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Abstract—Depth map estimation is a classical problem in 
computer vision. Conventional depth estimation relies on 
stereo/multi-view matching or depth sensing devices alone. In this 
paper, we propose a system which addresses high resolution and 
high quality depth estimation based on joint fusion of stereo and 
Kinect data. The problem is formulated as a maximum a 
posteriori probability (MAP) estimation problem and reliability 
of two devices are derived. The depth map estimated is further 
refined by color image guided depth matting and a 2D polynomial 
regression (LPR)-based filtering. Experimental results show that 
our system can provide high quality and resolution depth map, 
which complements the strengths of stereo vision and Kinect 
depth sensor. 

Index Terms— Depth estimation system, high resolution, Kinect, 
stereo vision. 

I. INTRODUCTION 
Depth information is an important ingredient in many 

advanced video applications such as image-based rendering 
(IBR) [3], object reconstruction, human computer interface, etc. 
Traditional depth acquisition is mainly based on either 
stereo/multi-view matching or depth sensing devices such as 
laser scanner, Time-of-Fight (TOF) sensor and the recently 
launched Microsoft Kinect. The usefulness of the former 
method relies heavily on how the phenomena such as occlusion, 
edges, color correlation and so on, are modeled. In certain 
circumstances, they are able to produce high accuracy depth 
map with high resolution and wide distance range. However, in 
texture-less regions, the performances of stereo matching 
techniques are somewhat limited. Nevertheless, reliable depth 
maps are usually generated offline and different degrees of 
human intervention are involved depending on the algorithms 
being used. On the other hand, most of the depth sensing 
devices can easily handle the texture-less regions which are 
contrary to the stereo matching. Unfortunately, existing depth 
sensing devices suffer from many limitations. For example, 
conventional laser scanners are too slow for real time usage, 
and TOF sensors and Kinect are usually poorly calibrated, noisy 
and limited in resolution. Moreover, their abilities in dealing 
with transparency materials, object boundaries and wide 
distance range are not very satisfactory. 

From the above discussion, we can see that the depth maps 
obtained from the stereo/multi-view matching and depth 
sensing device are indeed complementary to each other. This 
motives us to develop a new depth map estimation system and 
approach, which is able to combine the advantages of stereo 

matching and depth sensing device in order to obtain depth 
maps with high resolution and accuracy, and yet using much 
less computational time. The proposed system consists of a 
high-definition (HD) 3D stereo camera and a Kinect depth 
sensor. To fully utilize the information obtained from these two 
different devices, we first calibrate the system using a co-
planarity based method. Then, we explore the complementary 
characteristics of the 3D stereo camera and Kinect, and propose 
a new method to solve the resultant joint fusion problem. In 
particular, we derive a fusion framework and derive the 
probability distribution functions to describe the characteristic 
of these multimodal depth sensing devices. Moreover, we 
incorporate into the problem a pixel-wise weighting function 
which reflects the reliabilities of the stereo camera and Kinect 
depth sensor. By so doing, a more accurate depth map can be 
obtained. This reliability fusion concept is first introduced by 
[12]. However, in their paper, the fusion is completed by TOF 
and stereo cameras. Therefore, the weighting function is 
different from us. In the final step, we employ a color image 
guided depth matting process and 2D polynomial regression 
(LPR) techniques to further refine the estimated depth map. 
Simulation results show that the proposed approach is able to 
offer satisfactory depth maps which significantly outperform 
their counterparts obtained by either stereo matching or depth 
sensing device alone. 

The paper is organized as follows: The setup of the 
proposed depth estimation system and its calibration procedure 
are summarized in Section II. Section III is devoted to the joint 
stereo and Kinect depth fusion algorithm. Experimental results, 
evaluation and comparison are presented in Section IV. Finally 
conclusions are drawn in Section V. 

II. SYSTEM SETUP AND CALIBRATION 
In this section, we introduce the setup of our high resolution 

depth map estimation system and summarize the methods for 
calibrating the devices. 

A. System Setup 

The high resolution depth estimation system constructed, 
which is shown in Figure 1(a), consists of a Microsoft Kinect 
and a JVC GS-TD1B FHD 3D Everio camcorder. The Kinect is 
equipped with an RGB camera and a depth sensor consisting of 
an infrared camera and an infrared projector. The major features 
of the Kinect are summarized as follows: (a) It is able to support 
a distance range from 0.4m to 4 m with an official SDK and 
further from 0.4m to 8 m with a third party SDK, and (b) it 
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provides a depth map with 640 x 480 resolution at 30 frames 
per second (FPS). For the JVC GS-TD1B 3D camera, it 
provides stereo side-by-side FHD videos in 30 FPS, and it is 
connected to a Blackmagic-design Intensity shuttle [15] which 
transfers in real-time the stereo data to PC via HDMI cable for 
further processing and fusion of the Kinect depth map. 

