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Abstract. Critical state soil mechanics (CSSM) gives a theoretical framework for soil 
modelling. This paper investigates the effect of inter-particle friction on the critical state 
behavior of DEM assemblies with grading representative of a real soil. It is found that the 
angle of shearing resistance at the critical state increases with increasing inter-particle friction 
(µ) and in void ratio (e) vs logarithmic mean effective stress (log(p’)) space the critical state 
locii have higher e values when µ is higher. An atypical CSL in e-logp’ space that deviates 
from experimental observations and the classical CSSM behavior was observed when µ = 0.5. 
Micro-scale analyses show that this can be attributed to the emergence of a higher number of 
floating particles due to the increasing self-stability of strong force chains with increasing 
inter-particle friction. This study recommends the use of inter-particle friction lower than 0.5 

Effects of inter-particle friction on the critical state behaviour of granular materials: a nu-
merical study 	
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in DEM simulations of element testing in soil mechanics.

1 INTRODUCTION 
The basic concept of critical state soil mechanics (CSSM) is that soils when sheared to 

large strain levels will deform continuously without a change of volume and stress state [1]. 
There is a unique relationship between the void ratio (e) and the logarithm of the mean 
effective stress (log(p’)) at the critical state which is defined as the critical state line or locus 
(CSL). The mechanical behavior of soils has been found to depend on the relative position of 
their current states (e and p’) with respect to their critical states [2]. CSSM serves as a 
fundamental concept in soil modelling and has been widely applied in constitutive modelling. 
These CSSM concepts were developed based on macro-scale experimental observations and 
CSSM-based constitutive models are routinely used in continuum soil mechanics analysis. 
However, as soil is particulate system, its macro response depends on the particle-scale 
properties and interactions. 

Sliding, rolling and buckling are the three major particle-rearrangement patterns that 
govern the macro-mechanical responses of granular materials. The resistance to sliding of 
particles against each other largely depends on the inter-particle friction. It has been observed 
in both physical experiments [3] and numerical studies using distinct element method (DEM) 
[4] that the inter-particle friction plays an important role in the behavior of granular materials, 
e.g., the dilatancy rate, peak and residual strength increase with increasing inter-particle 
friction [5,6,7]. 

Previous studies of the influence of inter-particle friction coefficient (µ) on the critical state 
only focused on the angle of shearing resistance at the critical state [5,6], while the role of inter-
particle friction on the critical-state in terms of void ratio (e) and mean effective stress (p’) 
was neglected but should be of more interest as it governs the deformation path from initial 
state to critical state. Previous studies also considered only a single case for each inter-particle 
friction coefficient and thus could not define a CSL. This study extends the previous work of 
Thornton [5] and Yang et al. [6] to study the effect of inter-particle friction on the critical state 
behavior of a granular material with a realistic grading. In particular, the effect of inter-
particle friction coefficient on the CSL in e-log(p’) space is discussed. The micro-scale 
explanations for the effect of inter-particle friction on the macro response are explored by 
evaluating the mechanical redundancy and structural anisotropy of the particulate system.   

2 DEM SIMULATIONS 
The simulations were run using the PFC3D DEM software [8]. The particle size distribution 

(PSD) used is shown on Figure 1 and is representative of the Japanese standard sand, Toyoura 
sand [9]. The simplified Hertz-Mindlin contact model was used with particle shear modulus 
(G) and Poisson’s ratio (ν) taken to be 29 GPa and 0.12 respectively (the properties of quartz 
given by Simmons and Brace [10]). Gravity was not simulated and the rigid walls were 
frictionless.  

A non-contacting cloud composed of between 16,073 and 16,578 particles were first 
generated randomly within a cylindrical domain at half of their target sizes. The particles were 
then uniformly expanded to their final sizes and cycled to equilibrium. A servo control 
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mechanism was then introduced to adjust the positions of the rigid walls continuously until a 
stable isotropic stress state was attained. These isotropic assemblies were subjected to 
different loading paths (conventional drained compression (CDC), constant volume 
compression (CVC) or constant mean effective stress (p’) compression (CPC)) until the 
critical state was reached. Two inter-particle friction coefficients (µ = 0.25 and 0.5) were used 
during shearing. The simulations carried out in this study are summarized in Table 1. 

