
Title Data scheduling algorithm for layered P2P VoD streaming
networks

Author(s) Wen, Z; Yeung, K; Lei, ZB

Citation
The 2013 IEEE Global Communications Conference (GLOBECOM
2013), Atlanta, GA., 9-13 December 2013. In Globecom. IEEE
Conference and Exhibition, 2013, p. 1730-1735

Issued Date 2013

URL http://hdl.handle.net/10722/189903

Rights Globecom. IEEE Conference and Exhibition. Copyright © IEEE.

Data Scheduling Algorithm for Layered P2P VoD
Streaming Networks

Zheng Wen, Kwan L. Yeung
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong

{wenzheng, kyeung}@eee.hku.hk

Zhibin Lei
Applied Science & Technology Research Institute (ASTRI)

Shatin, Hong Kong
lei@astri.org

Abstract — Streaming layered video over peer-to-peer (P2P)
networks has been recognized as an efficient way to address the
receiver heterogeneity problem. The distinctive characteristics of
layer encoded video also introduce complexities to data
scheduling. In this paper, we propose a new data scheduling
algorithm for layered P2P video-on-demand (VoD) streaming
networks. Our algorithm consists of two parts: 1) layer adaptation,
where peers adaptively adjust the number of subscribed layers to
ensure a continuous playback of the highest possible video
quality; and 2) piece selection, in which a peer selects a missing
data piece to request based on its utility. The piece utility is
calculated based on the playback constraint and the layer
dependency of a piece. Through extensive packet-level
simulations we show that our proposed data scheduling
algorithm can effectively enhance the video playback quality.

I. INTRODUCTION

Although the effectiveness of P2P networks in providing
video streaming service to a large number of Internet users has
been witnessed during the past decade, it still faces the problem
of receiver heterogeneity [1][2]. Specifically, end
users/receivers connect to the Internet through devices of
different computational capabilities (e.g. laptops, TV set-up
boxes and smart phones) and via networks of different access
bandwidths (e.g. cable/ADSL networks, WiFi and cellular
networks). The heterogeneous receivers require different video
qualities that can best match their processing/display
capabilities, and yet can make efficient use of their uplink
bandwidth to help each other out in maximizing the overall
system video quality.

The traditional way of solving the receiver heterogeneity
problem is to group peers with similar characteristics (e.g.
access bandwidth, playback quality requirement) together and
form a separate P2P overlay [3][4]. The video is encoded into
multiple versions of different qualities and delivered through
different overlays in parallel. Despite the simplicity of the
approach, the bandwidth sharing efficiency is undermined as
only peers within the same overlay can exchange data pieces
with each other. Inter-overlay bandwidth sharing is not
possible though all peers are watching the same video. Besides,
the coarse granularity and the static nature of such an overlay
grouping mechanism cannot match the dynamic traffic nature
of the Internet.

With recent coding efficiency improvement of layered
coding scheme such as H.264/SVC [5][6], streaming layered
video over P2P networks [7-9] becomes a promising approach

in addressing the receiver heterogeneity problem. The basic
idea is to encode the video into multiple layers with nested
dependency: The base layer carries the essential information of
the video and can be decoded independently to provide basic
video quality. Higher layers/enhancement layers contain the
data to further refine the video quality. Without loss of
generality, we assume each layer of video is encoded into data
pieces of the same playback duration of one second. Each data
piece is a basic unit for data exchange among peers. With
layered encoding, a higher layer piece can be decoded only if
all of its lower layer pieces (at the same time instant) are
correctly received. By subscribing to different number of layers,
a peer can playback video in different qualities. Since video is
encoded in a single bit stream and distributed in a single
overlay consisting of all peers of the same video session,
layered video streaming greatly facilitates the mutual sharing
of peers’ uplink bandwidth.

To fully exploit the flexibility of layered video streaming,
we focus on designing an efficient data scheduling algorithm in
this paper. Unlike data scheduling in conventional single layer
P2P networks [2], a layered data scheduling algorithm needs to
properly consider the layer dynamics. A good layered data
scheduling algorithm should provide continuous playback of
the highest possible video quality for each peer, avoid frequent
quality switch [8], and enhance the content diversity [9] by
spreading out rare data pieces.

