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Abstract — Streaming layered video over peer-to-peer (P2P) 
networks has been recognized as an efficient way to address the 
receiver heterogeneity problem. The distinctive characteristics of 
layer encoded video also introduce complexities to data 
scheduling. In this paper, we propose a new data scheduling 
algorithm for layered P2P video-on-demand (VoD) streaming 
networks. Our algorithm consists of two parts: 1) layer adaptation, 
where peers adaptively adjust the number of subscribed layers to 
ensure a continuous playback of the highest possible video 
quality; and 2) piece selection, in which a peer selects a missing 
data piece to request based on its utility. The piece utility is 
calculated based on the playback constraint and the layer 
dependency of a piece. Through extensive packet-level 
simulations we show that our proposed data scheduling 
algorithm can effectively enhance the video playback quality. 

I. INTRODUCTION  

Although the effectiveness of P2P networks in providing 
video streaming service to a large number of Internet users has 
been witnessed during the past decade, it still faces the problem 
of receiver heterogeneity [1][2]. Specifically, end 
users/receivers connect to the Internet through devices of 
different computational capabilities (e.g. laptops, TV set-up 
boxes and smart phones) and via networks of different access 
bandwidths (e.g. cable/ADSL networks, WiFi and cellular 
networks). The heterogeneous receivers require different video 
qualities that can best match their processing/display 
capabilities, and yet can make efficient use of their uplink 
bandwidth to help each other out in maximizing the overall 
system video quality. 

The traditional way of solving the receiver heterogeneity 
problem is to group peers with similar characteristics (e.g. 
access bandwidth, playback quality requirement) together and 
form a separate P2P overlay [3][4]. The video is encoded into 
multiple versions of different qualities and delivered through 
different overlays in parallel. Despite the simplicity of the 
approach, the bandwidth sharing efficiency is undermined as 
only peers within the same overlay can exchange data pieces 
with each other. Inter-overlay bandwidth sharing is not 
possible though all peers are watching the same video. Besides, 
the coarse granularity and the static nature of such an overlay 
grouping mechanism cannot match the dynamic traffic nature 
of the Internet. 

With recent coding efficiency improvement of layered 
coding scheme such as H.264/SVC [5][6], streaming layered 
video over P2P networks [7-9] becomes a promising approach 

in addressing the receiver heterogeneity problem. The basic 
idea is to encode the video into multiple layers with nested 
dependency: The base layer carries the essential information of 
the video and can be decoded independently to provide basic 
video quality. Higher layers/enhancement layers contain the 
data to further refine the video quality. Without loss of 
generality, we assume each layer of video is encoded into data 
pieces of the same playback duration of one second. Each data 
piece is a basic unit for data exchange among peers. With 
layered encoding, a higher layer piece can be decoded only if 
all of its lower layer pieces (at the same time instant) are 
correctly received. By subscribing to different number of layers, 
a peer can playback video in different qualities. Since video is 
encoded in a single bit stream and distributed in a single 
overlay consisting of all peers of the same video session, 
layered video streaming greatly facilitates the mutual sharing 
of peers’ uplink bandwidth. 

To fully exploit the flexibility of layered video streaming, 
we focus on designing an efficient data scheduling algorithm in 
this paper. Unlike data scheduling in conventional single layer 
P2P networks [2], a layered data scheduling algorithm needs to 
properly consider the layer dynamics. A good layered data 
scheduling algorithm should provide continuous playback of 
the highest possible video quality for each peer, avoid frequent 
quality switch [8], and enhance the content diversity [9] by 
spreading out rare data pieces.  

In this paper, a new layered data scheduling algorithm is 
proposed. It is implemented at each peer and consists of two 
parts: layer adaptation and piece selection. Layer adaptation is 
responsible for dynamically adjusting the number of subscribed 
layers of a peer to match the current network traffic load while 
avoiding frequent quality switch. In our algorithm, this is 
achieved by monitoring the amount of data pieces received and 
ready for playback at each peer. Piece selection decides which 
missing piece (a piece to be played but is not yet retrieved) 
should be requested from a neighboring peer next. Our piece 
selection algorithm is designed based on a piece utility function 
that takes both playback constraint of a missing piece and its 
layering dependency into consideration.  