Figure 1: Comparison between the particle size distributions of DEM assemblies and Toyoura sand 

Table 1: Simulation summary 

ID Initial void ratio 
e0

Initial confining pressure p’0  
(kPa) 

Loading path µ 

0.627-5000-CDC 0.627 5000 CDC 0.5 
0.645-1000-CDC 0.645 1000 CDC 0.5 
0.648-500-CDC 0.648 500 CDC 0.5 
0.651-100-CDC 0.651 100 CDC 0.5 
0.581-5000-CPC 0.581 5000 CPC 0.25 
0.596-1000-CPC 0.596 1000 CPC 0.25 
0.601-100-CVC 0.601 100 CVC 0.25 
0.648-500-CDC 0.648 500 CDC 0.25 
0.648-500-CVC 0.648 500 CVC 0.25 

3 MACRO STRESS STRAIN BEHAVIOR 
In this study, the conventional definition of the deviatoric stress (q) and mean effective 

stress (p’) in soil mechanics is adopted. q is defined as the difference between the major and 
minor principal stresses ( = ′ − ′), while p’ is the mean value of the three principal 
stresses (′ = ( + ′ + )/3). Compressive volumetric strains are taken to be positive. 
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Figure 2 illustrates the effect of inter-particle friction on the macro stress-strain response. The 
two samples had the same initial state (e0 = 0.648, p’0 = 500 kPa) and were sheared under 
conventional drained condition to large strain levels with inter-particle friction coefficients of 
0.25 and 0.5. As shown in Figure 2 (a), the sample with µ = 0.5 is stiffer and yields a high 
peak as well as residual strength than the sample with µ = 0.25. Figure 2 (b) shows that both 
samples contract initially before dilating until the volumetric strain becomes constant, i.e., the 
critical state is attained. The sample with µ = 0.5 is more dilative than the sample with µ = 
0.25. 

(a) Evolution of deviatoric stress 

(b) Evolution of volumetric strain 
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Figure 2: Effect of inter-particle friction on the stress-strain response 

4 CRITICAL STATE OBSERVATIONS 

4.1 Macro-scale observations 
The CSL in q-p’ space is illustrated in Figure 3. The critical state locus in terms of q and p’ 

can be represented by a unique linear relationship with slopes M equaling to 0.749 and 0.683 
for µ = 0.5 and µ = 0.25 respectively, regardless of the initial state and loading conditions. 
The slope M is related to the angle of shearing resistance at the critical state by the following 
equation: 

′ = (
3
6 +)

(1)

Therefore the angles of shearing resistance are 19.4° and 17.9° for µ = 0.5 and µ = 0.25 
respectively, i.e., the angle of shearing resistance at the critical state increases with increasing 
µ. This is in line with the previous studies based on a single case [5,6]. 

Figure 4 shows the critical state relationships in e-log(p’) space. The void ratio is taken as 
the void ratio within the homogeneous interior zone as suggested by Huang et al. [11]. The 
critical states of µ = 0.5 case are located above those of µ = 0.25 case, implying that samples 
with a higher µ are less compressible or more dilative than samples with a lower µ. For µ = 
0.5 case, the critical state void ratio increases with increasing p’, while for the µ = 0.25 case, 
the critical state void ratio decreases with increasing p’ and the critical state locus can be 
represented by a unique relationship. The increase of critical-state void ratio with increasing 
p’ when µ = 0.5 contradicts both the laboratory observations and the basic concept of classic 
CSSM. The reason for this atypical phenomenon will be discussed in section 4.2. 

Figure 3: Effect of inter-particle friction coefficient on the CSL in q-p’ space 
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Figure 4: Effect of inter-particle friction coefficient on the CSL in e-logp’ space 

4.2 Micro-scale analysis 
The coordination number (Z) is defined as the average number of contacts per particle and 

is given by 2Nc/Np, where Nc and Np are the number of contacts and particles within the 
sample, respectively. Z is a micro-scale indicator of packing density. A higher Z indicates a 
tighter packing. The relationship between Z and p’ at critical state is shown in Figure 5. It is 
clear that Z increases with increasing p’ in both high and low µ cases, indicating that particles 
are more closely packed under higher stresses. Given the same stress level, Z is higher in the 
µ = 0.25 case than in the µ = 0.5 case. This has two implications: the sample with low inter-
particle friction is more compressible than the comparable sample with a high inter-particle 
friction; and the particles are more stable when the inter-particle friction increases and thus 
fewer lateral supports are needed. The former one is in accordance with the macro 
observations as described in section 4.1. To explain the latter implication, we firstly consider 
the extreme case where µ = 0. In this frictionless situation (µ = 0), for a 3D system a single 
particle has only three translational degrees of freedom (the rotational degree of freedom can 
be ignored as there is no driven force in the tangential directions to cause the rotational 
movement). Therefore at least three constraints are needed to maintain the kinematic and 
mechanical stability of a single particle. In the frictionless situation, a single contact can only 
provide a restriction to the relative movement which is along the contact normal direction, 
i.e., there is only one constraint direction. Therefore at least three contacts are needed for a 
single particle to be stable. In this case, the minimum coordination number in frictionless case 
is 6 (2Nc/Np = 2·3/1=6). When the inter-particle friction is increased and µ > 0 the relative 
sliding movement between particles at the contact is resisted and thus the number of contacts 
for a single particle to maintain stability decreases. 