In this paper, a new layered data scheduling algorithm is
proposed. It is implemented at each peer and consists of two
parts: layer adaptation and piece selection. Layer adaptation is
responsible for dynamically adjusting the number of subscribed
layers of a peer to match the current network traffic load while
avoiding frequent quality switch. In our algorithm, this is
achieved by monitoring the amount of data pieces received and
ready for playback at each peer. Piece selection decides which
missing piece (a piece to be played but is not yet retrieved)
should be requested from a neighboring peer next. Our piece
selection algorithm is designed based on a piece utility function
that takes both playback constraint of a missing piece and its
layering dependency into consideration.

The rest of the paper is organized as follows. In Section II,
we present a brief summary of related work on data scheduling
issue in layered P2P streaming network. In Section III, our
proposed data scheduling algorithm is introduced. In Section
IV, we present our packet-level simulation results to illustrate

Globecom 2013 - Communications Software, Services and Multimedia Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 1730

Figure 1. Example of sliding buffer window

the superiority of our algorithm. Finally, we conclude the
paper in Section V.

II. RELATED WORK

The data scheduling issue in layered P2P streaming
network has attracted a lot of research attentions since the
pioneering work of PALS in [11]. In PALS, peers
progressively evaluate the aggregate bandwidth from a set of
neighbors and determine the number of layers to subscribe
accordingly. The pieces in the sliding buffer window, which is
within a predetermined range after the playback point (see Fig.
1 and ignore the region ΔT), are pre-fetched in a zigzag manner,
where all pieces of the base/lower layer are requested
sequentially before any piece of the next upper layer is
requested. Piece requests are sent to neighboring peers in a
weighted round-robin fashion. It can be seen that the zigzag
nature of PALS gives lower priority in retrieving enhancement
layers. This tends to undermine the content diversity of higher
layers. In [11], the layer adaptation decision is made based on
the aggregate bandwidth and the current streaming rate of the
peer. The layer content availability in neighboring peers is not
considered.

LION [12] and Chameleon [13] both utilize network coding
to enhance layered P2P streaming performance. As a result,
piece scheduling issue is of less importance and their design
objective is to maximize the throughput. But how effective
network coding can be in real P2P systems is still an open
question [14].

In [8], a subscribed video layer is called a regular layer and
a probing layer is the next upper layer a peer would like to
subscribe. A peer makes simple random requests for pieces
belonging to regular layers and applies zigzag like priorities
for pieces of probing layers. And regular requests have higher
priority over probing requests. A peer’s uplink capacity and per
layer bit rate are used to distinguish regular layers and probing
layers. The randomness introduced by the data scheduling
algorithm can increase the content diversity thereby boosting
the overall system throughput. But the same randomness
undermines the performance by ignoring the layer dependency
requirement, where a missed lower layer piece will render the
received upper pieces useless.

In layeredP2P [9], the pre-fetch buffer window is
segmented into three sections. Section one is next to the
playback point. The piece scheduling algorithm aims at
ensuring continuous playback by making sure all missed pieces
are requested with high priority. Section three is at the other
end of the sliding window. In this region, subject to bandwidth
availability pieces are randomly retrieved to enhance content
diversity. Section two is in the middle. The scheduling
algorithm tries to strike a balance between continuous playback
and content diversity. This section based scheduling design
accomplishes different scheduling goals in a relatively simple
way. But it is difficult to justify the section size.

In [10], the utility of each piece within the pre-fetch buffer
window is calculated according to the playback time constraint,
the buffering status and the layer dependency. The piece
selection is formulated as a knapsack problem. The greedy
solution is recommended for its simplicity and run time

efficiency. However, the greedy solution which strictly orders
the pieces to be requested according to their utility values
eliminates the scheduling randomness. This undermines the
content diversity. This observation also inspires us to develop a
utility based piece selection algorithm that increases content
diversity.