The rest of the paper is organized as follows. In Section II, 
we present a brief summary of related work on data scheduling 
issue in layered P2P streaming network. In Section III, our 
proposed data scheduling algorithm is introduced. In Section 
IV, we present our packet-level simulation results to illustrate 
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Figure 1.  Example of sliding buffer window 

the superiority of our algorithm.  Finally, we conclude the 
paper in Section V.  

II. RELATED WORK 

The data scheduling issue in layered P2P streaming 
network has attracted a lot of research attentions since the 
pioneering work of PALS in [11]. In PALS, peers 
progressively evaluate the aggregate bandwidth from a set of 
neighbors and determine the number of layers to subscribe 
accordingly. The pieces in the sliding buffer window, which is 
within a predetermined range after the playback point (see Fig. 
1 and ignore the region ΔT), are pre-fetched in a zigzag manner, 
where all pieces of the base/lower layer are requested 
sequentially before any piece of the next upper layer is 
requested. Piece requests are sent to neighboring peers in a 
weighted round-robin fashion. It can be seen that the zigzag 
nature of PALS gives lower priority in retrieving enhancement 
layers. This tends to undermine the content diversity of higher 
layers. In [11], the layer adaptation decision is made based on 
the aggregate bandwidth and the current streaming rate of the 
peer. The layer content availability in neighboring peers is not 
considered.   

LION [12] and Chameleon [13] both utilize network coding 
to enhance layered P2P streaming performance. As a result, 
piece scheduling issue is of less importance and their design 
objective is to maximize the throughput. But how effective 
network coding can be in real P2P systems is still an open 
question [14]. 

In [8], a subscribed video layer is called a regular layer and 
a probing layer is the next upper layer a peer would like to 
subscribe. A peer makes simple random requests for pieces 
belonging to regular layers and applies zigzag like priorities 
for pieces of probing layers. And regular requests have higher 
priority over probing requests. A peer’s uplink capacity and per 
layer bit rate are used to distinguish regular layers and probing 
layers. The randomness introduced by the data scheduling 
algorithm can increase the content diversity thereby boosting 
the overall system throughput. But the same randomness 
undermines the performance by ignoring the layer dependency 
requirement, where a missed lower layer piece will render the 
received upper pieces useless. 

In layeredP2P [9], the pre-fetch buffer window is 
segmented into three sections. Section one is next to the 
playback point. The piece scheduling algorithm aims at 
ensuring continuous playback by making sure all missed pieces 
are requested with high priority. Section three is at the other 
end of the sliding window. In this region, subject to bandwidth 
availability pieces are randomly retrieved to enhance content 
diversity. Section two is in the middle. The scheduling 
algorithm tries to strike a balance between continuous playback 
and content diversity. This section based scheduling design 
accomplishes different scheduling goals in a relatively simple 
way. But it is difficult to justify the section size.  

In [10], the utility of each piece within the pre-fetch buffer 
window is calculated according to the playback time constraint, 
the buffering status and the layer dependency. The piece 
selection is formulated as a knapsack problem. The greedy 
solution is recommended for its simplicity and run time 

efficiency. However, the greedy solution which strictly orders 
the pieces to be requested according to their utility values 
eliminates the scheduling randomness. This undermines the 
content diversity. This observation also inspires us to develop a 
utility based piece selection algorithm that increases content 
diversity.  

III. OUR DATA SCHEDULING ALGORITHM 

Our data scheduling algorithm consists of two sub-
algorithms, which are responsible for layer adaptation and 
piece selection respectively. 

