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Measuring Time-Energy Resources for Quantum Processes
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Abstract.

The speed of any quantum process is limited by quantum mechanics via time-energy uncer-

tainty relations and they imply that time and energy are tradeoff with each other. As such, we propose to
measure the time-energy as a single unit for quantum channels. We consider a time-energy measure for
quantum channels and compute lower and upper bounds of it using the channel Kraus operators. For a
special class of channels (which includes the depolarizing channel), we obtain the exact value of the time-
energy measure. Our result can be used to compare the time-energy resources of similar quantum processes.

In particular, we show that erasing quantum information requires /(n + 1)/n times more time-energy re-
source than erasing classical information, where n is the system dimension. This work is published in [1].
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Quantum processes in nature and quantum computa-
tion processes designed by human all require time and
energy to evolve. The evoluation speed of a physical de-
vice is governed by physical laws and is limited by the
energy of the device. Under the constraints of quantum
mechanics, time-energy uncertainty relations (TEURs)
set limits on system evolutions [2]. The investigation of
TEURs has a long history. Mandelstam and Tamm [3]
proved the first major result of a TEUR. This was fol-
lowed by subsequent work on isolated systems (e.g., [4, 5])
and composite systems with entanglement (e.g., [6]) Re-
cently, TEURs for general quantum processes have also
been proved [7, 8]. The general form of TEURs is an
inequality that sets a lower limit on the product of the
system energy (or a function of the energies) and the time
it takes to evolve an initial state to a final state (e.g., an
orthogonal state). One implication of the form of TEURs
is that time and energy are tradeoff against each other.
Thus, we propose to regard time-energy as a single prop-
erty of a quantum process. The intuition is that the more
computation or work a quantum process performs, the
more time-energy it requires. And it is up to the system
designer (or nature) to perform it with more time but
less energy, or vice versa. Thus, our goal in this paper is
to investigate the time-energy requirements of quantum
processes by using a time-energy measure. Research in
this direction has been carried out before. Chau [9] pro-
posed a time-energy measure for unitary transformations
that is based on a TEUR proved earlier [10]. In this pa-
per, we extend this measure to quantum processes. The
TEUR due to Chau [10] is tight in the sense that it can
be saturated by some states and Hamiltonians, and thus
it serves to motivate a good definition for a time-energy
measure. To see this, let’s start with this TEUR. Given
a time-independent Hamiltonian H of a system, the time
t needed to to evolve a state |®) under the action of H to
a state whose fidelity ' is less than or equal to € satisfies
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IWe adopt the fidelity definition F(p,0) = (Try/p'/20p1/2)?
for two quantum states p and o.

the TEUR
o (= yen

A oy |Ey
where Ej’s are the eigenvalues of H with the corre-
sponding normalized energy eigenvectors |E;)’s, |®) =
> @j|E;), and A~ 0.725 is a universal constant. Essen-
tially, after time ¢, the state transforms unitarily accord-
ing to U = e~ *1*/" The same U could be implemented
with either a high energy H run for a shorter time or a
low energy H run for a longer time. Based on Eq. (1),
a weighted sum of [tE;|’s serves as an indicator of the
time-energy resource needed to perform U, and as such
the following time-energy measure on unitary matrices
was proposed by Chau [9]:

Uz =" 6,1+
j=1

where U has eigenvalues exp(—iE;t/h) = exp(f;), and
|0;* denotes |0;] ordered non-increasingly |61 | > |62¥ >
w20, % Also, fi = [p1, 2y - -y ] # 6Withu1 > o >
-+ >, > 0. Note that ||U||; satisfies the multiplicative
triangle inequality ||UV ||z < [|[U||z+]V ||z [9]. In essence,
a large value of ||U||; suggests that a long time may be
needed to run a Hamiltonian that implements U for a
fixed energy, and vice versa.