III. OUR DATA SCHEDULING ALGORITHM

Our data scheduling algorithm consists of two sub-
algorithms, which are responsible for layer adaptation and
piece selection respectively.

A. Layer adaptation:

The main design goal of the layer adaptation phase is to
maximize the playback video quality while preventing frequent
short-term quality fluctuations/jitters [9]. The key issue is to
accurately gauge the available capacity in the network and to
judiciously adjust the number of subscribed layers. Given the
unpredictable network bandwidth fluctuation and the
heterogeneous access bandwidth of different peers, our design
is based on a relatively simple mechanism as detailed below.

Let each peer be equipped with a sliding buffer window for
prefetching data pieces as shown in Fig. 1. Unlike the sliding
buffer window adopted in [1,2,8,9,12], our buffer window
slides forward according to the piece buffering status rather
than the playback process. That is, whenever the pieces of
subscribed layers are successfully retrieved, the buffer window
slides open and drifts away from the current playback point.
Fig. 1 gives an example where the buffer window, denoted as
the shadow area surrounded by dotted line, slides to the right
hand side as all the pieces of the subscribed layers (3 in this
case) are successfully received. So the buffer window is no
longer bounded to start from the playback point (݌). Instead,
there is a gap of ΔT (playback) seconds, between the current
playback point p and the starting point (left boundary) of the
buffer window,	ω୪.

Allowing the buffer window to drift away from the
playback point has some advantages. First, in a P2P VoD
streaming system, complete video is stored at the streaming
server which is always available for sending. Sliding the buffer
window allows a peer to make full use of the otherwise wasted
downlink capacity to retrieve pieces for future playback, as
well as sharing its pieces with others. Second, the value of ΔT
is a good indication of the available/excess bandwidth in the
network.

In our proposed layer adaptation algorithm, a peer monitors
the value of ΔT and enters a layer-increase probing period
when ΔT is greater than a predetermined threshold γ. And at
the same time, it marks the current left boundary of the buffer

Globecom 2013 - Communications Software, Services and Multimedia Symposium

1731

Figure 2. Example of subscribed layer increase

window	χ ൌ ω୪. From this moment onwards, a peer is in the
probing phase and is allowed to request pieces of the next (not-
yet-subscribed) upper layer, or the probing layer. By the time
when the playback point coincides with the marked point (that
is when	݌ ൌൌ χ), this signals the end of the probing period.
Based on the occupancy of an assessing window, the peer has
to decide if the tentative layer-increase is successful or not. The
assessing window is designed to be of the same length as the
buffer window but starts from χ . Its height is the current
subscribed layer plus one, i.e. the probing layer. If the
occupancy of the assessing window is more than η percent, the
layer-increase is deemed successful. The peer increases its
subscribed layer by one. Otherwise, the layer-increase fails and
the peer stops requesting pieces in the probing layer for a given
time period. Fig. 2 depicts an example, where Fig. 2(a) shows
the start of a probing period, Fig. 2(b) and Fig. 2(c) illustrate
the cases of successful and failed layer-increase, respectively.
Note that the layer probing process could only affect the pieces
that are T seconds away from current playback point. This
ensures both the video playback continuity and quality during
the layer probing process.

Note that the setting of γ	 and	 η is very important in tuning
the performance of the layer adaptation algorithm. Specifically,
γ is the pre-determined threshold of ΔT. It is closely related to
how easily a peer can activate the layer probing process. In
addition, it also implies the amount of time within which the
continuity and quality of video playback is guaranteed. When γ
is smaller, the layer probing process is triggered more easily.
Although this helps to absorb the extra bandwidth promptly, it
is at the risk of introducing more quality jitter when the
bandwidth supply is not sufficient. While with a large value of
γ, a peer will be more conservative in probing additional layer.
This helps to reduce the quality jitter and enhance playback
continuity but it tends to compromise the playback video
quality in terms of average layers received on playback. On the
other hand, η implies the difficulties for a peer to succeed in
probing additional layer. A smaller η makes it easier for the
layer probing process to be successful. But it may also lead to
severer quality jitters if bandwidth supply is not sufficient for
streaming one more layer. Whereas, when η increases to a
large value, peers are less likely to accomplish the occupancy
requirement at the end of the probing period. They are thus
restricted in streaming the current subscribed layers which
helps to avoid quality fluctuation. But, the average layer on
playback will be significantly affected. The value of γ	 and	 η
are determined by simulations in Section IV. Due to the space
limit, we present only the guideline on properly setting these
parameters in this paper.