A. Layer adaptation: 

The main design goal of the layer adaptation phase is to 
maximize the playback video quality while preventing frequent 
short-term quality fluctuations/jitters [9]. The key issue is to 
accurately gauge the available capacity in the network and to 
judiciously adjust the number of subscribed layers. Given the 
unpredictable network bandwidth fluctuation and the 
heterogeneous access bandwidth of different peers, our design 
is based on a relatively simple mechanism as detailed below.  

Let each peer be equipped with a sliding buffer window for 
prefetching data pieces as shown in Fig. 1. Unlike the sliding 
buffer window adopted in [1,2,8,9,12], our buffer window 
slides forward according to the piece buffering status rather 
than the playback process. That is, whenever the pieces of 
subscribed layers are successfully retrieved, the buffer window 
slides open and drifts away from the current playback point. 
Fig. 1 gives an example where the buffer window, denoted as 
the shadow area surrounded by dotted line, slides to the right 
hand side as all the pieces of the subscribed layers (3 in this 
case) are successfully received. So the buffer window is no 
longer bounded to start from the playback point (݌). Instead, 
there is a gap of ΔT (playback) seconds, between the current 
playback point p and the starting point (left boundary) of the 
buffer window,	ω୪. 

Allowing the buffer window to drift away from the 
playback point has some advantages. First, in a P2P VoD 
streaming system, complete video is stored at the streaming 
server which is always available for sending. Sliding the buffer 
window allows a peer to make full use of the otherwise wasted 
downlink capacity to retrieve pieces for future playback, as 
well as sharing its pieces with others. Second, the value of ΔT 
is a good indication of the available/excess bandwidth in the 
network.  

In our proposed layer adaptation algorithm, a peer monitors 
the value of ΔT and enters a layer-increase probing period 
when ΔT is greater than a predetermined threshold γ. And at 
the same time, it marks the current left boundary of the buffer 
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Figure 2.  Example of subscribed layer increase   

window	χ ൌ ω୪. From this moment onwards, a peer is in the 
probing phase and is allowed to request pieces of the next (not-
yet-subscribed) upper layer, or the probing layer. By the time 
when the playback point coincides with the marked point (that 
is when	݌ ൌൌ χ), this signals the end of the probing period. 
Based on the occupancy of an assessing window, the peer has 
to decide if the tentative layer-increase is successful or not. The 
assessing window is designed to be of the same length as the 
buffer window but starts from χ . Its height is the current 
subscribed layer plus one, i.e. the probing layer. If the 
occupancy of the assessing window is more than η percent, the 
layer-increase is deemed successful. The peer increases its 
subscribed layer by one. Otherwise, the layer-increase fails and 
the peer stops requesting pieces in the probing layer for a given 
time period. Fig. 2 depicts an example, where Fig. 2(a) shows 
the start of a probing period, Fig. 2(b) and Fig. 2(c) illustrate 
the cases of successful and failed layer-increase, respectively. 
Note that the layer probing process could only affect the pieces 
that are T  seconds away from current playback point. This 
ensures both the video playback continuity and quality during 
the layer probing process. 

Note that the setting of γ	 and	 η is very important in tuning 
the performance of the layer adaptation algorithm. Specifically, 
γ  is the pre-determined threshold of ΔT. It is closely related to 
how easily a peer can activate the layer probing process. In 
addition, it also implies the amount of time within which the 
continuity and quality of video playback is guaranteed. When γ 
is smaller, the layer probing process is triggered more easily. 
Although this helps to absorb the extra bandwidth promptly, it 
is at the risk of introducing more quality jitter when the 
bandwidth supply is not sufficient. While with a large value of 
γ, a peer will be more conservative in probing additional layer. 
This helps to reduce the quality jitter and enhance playback 
continuity but it tends to compromise the playback video 
quality in terms of average layers received on playback. On the 
other hand, η implies the difficulties for a peer to succeed in 
probing additional layer. A smaller η makes it easier for the 
layer probing process to be successful. But it may also lead to 
severer quality jitters if bandwidth supply is not sufficient for 
streaming one more layer. Whereas, when η increases to a 
large value, peers are less likely to accomplish the occupancy 
requirement at the end of the probing period. They are thus 
restricted in streaming the current subscribed layers which 
helps to avoid quality fluctuation. But, the average layer on 
playback will be significantly affected. The value of γ	 and	 η 
are determined by simulations in Section IV. Due to the space 
limit, we present only the guideline on properly setting these 
parameters in this paper. 

