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Abstract—A multiphysics study carries out on plasmonic
organic solar cells (OSCs) by solving Maxwell’s equations and
semiconductor (Poisson, drift-diffusion, and continuity) equa-
tions simultaneously with unified finite-difference framework.
Regarding the Maxwell’s equations, the perfectly matched layer
and periodic boundary conditions are imposed at the vertical
and lateral directions of OSCs to simulate the infinite air
region and metallic grating electrode, respectively. In view of
the semiconductor equations, the Scharfetter-Gummel scheme
and semi-implicit strategy are adopted respectively in the space
and time domains. To model the bulk heterojunction OSCs,
the Langevin bimolecular recombination and Onsager-Braun
exciton dissociation models are fully taken into account. The
exciton generation rate depending on the optical absorption of the
organic active material can be obtained by solving the Maxwell’s
equations and will be inserted into the semiconductor equations.
Through the multiphysics model, we observed the increased short-
circuit current and dropped fill factor when OSCs incorporate
a metallic grating anode supporting surface plasmon resonances.
This work provides fundamental multiphysics modeling and
understanding for plasmonic organic photovoltaics.

I. INTRODUCTION

As one of the promising candidates for photovoltaic appli-
cations, organic solar cells (OSCs) have drawn considerable at-
tention recently due to their properties of large-area production,
mechanical flexibility, and low-cost processing [1], [2]. How-
ever, the short lifetime and diffusion length of excitons result in
ultrathin active-layer configuration in OSCs. The configuration
limits the light absorption efficiency, and thereby the power
conversion efficiency. The power conversion efficiency (PCE)
of OSCs is given by PCE = JscVocFF/Pin, where Jsc is the
short-circuit current, Voc is the open-circuit voltage, FF is the
fill factor (FF), and Pin is the incident photon power. Having
unique features of tunable resonance and unprecedented near-
field concentration, plasmonics is one of enabling techniques
for boosting the optical absorption of OSCs [3], [4], [5], [6].
The enhanced optical absorption substantially increases the
generation rate of photocarriers and thus short-circuit current.
The basic device physics of OSCs has been investigated in
literatures [7], [8]. However, the physical mechanism of the
modified electrical properties of OSCs due to the introduction
of metallic nanostructures has not been unveiled systematically.
Apart from the optical absorption properties [3], [4], [5], [6],
the electrical properties of plasmonic OSCs, such as internal E-
field distribution, recombination loss, and exciton dissociation,
will greatly affect the performance of organic solar cell (OSC)

devices.

In this paper, we model the optical and electrical properties
of OSCs with the metallic grating and planar anodes through
solving Maxwell’s equations and semiconductor equations
simultaneously. The photocarrier’s generation, transport, and
collections are fully observed and comparatively studied for
plasmonic OSCs with the gating anode and standard OSCs
with the planar anode. The multiphysics modeling and under-
standing are imperative for high-efficiency organic photovolta-
ic technique and low-cost green energy industry.

II. UNIFIED FINITE-DIFFERENCE METHOD

A. Maxwell’s equations

Fig. 1. (Color online) The five-point stencil for the FDFD method. Δx and
Δy are respectively the spatial steps along the x and y directions. Φ = Ez

for the TE polarization and Φ = Hz for the TM polarization. Here, ε = n2
c

is the relative permittivity in the discretized region and nc is the complex
refractive index of the optical material.

Considering a two-dimensional OSC structure, the
Maxwell’s equations can be decoupled into a TE and TM
modes. The wave equations for TE and TM modes are re-
spectively formulated as
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where k0 is the wave number of incident light, and εr and μr

are the relative permittivities and permeabilities, respectively.
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Regarding non-magnetic optical materials, μr = 1, εr = n2
c ,

and nc is the complex refractive index of optical materials.