There is also a layer-decrease function running in parallel.
Specifically, on the playback of the video, a peer checks the
fraction of received pieces of all subscribed layers within the
buffer window (of size ω୰ െ ߱୪) next to the current playback
point, i.e. ሾ݌, ݌ ൅ |ω୰ െ ߱୪|ሿ. If a peer cannot receive more
than η percent of those pieces, the number of subscribed layers
is decreased by one.

One additional issue is to determine the initial number of
subscribed layers when a peer joins the system. In our
algorithm, an bootstrap period of τ seconds is given to a new
peer. During this period, the peer should try its best in

requesting pieces to fill an initial buffer window of τ seconds.
The pieces in the initial buffer window are requested in the
zigzag order starting from the base layer. Within each layer,
pieces closer to the starting point of the video are requested
first. When the bootstrap period ends, a peer will subscribe to
the highest layer for which all the pieces within the initial
buffer window have been received. (Note that we have set the
length of initial buffer window to be the same as the bootstrap
period for simplicity.) . If pieces of all available layers within
the initial buffer window are received before the bootstrap
period ends, a peer subscribes to all the available layers and
starts the video playback earlier.

B. Piece selection:

For a given number of layers that a peer has subscribed to,
the piece selection algorithm determines which missing pieces
in the sliding buffer window are to be requested next. With
layered video, the importance of a missing piece is jointly
determined by its time importance, which depends on when the
piece is needed for continuous playback, and layer importance,
which is due to the fact that a upper layer piece cannot be
decoded if any of its lower layer pieces is missing (at playback).

With the above considerations in mind, we propose a piece
utility function similar to that in [10]. Specifically, for each
missing piece in the buffer window, say a piece at time ݐ௜ and
layer	݆,	݁ܿ݁݅݌௜௝, its utility ௜ܷ௝ is given by:

																	 ௜ܷ௝ ൌ
௅ି௝ߣ

௝ܵሺݐ௜ െ ௣ሻఈݐ
	,						݆ ∈ ሾ1, 	ሺ1ሻ																													ሿܮ

where L is the maximum number of video layers,	1 < ߣ is the
layer importance weighting factor, ௝ܵ is the number of packets
of a layer j piece, ݐ௜ is the playback time of the missing piece,
 is the time ߙ ௣ is time instance of current playback point, andݐ
importance weighting factor.

Given the indispensable role played by the base layer, the
highest value of layer importance (ߣ௅ି௝) is assigned to the base
layer to ensure its priority. For enhancement layers, the layer

Globecom 2013 - Communications Software, Services and Multimedia Symposium

1732

Figure 3. Piece utility value as a function of time difference ݐ௜ െ ௣ݐ

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time difference with respect to the playback point(sec.)

P
ie

ce
 U

til
ity

Base Layer

First Enhancement Layer
Second Enhancement Layer

Third Enhancement layer

importance value decreases with the rise of the layer index. The
rationale is to ensure the in-order delivery of enhancement
layer so as to avoid the un-decodable event, where
enhancement layer pieces have been received but a lower
layer/base layer piece is missing at playback time.