There is also a layer-decrease function running in parallel. 
Specifically, on the playback of the video, a peer checks the 
fraction of received pieces of all subscribed layers within the 
buffer window (of size ω୰ െ ߱୪) next to the current playback 
point, i.e. ሾ݌, ݌ ൅ |ω୰ െ ߱୪|ሿ. If a peer cannot receive more 
than η percent of those pieces, the number of subscribed layers 
is decreased by one.  

One additional issue is to determine the initial number of 
subscribed layers when a peer joins the system. In our 
algorithm, an bootstrap period of τ seconds is given to a new 
peer. During this period, the peer should try its best in 

requesting pieces to fill an initial buffer window of τ seconds. 
The pieces in the initial buffer window are requested in the 
zigzag order starting from the base layer. Within each layer, 
pieces closer to the starting point of the video are requested 
first. When the bootstrap period ends, a peer will subscribe to 
the highest layer for which all the pieces within the initial 
buffer window have been received. (Note that we have set the 
length of initial buffer window to be the same as the bootstrap 
period for simplicity.) . If pieces of all available layers within 
the initial buffer window are received before the bootstrap 
period ends, a peer subscribes to all the available layers and 
starts the video playback earlier.  

B. Piece selection: 

For a given number of layers that a peer has subscribed to, 
the piece selection algorithm determines which missing pieces 
in the sliding buffer window are to be requested next. With 
layered video, the importance of a missing piece is jointly 
determined by its time importance, which depends on when the 
piece is needed for continuous playback, and layer importance, 
which is due to the fact that a upper layer piece cannot be 
decoded if any of its lower layer pieces is missing (at playback).  

With the above considerations in mind, we propose a piece 
utility function similar to that in [10]. Specifically, for each 
missing piece in the buffer window, say a piece at time ݐ௜ and 
layer	݆,	݁ܿ݁݅݌௜௝, its utility ௜ܷ௝ is given by: 

																	 ௜ܷ௝ ൌ
௅ି௝ߣ

௝ܵሺݐ௜ െ ௣ሻఈݐ
	,						݆ ∈ ሾ1,  	ሺ1ሻ																													ሿܮ

where L is the maximum number of video layers,	1 < ߣ is the 
layer importance weighting factor, ௝ܵ is the number of packets 
of a layer j piece, ݐ௜ is the playback time of the missing piece, 
 is the time ߙ ௣ is time instance of current playback point, andݐ
importance weighting factor. 

Given the indispensable role played by the base layer, the 
highest value of layer importance (ߣ௅ି௝) is assigned to the base 
layer to ensure its priority. For enhancement layers, the layer 
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Figure 3.  Piece utility value as a function of time difference ݐ௜ െ   ௣ݐ
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importance value decreases with the rise of the layer index. The 
rationale is to ensure the in-order delivery of enhancement 
layer so as to avoid the un-decodable event, where 
enhancement layer pieces have been received but a lower 
layer/base layer piece is missing at playback time. 

In (1),	ݐ௜ െ  ௜௝ to݁ܿ݁݅݌	 ௣ represents the amount of time forݐ
be received before playback. As an example, Fig. 3 depicts the 
piece utility value as a function of time difference 	ݐ௜ െ  ௣ forݐ
pieces in different layers (where ௝ܵ ൌ 22,α ൌ 0.8 and ߣ  =2). 
We can see that for pieces with the same playback time, a 
lower layer piece has a higher utility. This difference is more 
significant among pieces closer to the playback point. While 
for pieces of the same layer, higher utilities are given to those 
closer to the playback point. This emphasizes the playback 
importance of the missing piece. By properly combining both 
time and layer importance of a piece, we can show in Section 
IV that the utility function ensures the continuous video 
playback at a high video quality. 