Although the depth maps of Kinect are less noisy than TOF 
camera [1], there are still many holes and noises which should 
be suppressed. Apart from the limited sensing range of the 
Kinect, these holes and noises mainly come from two different 
sources: I) occlusions between the infrared camera and the 
infrared projector of the depth sensor and II) material 
absorption and surface normal direction of objects, as illustrated 
in Figure 1(b). Moreover, the low resolution of the depth map 
(640 x 480) will restrict its usage in high resolution applications. 
In Section III, we will illustrate how to compensate for the 
above drawbacks of the Kinect using high-resolution stereo 
cameras. 

B. System Calibration 

To combine the two different data sources from the Kinect 
and JVC 3D camcorder, calibration between these devices is 
required. In the proposed approach, we first calibrate the stereo 
cameras of the 3D camcorder using standard checkerboard-
based method [2], and then calibrate the 3D camcorder and 
Kinect using co-planarity based method [5]. The basic idea of 
the latter is to exploit the co-planar property of the calibration 
board with the help of the JVC 3D camcorder. More precisely, 
the calibration procedure can be divided into two steps. First, 
the feature point based method [14] is employed to obtain the 
initial guess of the intrinsic and extrinsic parameters of the 
Kinect depth sensor. Then, based on the co-planar property, the 
system parameters of these two devices can be obtained by 
solving a non-linear minimization problem. Next, we will 
consider how to fuse the information offered by the two devices. 

III. JOINT STEREO AND KINECT FOR HIGH RESOLUTION 
DEPTH ESTIMAION 

Recent stereo algorithms mostly employ Markov Random 
Field (MRF) [7] to model the observation and estimate the 
stereo correspondences by maximizing the a posterior 
probability (MAP). One key feature of this MAP-MRF 
approach is that it provides a systematic framework to integrate 
the information from multiple sensors. Graph Cuts (GC) and 
Belief Propagation (BP) are two prevalent methods for 
approximating the inference in MRF. They are widely used 
because of their good performances and relatively fast 

computational time. In what follows, we shall illustrate how the 
extra Kinect depth data can be incorporated into the MAP-MRF 
framework and how to solve the resultant fusion problem using 
a multiscale BP approach. 

A. Stereo and Kinect Fusion Problem 

The stereo and Kinect fusion problem for depth estimation 
can be formulated the following MAP problem: 
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where },{ ixX i   denotes the hidden variables associated 
with the disparities of all pixels, },{ iyY i   and },{ izZ i   
are observed variables corresponding to the color-based 
matching cost at specific disparity, and depth value returned by 
the Kinect respectively, )(iN  represents the neighbors of pixel 
i , denoted by ip . ),( iid yxf , ),( iik zxf  are local evidences 
based on the initial pixel-wise matching cost and the 
measurement from the Kinect depth sensor. ),( jis xxf  
represents the smoothness or prior term which incurs 
discontinuity cost of assigning different disparities ix  and jx  
to two neighboring pixels. By taking the logarithm of Eq. (1), it 
can be seen that the MAP problem is equivalent to minimizing 
the following objective function 
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where ),(log),(log),,( iikiidiii zxfyxfzyxD   is called 
the data term and ),(log),( jisji xxfxxV   is called the 
smoothness term. In order to produce more accurate fusion 
results, we propose to use a weighted data term as follows 
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where d
iw  and k

iw  are the pixel-wise weighting factors for 
stereo and Kinect depth sensor. They are related to the 
reliability of each estimated depth pixel resulting from stereo 
matching and Kinect depth map, which are denoted by d

iH  

and k
iH , respectively. In the proposed fusion framework, we 

compute these weights factors based on the pixel-wise 
reliability of both stereo and Kinect as follows:  
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Here d
iH  can be computed similar to [12] 
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d
iH  quantifies how distinctive the best and the second best 

matching costs (denoted by st
im1 and nd

im2  respectively) of 
each ip . cT  is a small positive threshold to avoid division by 
zeros. Instead of using absolute difference (AD) as the 
matching cost, st

im1  and nd
im2  is computed by Birchfield and 

Tomasi’s pixel dissimilarity. This measure of dissimilarity 
reduces the problem of sampling with little additional 

  
(a)                                             (b) 

Figure 1: (a) The joint stereo and Kinect system for depth Map estimation. 
(b) Illustration of data missing regions in Kinect’s depth map. The red and 
yellow rectangles are referring the type I and type II missing data. 
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computational complexity, compared to AD. In addition, 
locally adaptive support-weight approach [8] is employed to 
overcome matching ambiguities caused by occlusion 
boundaries, sensor noise and insufficient (repetitive) texture. 