In (1),	ݐ௜ െ ௜௝ to݁ܿ݁݅݌	 ௣ represents the amount of time forݐ
be received before playback. As an example, Fig. 3 depicts the
piece utility value as a function of time difference 	ݐ௜ െ ௣ forݐ
pieces in different layers (where ௝ܵ ൌ 22,α ൌ 0.8 and ߣ =2).
We can see that for pieces with the same playback time, a
lower layer piece has a higher utility. This difference is more
significant among pieces closer to the playback point. While
for pieces of the same layer, higher utilities are given to those
closer to the playback point. This emphasizes the playback
importance of the missing piece. By properly combining both
time and layer importance of a piece, we can show in Section
IV that the utility function ensures the continuous video
playback at a high video quality.

If all peers use the same utility function (1), peers with
similar playback time tend to request the same piece
simultaneously, causing unnecessary content bottleneck at the
(few) peers with the right piece. To address this, we propose to
request pieces according to their importance in a probabilistic
fashion. Specifically, the probability for	݁ܿ݁݅݌௜௝ to be selected
is proportional to its utility value:

௜௝ܾ݋ݎܲ																										 ൌ
௜ܷ௝

∑ ௜ܷ௝௜∈ூ,௝∈௃
																																ሺ2ሻ

where ܫ and ܬ refer to the sets of time index and layer index
within the buffer window, respectively.

Although randomness introduced by the probabilistic piece
selection improves content diversity, it may affect the playback
continuity. To address this, we enforce a rule of always
requesting the 5 pieces next to the playback point at the base
layer with the highest priority and set the timeout value for
requests of these pieces to be half of the normal piece request.

Note that we adopt similar piece utility calculation for piece
selection in [10], our algorithm differs from [10] in that: a) the
weighted download probability on whether a piece is received
in time and decodable is not considered in our proposed
algorithm. Because, following calculation in [10], if any piece
is missing or regarded as not possible to be received in time, its
weighted download probability will be set to 0. Consequently,
the utilities of all pieces of later time at higher layers may all be
set to 0. If that happens, those pieces will not be retrieved. b) In
our algorithm, a peer selects a piece probabilistically based on
their utility, which avoids the deterministic piece request made
in greedy solution in [10].

IV. PERFORMANCE EVALUATIONS

A. Performance Metrics

We evaluate the performance of our data scheduling
algorithm by packet level simulations. We focus on two
performance aspects: playback continuity and video quality.
The playback continuity is measured by the number of stops
and total caching time [15]. The number of stops records the
total number of stalling events due to lack of piece to play;
and the total caching time sums up all time periods when a
peer suspends its playback to wait for the missing video piece
to arrive. To assess the perceived video quality, we measure
the average layers on playback and quality jitter rate. A
quality jitter is due to the change of number of layers on
playback, which can be a “burst jitter” or a “drop jitter” [9].
The quality jitter rate is the ratio of total number of quality
jitter to the total pieces throughout the streaming session.

B. Simulation Setup

Our simulation is carried out using a packet level P2P
simulator built on top of NS2. The correctness of the simulator
has been verified using real P2P traffic data [16]. Without loss
of generality, we assume all peers are connected to a central
router. Peers in the network are equally divided into two
groups, with uplink capacity of 1.5 Mbps and 0.75 Mbps.
When a session starts, peers join the streaming session
randomly at a rate of 5 peers per second until there are M peers
in the system. Peers will stay in the network throughout the
simulation. There is only a single VoD server in the system that
stores the original video file. The video file is encoded into 4
layers. Each layer is segmented into pieces of 1 second
playback. A piece is further segmented into 22 packets for
transmission. Each peer in the network keeps a list of 20
neighbors. Peers exchange their buffer maps (information of
pieces they have retrieved) every 1 seconds. When a peer
selects a piece to request, it identifies the neighbors that hold
the piece using the buffer maps stored. If there are multiple
such neighbors, a peer randomly selects one to make a piece
request. At any time, each peer can have up to N pending/on-
going piece requests and among them, no more than D requests
should be sent to the same peer. If a requested piece can not be
retrieved within T sec. (piece timeout value), the requesting
peer will allocate the piece request to the other neighbor that
holds the piece. Each peer starts video playback after finishing
the initial layer subscription process and resumes the playback
as long as the base layer piece for the next second is available,

Globecom 2013 - Communications Software, Services and Multimedia Symposium

1733

Figure 4. Jitter rate performance

Figure 5. Number of stops performance

Figure 6. Total caching time performance

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of peers

Ji
tt

er
 R

at
e

%

Proposed

Knapsack
PALS

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of peers

N
um

be
r

of
 S

to
ps

Proposed

Knapsack
PALS

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

Number of peers

T
ot

al
 c

ac
hi

ng
 T

im
e(

se
c.