If all peers use the same utility function (1), peers with 
similar playback time tend to request the same piece 
simultaneously, causing unnecessary content bottleneck at the 
(few) peers with the right piece. To address this, we propose to 
request pieces according to their importance in a probabilistic 
fashion. Specifically, the probability for	݁ܿ݁݅݌௜௝ to be selected 
is proportional to its utility value: 

௜௝ܾ݋ݎܲ																										 ൌ
௜ܷ௝

∑ ௜ܷ௝௜∈ூ,௝∈௃
																																ሺ2ሻ 

where ܫ and ܬ refer to the sets of time index and layer index 
within the buffer window, respectively.   

Although randomness introduced by the probabilistic piece 
selection improves content diversity, it may affect the playback 
continuity. To address this, we enforce a rule of always 
requesting the 5 pieces next to the playback point at the base 
layer with the highest priority and set the timeout value for 
requests of these pieces to be half of the normal piece request.  

Note that we adopt similar piece utility calculation for piece 
selection in [10], our algorithm differs from [10] in that: a) the 
weighted download probability on whether a piece is received 
in time and decodable is not considered in our proposed 
algorithm. Because, following calculation in [10], if any piece 
is missing or regarded as not possible to be received in time, its 
weighted download probability will be set to 0. Consequently, 
the utilities of all pieces of later time at higher layers may all be 
set to 0. If that happens, those pieces will not be retrieved. b) In 
our algorithm, a peer selects a piece probabilistically based on 
their utility, which avoids the deterministic piece request made 
in greedy solution in [10].  

IV. PERFORMANCE EVALUATIONS  

A. Performance Metrics 

We evaluate the performance of our data scheduling 
algorithm by packet level simulations. We focus on two 
performance aspects: playback continuity and video quality. 
The playback continuity is measured by the number of stops 
and total caching time [15]. The number of stops records the 
total number of stalling events due to lack of piece to play; 
and the total caching time sums up all time periods when a 
peer suspends its playback to wait for the missing video piece 
to arrive. To assess the perceived video quality, we measure 
the average layers on playback and quality jitter rate. A 
quality jitter is due to the change of number of layers on 
playback, which can be a “burst jitter” or a “drop jitter” [9]. 
The quality jitter rate is the ratio of total number of quality 
jitter to the total pieces throughout the streaming session.   

B. Simulation Setup  

Our simulation is carried out using a packet level P2P 
simulator built on top of NS2. The correctness of the simulator 
has been verified using real P2P traffic data [16]. Without loss 
of generality, we assume all peers are connected to a central 
router. Peers in the network are equally divided into two 
groups, with uplink capacity of 1.5 Mbps and 0.75 Mbps. 
When a session starts, peers join the streaming session 
randomly at a rate of 5 peers per second until there are M peers 
in the system. Peers will stay in the network throughout the 
simulation. There is only a single VoD server in the system that 
stores the original video file.  The video file is encoded into 4 
layers. Each layer is segmented into pieces of 1 second 
playback. A piece is further segmented into 22 packets for 
transmission. Each peer in the network keeps a list of 20 
neighbors. Peers exchange their buffer maps (information of 
pieces they have retrieved) every 1 seconds. When a peer 
selects a piece to request, it identifies the neighbors that hold 
the piece using the buffer maps stored. If there are multiple 
such neighbors, a peer randomly selects one to make a piece 
request. At any time, each peer can have up to N pending/on-
going piece requests and among them, no more than D requests 
should be sent to the same peer. If a requested piece can not be 
retrieved within T sec. (piece timeout value), the requesting 
peer will allocate the piece request to the other neighbor that 
holds the piece. Each peer starts video playback after finishing 
the initial layer subscription process and resumes the playback 
as long as the base layer piece for the next second is available, 
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Figure 4.  Jitter rate performance 

 

Figure 5.  Number of stops performance 

 

Figure 6.  Total caching time performance 
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otherwise the playback will be suspended until the next five 
pieces are retrieved. Other parameters used in the simulation 
are summarized in Table I.  