The reliability of Kinect depth sensor k
iH  is derived from 

standard deviations of random error ( ) and depth resolution 
(  ) of plane fitting residuals at different plane to sensor 
distances. Figure 2 shows the calculated   and   plotted 
against the distance from the plane to the sensor. It can be seen 
that the errors increase quadratically from 0.5 m distance to the 
maximum range of the sensor. Therefore,   and   can be 

used to model the k
iH  as: 

]1,0[      
    

0 if    
0

 /1








 k
i

kk
i H

otherwise

f
H


. (6)

B. MAP-MRF Configuration and Multiscale BP 

From Eq. (1), our MAP-MRF includes three terms, which 
are the data term from stereo matching, the data term from 
Kinect depth sensor and the smoothness term. Here we adopt 
the truncated linear model so that it can be fitted into the 
efficient multiscale BP framework [10]. We now give the 
details of these terms. 1) Data term from stereo matching 

),( iid yxf : as we defined in Eq. (1) iy  is the observed variable 

corresponding to the color-based matching cost im at specific 
disparity. Therefore, the data term for stereo matching 

),( iid yxf  can be modeled as: 
)|,min(|),( i diiid yxyxf  . (7)

Eq. (7) is a truncated linear model, where the cost increases 
linearly based on the distance between ix  and iy  up to some 
level. d  is the upper bound and it is set to 2.5 in our 
experiment. 2) Data term from Kinect depth sensor ),( iik zxf : 
It encodes the depth consistency between the stereo and the 
Kinect depth sensor. After joint calibration and rectification, the 
angles and distances between Kinect and stereo are adjusted. 
Therefore, the outputs are depth map and stereo images that are 
row-aligned and rectified. However, the output depth map from 
Kinect depth sensor is the distance map from sensor to the 
object surface (plane to sensor distance). In order to corporate 
with stereo matching, the plane to sensor distance should be 
transfer to stereo disparity value as: 

)(/ kleftix cczltz
i

 , (8)
where 

ixz  is the disparity calculated by Kinect depth sensor 

and ix  denotes the disparity value of stereo matching. iz  is the 
plane to sensor distance as defined in Eq. (1). l  and t  are the 
focal length and baseline between Kinect and the left camera of 
the stereo pair. leftc  and kc  are principle points of the left 
camera of the stereo pair and Kinect depth sensor, respectively. 
By assuming that the disparity value obtained from Kinect 
depth sensor should be the same as the stereo matching, we 
define the cost kf  of the Kinect term as the difference between 
these two disparities 

)|,min(|),( kxiiik i
zxzxf  , (9)

where k  is set as the same as d  in our experiment. 3) 
Smoothness term ),( jis xxf : It is designed based on the 

magnitude of the difference between ix  and jx ( )(iNj ). We 
also use a truncated linear model to describe this term 

)|,min(|),( sjijis xxxxf  , (10)
where s  is set to half of the maximum disparity value. 

After df , kf  and sf  are defined, we employ a multiscale 
belief propagation (BP) algorithm [10] to solve the MAP-MRF 
problem. Compare to conventional BP algorithms, this method 
uses hierarchical technique to obtain a good approximation of 
the optimal solution with a small fixed number of message 
passing iterations. In addition, by using Eq. (10), the complexity 
of the inference can be reduced to linear rather than quadratic in 
the number of possible labels for each pixel. Interested reader 
are referred to [10] for details. 

C. Depth Map Refinement 

We note that the texture of a given object in a neighborhood 
is usually highly correlated. This is also true for their depth 
values because they usually arise from the same neighborhood 
of a physical object. Consequently, the confidence of a given 
depth pixel is closely related to the correspondent color pixels 
in the neighborhood. To this end, a two-step approach is 
considered below to further refine the estimated depth map. 

1) Color image guided depth matting process: To explore 
the connection between color and depth pixels so as to achieve 
a better visual quality, we shall extend the conventional matting 
technique of color images to depth images. More precisely, a 
color image guided depth matting process is proposed to further 
refine the quality of depth edges under the framework of 
Bayesian matting [13]. 

Given the observed color image C  and depth image d , the 
joint color and depth matting problem is to find the proper 
matting parameters: foreground ]|[ dc FFF  , background 

]|[ dc BBB   and opaque  , where cF  and dF  ( cB and dB ) 
are respectively the foreground (background) in the color image 
and the correspondent ones in the depth map. Under the 
framework of Bayesian matting for color images, we have 

 
Figure 2: Standard deviations of plane fitting residuals at different 
distances of the plane to the sensor: theoretical random error   (red) 
and depth resolution   (blue) [4]. 
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where (.)log(.) PL   is the log likelihood. Note that the log 
likelihood terms are modeled similar to the Bayesian matting 
approach [13], and )(CP  and )(dP  are dropped because they 
are constant with respect to the optimization parameters. The 
maximization problem in Eq. 11 can be divided into two sub 
problems to iteratively solve F , B  and  , which is similar to 
the maximization problem described in Bayesian matting [13]. 
After the matting parameters  ,, dd BF  is obtained, the depth 
map can be refined and the edges in the depth map can be 
matted to reflect our confidence on the actual depth values. 