With the Yee lattice, the 2D finite-difference frequency-
domain (FDFD) method [9] is utilized to characterize the
optical properties of OSCs. As shown in Fig. 1, the five-point
stencil is adopted for the FDFD method. The discretized forms
for the TE (Ez) and TM (Hz) wave equations are respectively
of the form

2

(
1

Δ2
x

+
1

Δ2
y

)
Φ0

ε̄
− k20Φ0 − Φ1 +Φ3

ε̄Δ2
x

− Φ2 +Φ4

ε̄Δ2
y

= 0

(3)

2

(
1

Δ2
x

+
1

Δ2
y

)
Φ0

ε̄
− k20Φ0 − ε−1

1 + ε−1
4

2Δ2
x

Φ1 − ε−1
2 + ε−1

3

2Δ2
x

Φ3

−ε−1
1 + ε−1

2

2Δ2
y

Φ2 − ε−1
3 + ε−1

4

2Δ2
y

Φ4 = 0

(4)

ε̄ =

⎧⎨
⎩

ε1 + ε2 + ε3 + ε4
4

, Φ = Ez

4(ε−1
1 + ε−1

2 + ε−1
3 + ε−1

4 )−1, Φ = Hz

(5)

The incident Sunlight reflected by OSC devices converts
to outgoing waves propagating into infinite air (or free-space)
region. A perfectly matched layer (PML) absorbs the outgoing
waves without spurious reflections and “perfectly” simulates
unbounded wave propagations. The wave equation with the
complex coordinate stretched PML is given by
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where sr = 1 + i0σ/ωε0, i0 is the imaginary unit, ε0 is the
permittivity of free-space, and the conductivities σ(x) and σ(y)
are non-zeros only within PML layers normal to the x- and
y-axes, respectively. The optimized conductivities are chosen
as,
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where Δ = Δx or Δ = Δy for the PML layers normal to the
x- or y-axis, and i is the grid index of the eight-layer PML.

Regarding a periodic OSC device, the periodic boundary
conditions need to be implemented. According to the Floquet
or Bloch theorem, we have

Φ(x+ P, y) = Φ(x, y) exp (i0k0 sin θ · P )

Φ(x, y) = Φ(x+ P, y) exp (−i0k0 sin θ · P )
(8)

where P is the periodicity and θ is the incident angle with
respect to the y axis.

B. Extraction of exciton generation rate

The exciton generation rate can be written as

G(r) =

∫ 800 nm

400 nm

2π

h
nr(λ)ki(λ)ε0|E(r, λ)|2Γ(λ)dλ (9)

where h is the Planck constant, nc = nr + i0ki is the
complex refractive index of the active polymer material, E is
the (optical) electric field that can be obtained by solving the
Maxwell’s equations, and Γ is the solar irradiance spectrum of
AM 1.5G. Moreover, the exciton generation rate is the average
value of those for TE and TM polarizations.

C. Semiconductor equations

For studying electrical properties of OSCs, one should
self-consistently solve the coupled nonlinear semiconductor
equations (Poisson, continuity, and drift-diffusion equations)
given by
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In the above, εd is the dielectric constant of the polymer active
material, q is the electron charge, φ is the electrical potential,
and n (p) is the electron (hole) concentration. Moreover, μn

(μp) is the electron (hole) mobility, and Dn (Dp) is the electron
(hole) diffusion coefficient accessible by Einstein relations
and mobilities. Furthermore, Jn = −qμnn∇φ+ qDn∇n and
Jp = −qμpp∇φ − qDp∇p are respectively electron and hole
current densities, and G is the exciton generation rate of
Eq. (9) obtained with Maxwell’s equations. In addition, R
is the bimolecular recombination rate and Q is the field and
temperature dependent exciton dissociation probability, which
is a unique parameter for OSCs [10].

Using the Scharfetter-Gummel scheme in the spatial do-
main and using the semi-implicit strategy in the temporal
domain [11], the 2D discretized forms of Eqs. (10) and (11) are
respectively given by Eqs. (13) and (14), where B(x) = x

ex−1

is the Bernoulli function and Ut = kBT
q . It should be noted

that the Gummel’s method has been incorporated in (13) to
accelerate the convergence of the nonlinear semiconductor
equations.

