable for 
multilayered solids with any layer number and (3) the high accuracy can be obtained for the crack 
in multilayered solids. Only the results of crack problems in infinite domains are presented in this 
paper and the numerical examples of crack problems in finite domains can be found in [9]. 
 
In 1995, Yue [12] developed the fundamental solution of a transversely isotropic bi-material. The 
authors also used this fundamental solution to develop the BEMs of the bi-material similar to the 
ones of Yue’s solution. The proposed BEM includes the multi-domain BEM and the single domain 
BEM (i.e., dual BEM). The application of the BEMs to analyze a penny crack, an elliptical crack 
and a square crack in bi-materials has been presented [13-15]. 
 
In the book [16], the authors introduced the research results by using the fundamental solutions [3, 
12] systematacially. The proposed BEMs and the results can be a powerful numerical tool, which 
can apply to various complex three-dimensional geometries of layered or gradient materials with 
cracks under mixed-mode loading. 
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