)

Proposed

Knapsack
PALS

otherwise the playback will be suspended until the next five
pieces are retrieved. Other parameters used in the simulation
are summarized in Table I.

Our proposed data scheduling algorithm is compared with
the PALS scheduling algorithm [11] and the knapsack
scheduling algorithm [10].

C. Simulation Results

Fig. 4 shows the average layers on playback performance
versus the total number of peers in the system (M). We can see
that our proposed data scheduling algorithm outperforms the
PALS and knapsack. The average layers on playback using our
algorithm is 2 times more than that of PALS and knapsack
when the network size is small. When the network size grows
to 500, our algorithm still provides a 50 percent and 85 percent
more layers than the knapsack and PALS, respectively. The
poor performance of the knapsack and PALS is largely due to
the deterministic piece request order, which tends to
synchronize peer’s demands and create content bottleneck. As
a result, higher layer pieces can hardly be disseminated in the
network. The results in Fig. 4 also confirm that the knapsack
can provide more layers on playback than the PALS. This
implies the utility based scheduling in knapsack is better than
the sequential piece request in PALS.

TABLE I. SIMULATION PARAMETERS

Simulation Time 300 sec.
Avg. Inter-arrival Time 4 sec.
Piece Timeout value (T) 3 sec.

Max # Requests to a Specific Peer (D) 2
Max. # Simultaneous Requests (N) 15

Buffer Window Size 30 sec.
Group I Peer Bandwidth (Down/Up) 3/0.75 Mbps
Group II Peer Bandwidth (Down/Up) 3/1.5 Mbps

Server Bandwidth (Down/Up) 5/5 Mbps
Streaming Rate of Each Layer 256Kbps

Piece Timeout Value 3 sec.

τ 10 sec.

γ 15 sec.
η 0.8
α 0.8
λ 3

௝ܵ 22

Figure 7. Average layer on playback performance

100 200 300 400 500
0.8

1.1

1.4

1.7

2

2.3

2.6

2.9

3.2

Number of peers

A
ve

ra
ge

 L
ay

er
s

on
 P

la
yb

ac
k

Proposed

Knapsack
PALS

Globecom 2013 - Communications Software, Services and Multimedia Symposium

1734

The average jitter rate performance is shown in Fig. 5. Our
algorithm yields a jitter rate around 4% and that of knapsack
and PALS are less than 0.5%. The very low jitter rate achieved
by PALS and knapsack benefit from their very low average
number of layers on playback (< 1.5 in Fig. 4). Under such
situations, the jitter event hardly occurs. The higher jitter rate
under our algorithm is a side effect of the probabilistic piece
request mechanism. As piece requests are made spreading out
the buffer window, it increases the risk of leaving some
vacancies in the buffer window. However, we would like to
argue that jitter rate of our proposed algorithm is still at a low
level. In considering the performance gain in the average layers
on playback, this level of jitter rate is tolerable.

Fig. 6 and Fig. 7 illustrate the continuity performance.
Similarly, both PALS and knapsack algorithm suffers badly in
terms of both number of stops and total caching time. This is,
again, largely attributed to the deterministic piece request in
PALS and knapsack algorithm which leads to synchronized
piece demand and creates content bottleneck. Consequently,
the delivery of the base layer pieces are handicapped and the
playback continuity is undermined.