The boundary conditions play a key role in modeling elec-
trical properties of plasmonic OSCs. The potential boundary
condition for the Schottky contact is given by

φ = Va − Wm

q
(15)

where Va is the applied voltage, and Wm is the metal work
function. For the ohmic contact, the built-in potential is the
potential difference between the highest occupied molecular
orbital (HOMO) of donor and lowest unoccupied molecular
orbital (LUMO) of acceptor. The Neumann (floating) boundary
condition is used to truncate the left and right boundaries of
OSCs, i.e.
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where N are the normal vectors of the left and right boundaries
of OSCs. The boundary conditions for the top and bottom
electrodes can be written as

n = Nc exp

(
− ψn

b

kBT

)
, for cathode (17)

p = Nv exp

(
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)
, for anode (18)

where Nc and Nv are the effective state density of electrons
and holes, respectively. ψn

b is the injection barrier between
the LUMO and the cathode, and ψp

b is the injection barrier
between the HOMO and the anode. It should be noted that
the infinite surface recombination velocity is assumed for the
Schottky contact.

III. RESULTS

The schematic standard and plasmonic OSC structures are
shown in Figs. 2(a) and (b), respectively. The blend active
layer of bulk heterojunction OSCs comprises a small bandgap
donor of PBDTTT-C-T and an acceptor of PC70BM. A
silver rectangular-grating is introduced as the anode for the
plasmonic OSC. Fig. 2(c) depicts the energy level diagram of
the OSCs. The anode is assumed to be an ohmic contact while
the cathode has an injection (Schottky) barrier of 0.2 eV. Figure
2(d) shows the ratio of the generation rate of the plasmonic
OSC to that of the standard OSC. The extremely dense exciton
generation can be found around the metallic grating. Moreover,
the increased exciton generation can be observed in the active
region below the ridge of the grating. From Fig. 2(d), the
exciton generation is extremely nonuniform in the active layer
of the plasmonic cell.

Fig. 2. (a,b) The schematic patterns for the unit cells of the standard and
plasmonic OSCs, respectively. The geometric parameters are d1 = 30 nm,
d2 = 70 nm, d3 = 30 nm, P = 300 nm, W = 150 nm, and H = 20 nm.
(c) The energy levels of active materials and electrodes. (d) The generation
rate map of the plasmonic cell divided by that of the standard cell (in the
active layer). The logarithmic scale is adopted.

Fig. 3 and Fig. 4 show the potential distribution, recom-
bination rate, electron and hole current densities at the short-
circuit condition for the standard and plasmonic OSCs, respec-
tively. The plasmonic OSC has abnormal carrier transport and
giant recombination loss compared to the standard one.

The short-circuit current of the plasmonic cell is improved
by 13% due to the plasmon enhanced photoabsorption as
depicted in Fig. 5. The slightly increased open-circuit voltage
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Fig. 3. The electrical results of the standard OSC at the short-circuit condi-
tion. (a) equipotential lines (V); (b) recombination rate with the logarithmic
scale (m−3s−1); (c,d) electron and hole current densities (A/m2). The color
and arrow denote the amplitude and direction of the currents.

Fig. 4. The electrical results of the plasmonic OSC at the short-circuit con-
dition. (a) equipotential lines (V); (b) recombination rate with the logarithmic
scale (m−3s−1); (c,d) electron and hole current densities (A/m2). The color
and arrow denote the amplitude and direction of the currents.

in the plasmonic OSC may be attributed to the favorable hole
transport. A lot of holes are generated around the grating
anode and can be collected efficiently. The FF is defined by
the maximum power output over the product of short-circuit
current and open-circuit voltage. A significant 7% drop of
the FF in the plasmonic cell is strongly confirmed by our
multiphysics model. On one hand, the periodically-modulated
metallic grating excites the concentrated plasmonic waves near
the anode resulting in nonuniform photocarrier generation (Fig.
2(d)). On the other hand, the modulated anode boundary is
responsible for inhomogeneous built-in potential and internal
E-field distributions below ridge and troughs of the grating
anode, which has strong effects on the photocarrier transport
and collections.

Fig. 5. The voltage-current density curve of the plasmonic and standard cells.
The maximum power points are denoted by the plus signs.

IV. CONCLUSION

We have investigated the plasmonic OSC with the metallic
rectangular-grating anode through the multiphysics solutions
to Maxwell’s equations and semiconductor equations with
unified finite-difference method. The grating anode induces
nonuniform optical absorption and inhomogeneous internal E-
field distribution. Thus uneven photocarrier generation and
transport are formed in the plasmonic OSC leading to the
dropped FF. The multiphysics modeling and understanding
are fundamentally important for improving the performance
of organic photovoltaics.
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