102 103 104 1050.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

p′, kPa

e

µ = 0.25
µ = 0.5



171

X. HUANG ¹, K. HANLEY ² , C. O’SULLIVAN 3, C.Y. KWOK 4 AND L.G. THAM 5

7

Figure 5: Relationship between Z and p’ at critical state 

The enhancement of self-stability by increasing µ can also be speculated from the 
structural anisotropy at the critical state. The fabric anisotropy can be quantified using the 
second-order fabric tensor proposed by Satake [12] as follows: 

                                                          = ∑ 
                                                              (2)

where n denotes the unit contact normal. The deviatoric fabric Φd is the difference between 
the maximum eigenvalue (Φ1) and the minimum eigenvalue (Φ3) of the fabric tensor and it 
has been widely used to quantify the structural anisotropy of granular assemblies [5,7]. Figure 6 
illustrates the relationship between Φd and p’ at the critical state. Obviously, the structural 
anisotropy decreases with increasing mean effective stress for both µ = 0.5 case and µ = 0.25 
case. The sample with a high µ is more anisotropic than the sample with a low µ 
corresponding to the same p’, suggesting that the strong contact force network in high µ case 
is more stable and thus less reliant on the propping by an orthogonal network. Thus, samples 
with a higher µ can sustain a higher magnitude of deviatoric loading than samples with a 
lower µ as shown in Figure 2 (a). 

The relationship between the deviatoric fabric and coordination number at critical state is 
illustrated in Figure 7. The structural anisotropy decreases with increasing coordination 
number in both low and high µ case. It is worth noticing that the data collapse to a linear 
relationship with a high confidence (R2 ≈ 0.97) irrespective of the µ values and loading 
conditions. A similar observation has been made by Kruyt [13] who proposed that this 
relationship has a geometrical origin. This relationship (intercept and slope) may depend on 
the particle size distribution as the relative size between contacting particles may affect the 
arrangement of particles and the orientation of contact normals as well. 
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Figure 6: Relationship between the deviatoric fabric and p’ at critical state 

Figure 7: Relationship between structural anisotropy and coordination number at critical state 

The number of rattlers (particles with < two contacts) is a direct indicator of the 
mechanical redundancy of a particulate system.  Figure 8 plots the proportion of rattlers 
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network with increasing µ, i.e., the particulate system has a higher degree of mechanical 
redundancy when µ increases. These rattlers make no contribution to the overall force 
transmission. Therefore, following Thevanayagam and Mohan [14], the rattlers can be 
considered as part of the void space and an inter-granular void ratio (es) can be defined as, 
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 =



                                                                     (3) 

Where Vvoid is the real void volume, VR is the volume of rattlers and VS is the total volume of 
solids. Figure 9 plots the inter-granular void ratio (es) against the mean effective stress (p’).  It 
is interesting to see that the atypical relationship between e and log(p’) vanishes and both the 
CSL for µ = 0.5 and µ = 0.25 case show a consistent trend with es decreasing with increasing 
p’.  

Figure 8: Relationship between the percentage of rattlers and p’ at critical state 

Figure 9: CSL in terms of inter-granular void ratio and p’ 
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5 CONCLUSIONS 
This study has investigated the effect of inter-particle friction coefficient (µ) on the critical 

state behavior of a granular material with a realistic grading. Macro-scale analysis exhibits 
that the sample with µ = 0.5 is stiffer and more dilative than the sample with µ=0.25. The 
angle of shearing resistance at the critical state increases with increasing µ and the locus of 
critical state points in e-log(p’) space for  µ = 0.5 is above that for  µ = 0.25. While the major 
features of the critical state behavior of sands can be captured by DEM simulations with a low 
µ (i.e. 0.25), the void ratio increases with increasing mean effective stress when µ is high (i.e. 
0.5) which is contradictory to the classic CSSM concept. Micro-scale analysis exhibits that 
the coordination number decreases while the structural anisotropy increases with increasing µ 
and there is linear relationship between the structural anisotropy and coordination number at 
critical state which is independent of µ. The use of high µ leads to a high degree of 
mechanical redundancy which may be the origin of the weird macro response. Hence, in 
DEM simulations of element testing, the inter-particle friction coefficient should be lower 
than 0.5.  
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