V. CONCLUTIONS

In this paper, we proposed a data scheduling algorithm for
layered P2P VoD streaming system. In the proposed algorithm,
the data scheduling issues is tackled from two perspectives: 1)
the layer adaptation phase, which employs a sliding buffer
window to assess the network bandwidth and activate the layer
probing process. The buffer window occupancy is used to
make the final layer subscription decision so as to absorb extra
network bandwidth while avoiding frequent quality switch;
and 2) the piece selection phase, in which a utility value of
each missing piece is calculated according to its playback
constraint and layering dependency. The probability for a
piece to be requested is proportional to its utility value. In
comparison with existing algorithms, our packet-level
simulation results illustrate the superiority of the proposed
algorithm in enhancing the QoS in a layered VoD streaming
netwroks

.

REFERENCES

[1] X. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, “A measurement
study of a large-scale p2p iptv system,.” IEEE Transactions on
Multimedia, 9(8):1672-1687, December 2007.

[2] Y. Huang, T. Z.J. Fu, D.M. Chiu, J.C.S. Lui and C. Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in Proc. of the
ACM SIGCOMM 2008 conference on Data communication.

[3] G.J. Conklin, G.S. Greenbaum, K.O. Lillevold, A.F. Lippman, and Y.A.
Reznik, “Video Coding for Streaming Media Delivery on the Internet,”
IEEE Trans. on Circuits and Systems for Video Technology, Vol. 11, No.
3, pp. 269–281, 2001.

[4] T. Sun, M. Tamai, K. Yasumoto, N. Shibata, M. Ito and M. Moriy,
“MTcast: Robust and Efficient P2P-based Video Delivery for
Heterogeneous Users, ” in Proc. Of OPODIS’05, pp.176-190,2005

[5] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable
video coding extension of the H.264/AVC standard,” IEEE TCSVT, vol.
17, no. 9, September 2007.

[6] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon,
“Realtime system for adaptive video streaming based on SVC,” IEEE
TCSVT, vol. 17, no. 9, September 2007.

[7] X. Xiao, Y. Shi, B. Zhang and Y. Gao, “OCals: a novel overlay
construction approach for layered streaming,” in Proc. of IEEE ICC’08

[8] Z.Liu; Y.Shen, K.W.Ross, S.S. Panwar and Y.Wang,
“Layerp2p: using layered video chunks in p2p live streaming,” IEEE
Transactions on Multimedia, vol: 11, no: 7, PP: 1340-1352, 2009.

[9] X. Xiao ; Y. Shi ; Y. Gao and Q. Zhang “LayerP2P: a new data
scheduling approach for layered streaming in heterogeneous networks,”
in Proc. of IEEE INFOCOM’09.

[10] M. Eberhard, T. Szkaliczki, H. Hellwagner, L. Szobonya and C.
Timmerer, “Knapsack problem-based piece-picking algorithms for
layered content in peer-to-peer networks,” in Proc. of ACM
AVSTP2P’10.

[11] R. Rejaie, A. Ortega, “PALS: peer-to-peer adaptive layered streaming”,
In Proc.of ACM NOSSDAV’03.

[12] J. Zhao, F. Yang, et. al, “On Improving the Throughput of Media
Delivery Applications in Heterogenous Overlay Network”, in Proc. of
IEEE Globecom’06.

[13] A. T. Nguyen, B. Li, and F. Eliassen. Chameleon: adaptive peer-to-peer
streaming with network coding,” in Proc. of IEEE INFOCOM, 2010.

[14] D. M. Chiu, R. W.H. Yeung, J. Huang, and B. Fan, “Can network
coding help in P2P networks?” in Proc. of Second Workshop of
Network Coding, 2006.

[15] Z Wen, N. Liu, K.L.Yeung and Z Lei, “Closest playback-point first: a
new peer selection algorithm for p2p vod systems”, in Proc. of IEEE
GLOBECOM’11.

[16] J. Huang, G.Cheng, J. Liu, and D.M.Chiu et.al, “A simulation tool for
the design and provisioning of p2p assisted content distribution
plateforms,” under review, A copy is available at:
http://personal.ie.cuhk.edu.hk/~dmchiu/references/P2P_Simulation.pdf.

Globecom 2013 - Communications Software, Services and Multimedia Symposium

1735