Our proposed data scheduling algorithm is compared with 
the PALS scheduling algorithm [11] and the knapsack 
scheduling algorithm [10].  

C. Simulation Results 

Fig. 4 shows the average layers on playback performance 
versus the total number of peers in the system (M).  We can see 
that our proposed data scheduling algorithm outperforms the 
PALS and knapsack. The average layers on playback using our 
algorithm is 2 times more than that of PALS and knapsack 
when the network size is small. When the network size grows 
to 500, our algorithm still provides a 50 percent and 85 percent 
more layers than the knapsack and PALS, respectively. The 
poor performance of the knapsack and PALS is largely due to 
the deterministic piece request order, which tends to 
synchronize peer’s demands and create content bottleneck. As 
a result, higher layer pieces can hardly be disseminated in the 
network. The results in Fig. 4 also confirm that the knapsack 
can provide more layers on playback than the PALS. This 
implies the utility based scheduling in knapsack is better than 
the sequential piece request in PALS. 

TABLE I. SIMULATION PARAMETERS

Simulation Time 300 sec. 
Avg. Inter-arrival Time 4 sec. 
Piece Timeout value (T) 3 sec. 

Max # Requests to a Specific Peer (D) 2 
Max. #  Simultaneous Requests (N) 15 

Buffer Window Size 30 sec. 
Group I Peer Bandwidth (Down/Up) 3/0.75 Mbps 
Group II Peer Bandwidth (Down/Up) 3/1.5 Mbps 

Server Bandwidth (Down/Up) 5/5 Mbps 
Streaming Rate of Each Layer 256Kbps 

Piece Timeout Value 3 sec. 

τ 10 sec. 

γ 15 sec. 
η 0.8 
α 0.8 
λ 3 

௝ܵ 22 

 

Figure 7.  Average layer on playback performance  
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The average jitter rate performance is shown in Fig. 5. Our 
algorithm yields a jitter rate around 4% and that of knapsack 
and PALS are less than 0.5%. The very low jitter rate achieved 
by PALS and knapsack benefit from their very low average 
number of layers on playback (< 1.5 in Fig. 4). Under such 
situations, the jitter event hardly occurs. The higher jitter rate 
under our algorithm is a side effect of the probabilistic piece 
request mechanism. As piece requests are made spreading out 
the buffer window, it increases the risk of leaving some 
vacancies in the buffer window. However, we would like to 
argue that jitter rate of our proposed algorithm is still at a low 
level. In considering the performance gain in the average layers 
on playback, this level of jitter rate is tolerable.  

Fig. 6 and Fig. 7 illustrate the continuity performance. 
Similarly, both PALS and knapsack algorithm suffers badly in 
terms of both number of stops and total caching time. This is, 
again, largely attributed to the deterministic piece request in 
PALS and knapsack algorithm which leads to synchronized 
piece demand and creates content bottleneck. Consequently, 
the delivery of the base layer pieces are handicapped and the 
playback continuity is undermined. 

V. CONCLUTIONS  

In this paper, we proposed a data scheduling algorithm for 
layered P2P VoD streaming system. In the proposed algorithm, 
the data scheduling issues is tackled from two perspectives: 1) 
the layer adaptation phase, which employs a sliding buffer 
window to assess the network bandwidth and activate the layer 
probing process. The buffer window occupancy is used to 
make the final layer subscription decision so as to absorb extra 
network bandwidth while avoiding frequent quality switch; 
and 2) the piece selection phase, in which a utility value of 
each missing piece is calculated according to its playback 
constraint and layering dependency. The probability for a 
piece to be requested is proportional to its utility value. In 
comparison with existing algorithms, our packet-level 
simulation results illustrate the superiority of the proposed 
algorithm in enhancing the QoS in a layered VoD streaming 
netwroks 

. 
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