In this paper, we are interested in an analogous mea-
sure for quantum channels which include unitary trans-
formations as special cases. We are given a quantum
channel F(p) acting on system A that maps n x n den-
sity matrix p to another one with the same dimension.
There exist unitary extensions Up4 in a larger Hilbert
space with an ancillary system B such that F(p) =
Trp[Upa(|0) 5(0] @ pa)UL ,]. Each Uga could have a
different time-energy spectrum and we want to select the
one requiring the least resource for F. We extend the
resource indicator for U to quantum channel F by defin-
ing

(1)

17 = min U]z

s:t. F(p) = Trp[Upa(10) 5 (0] @ pa)Uf 4] V.



This gives a U that consumes the least time-energy re-
source. Thus, ||F]|z is an indicator of the resource needed
to perform F.

There are some interesting consequences by using this
time-energy measure. In particular, we can compare the
time-energy resources needed to erase quantum informa-
tion and classical information. We show that v/(n+1)/n
times more resource is required in the quantum setting
than in the classical setting. Also, we study the time-
energy scaling of consecutive runs of the depolarizing
channel. It turns out that the amount of time-energy
resource needed for k runs of the depolarizing channel
scales as vk when the noise is small.

In this work, we focus on two special cases of the time-

energy measure:
T

1Ulsum = Z 1051 -

i=1
e Max time-energy:  ||U||max = max |6, = |01]*.
1<j<r

e Sum time-energy:

Note that the subscript “sum” is short for g = [1,1,...,1]
and “max” for [ =[1,0,...,0].

For these two cases, we derive lower and upper bounds
on the time-energy resource measure ||.F || max and || F||sum
for any quantum channel F given its Kraus operators.
The derivation is based on analyzing a few intermediate
optimization problems. It turns out that the lower and
upper bounds are all dependent on the eigenvalues of
some Kraus operator of F. Specifically, we prove that

d
| Fllmax > min  max cos™! [Re(/\i(Zijj))} (2)
j=1

v:||v]|<1 1<i<n

n d
Fllmax <  min cos™t | Re(\; v, F; 3
Pl < i, 3 o™ [ReOu(Ss )] @)
d
| Fllsum > min  max 2cos™* |)‘Z(Z v Fy)| (4)

v:||v]|=1 1<i<n

j=1
n d

F um< i 2 s~ 1 R )\L F 5

IFlhom < uin, 3 2c0s™" [ Re( S D)6

where [|[v]| = /S0, [vj]2, F; € €™ j = 1,....d are

the Kraus operators of F, and \;(-) denotes the ith eigen-
value of its argument. Note that F(p) = Z?zl Fijj.

For a class of channels (which includes the depolariz-
ing channel), we obtain the exact value for || F|max. In
particular, when F is a depolarizing channel with proba-
bility ¢ that the input state is unchanged, its time-energy
requirement is || F||max = cos™ y/q + (1 — q)/n2.

We summarize the approach used to establish the lower
and upper bounds. We cast the original problem of find-
ing the most time-energy efficient U that implements F
as the problem of finding a U that transforms some given
initial vectors to some given final vectors. The time-
energy of this U is lower bounded by that of any U’ that
transforms a subset of the vectors. This is essence of
how we obtain a lower bound for ||F||max and || F||sum, by
searching for U’ that transforms only one vector. To de-

rive the upper bound, we construct a sequence of single-
vector transformations such that their product gives the
original U. Since ||U||; satisfies the multiplicative trian-
gle inequality [|[UV||z < [|U|lz + [|[V||z [9], we obtain the
upper bound. Thus, both the derivations of the lower and
upper bounds rely on the solution to the single-vector-
transformation problem.

We make a few other remarks. A related concept about
erasure and energy is the Landauer’s principle [11] which
puts lower limits on the energy dissipated to the envi-
ronment in erasing (qu)bits. There is a difference be-
tween the erasure considered here and the erasure of the
Landauer’s principle. For future investigation, it is in-
structive to obtain the time-energy for various quantum
processes such as some standard gates or algorithms, to
consider this time-energy measure in the thermodynamic
setting, and to explore deeper operational meaning about
this measure.
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