2) 2D LPR smoothing: To further reduce possible image 
noise arising from low texture, occlusion, etc, the depth maps 
should be further smoothed. Here, we adopt 2D LPR with 
adaptive bandwidth selection [9] for smoothing the estimated 
depth map after matting. It is particularly useful in preserving 
the discontinuity at object boundaries while performing 
smoothing at flat areas. 

IV. EXPERIMENTAL RESULTS 
We now present and evaluate the experimental results of the 

proposed system and algorithm. More precisely, the quality of 
the depth estimation from stereo matching [10, 11], the Kinect 
depth sensor and our joint stereo and Kinect fusion are 
compared using an indoor complex scene. The left view of the 
JVC 3D camera was set as the reference view and the resolution 
is 720p (HD). In this paper, 5 message passing iterations per 
level and 5 levels in total was used in the multiscale BP 
framework. The processing time was approximately 0.5 second 
on an Intel i7 920 CPU-based computer with 4GB RAM and 
GTX295 GPU acceleration. 

The image from the reference view is shown in Figure 3(a). 
It contains texture-less regions, transparency objects and type I 
and II factors which will cause holes in depth map captured by 
Kinect, as shown in Figure 3(b). Since the resolution of the 

reference image is much higher than the Kinect depth sensor, 
the depth data cannot cover every pixel of the reference image. 
Moreover, depth values of object boundaries obtained by Kinect 
are unstable and it will cause significant artifacts in IBR and 
other applications. Finally, a lot of type I and type II invalid 
regions (holes) can be found from the raw depth map of Kinect. 

We can see from Figures 3(c) and (d) that the proposed 
reliability maps can effectively capture the strengths of the two 
devices and demonstrate their complementary nature. dH  is 
computed based on the distinctiveness between the first and 
second matching cost of each pixel. Heavy textured regions will 
have higher dH  in the fusion and low texture regions such as 

the wall and texture-less object surfaces will trend to depend on 
the Kinect results. kH  is obtained based on Figure 2, which 
reflects the reliability of the depth information according to 
distance from the object to the Kinect depth sensor. 

Figure 3(e) shows the depth map from multiscale BP stereo 
[11] only. Unlike Kinect result in Figure 3(b), the depth of the 
green bottle is successfully estimated in this stereo matching 
method. However, it is erroneous in texture-less regions and 
there are large ambiguities of assigning depth values to pixels 
around object boundaries. Figure 3(f) shows a matching result 
obtained from newly proposed method which is based on non-
local cost aggregation (non-Local Filter) and non-local disparity 
refinement method [10]. We can see that the green bottle can be 
observed and the depth discontinuities are well preserved. 
Obviously, the result of [10] outperforms that of [11] but both 
methods fail to reconstruct thin structure such as the guitar bar 
and tripod in the scene. In addition, we found that both stereo 
methods cannot successfully reconstruct the back of the chair. 
Figure 3(g) shows our fusion result, which is of high quality and 
resolution as compared to those of multiscale BP stereo only, 
non-Local filter approach and Kinect’s result. The texture-less 
regions are well handled and holes of Figure 3(b) are also filled 
by reasonable values. However the boundaries of objects are not 
sharp enough and there are still some noise in the depth map. 
Therefore, the two-step depth map refinement is employed to 
further improve the depth map and the result is shown in Figure 

 
(a)                                                       (b)                                                          (c)                                                        (d) 

 
(e)                                                         (f)                                                           (g)                                                        (h) 

Figure 3: Depth estimation results: (a) reference image; (b) raw depth from Kinect (type I and II invalid regions are highlighted by red and green) (c) dH  
map; (d) kH  map; (e) raw matching result from multiscale BP stereo [11] only; (f) matching result from the non-Local Filter (with 20.0  in [10]); (g) 
joint stereo and Kinect fusion result and (h) joint stereo and Kinect fusion result with depth map refinement. 
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3(h). Compare to Figure 3(g), the object boundaries in Figure 
3(h) are better preserved and the noises are efficiently 
suppressed. 

V. CONCLUSION 
A new high resolution depth estimation system using joint 

stereo vision and Kinect has been presented. Methods for 
calibrating the devices and joint depth estimation using the 
MRF-MAP framework are presented. The problem is solved 
using the multiscale BP framework and further processed by 
joint color and depth matting and depth map filtering using 2D 
LPR. Experimental results show that our system outperforms 
either the conventional stereo vision or Kinect alone. 
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