
Title Circuit simulation via matrix exponential method for stiffness
handling and parallel processing

Author(s) Weng, SH; Chen, Q; Wong, N; Cheng, CK

Citation

The 30th IEEE/ACM International Conference on Computer-Aided
Design (ICCAD 2012), San Jose, CA., 5-8 November 2012. In
ICCAD - IEEE / ACM International Conference on Computer-
Aided Design Proceedings, 2012, p. 407-414

Issued Date 2012

URL http://hdl.handle.net/10722/189851

Rights
ICCAD - IEEE / ACM International Conference on Computer-
Aided Design. Proceedings. Copyright © IEEE Computer
Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38032451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Circuit Simulation via Matrix Exponential Method
for Stiffness Handling and Parallel Processing

Shih-Hung Weng1, Quan Chen2, Ngai Wong2 and Chung-Kuan Cheng1

1Dept. of CSE, University of California San Diego, La Jolla, CA
2Dept. of EEE, University of Hong Kong, Hong Kong

email: s2weng@ucsd.edu, quanchen@eee.hku.hk, nwong@eee.hku.hk, ckcheng@ucsd.edu

Abstract— We propose an advanced matrix exponential
method (MEXP) to handle the transient simulation of stiff circuits
and enable parallel simulation. We analyze the rapid decaying
of fast transition elements in Krylov subspace approximation of
matrix exponential and leverage such scaling effect to leap larger
steps in the later stage of time marching. Moreover, matrix-vector
multiplication and restarting scheme in our method provide
better scalability and parallelizability than implicit methods. The
performance of ordinary MEXP can be improved up to 4.8 times
for stiff cases, and the parallel implementation leads to another
11 times speedup. Our approach is demonstrated to be a viable
tool for ultra-large circuit simulations (with 1.6M ∼ 12M nodes)
that are not feasible with existing implicit methods.

I. INTRODUCTION

Efficient yet accurate circuit simulation has always been
one of the major demands in the IC design industry. The ever
increasing size of circuitry in the advanced technology makes
full-chip simulation a prohibitive task that requires days or
even weeks to complete. Nowadays, the emerging multi-core
system has opened new opportunities for researchers. Previous
works [8], [9], [14], [21] have made efforts to speed up the
circuit simulation by novel algorithmics or parallel techniques.

Circuit simulation involves solving a system of ordi-
nary differential equations (ODEs), which are derived nor-
mally from Modified Nodal Analysis (MNA) and solved
numerically in an explicit or implicit integration manner.
The explicit methods require using unnecessarily small step
sizes and are less attractive in general circuit simulation
due to the stiffness of the ODE system, which results
from a wide range of time constants of a circuit. On
the other hand, the implicit methods, e.g., backward Euler
and trapezoidal methods, can overcome the stiffness prob-
lem in ODE systems, and are widely adopted by conven-
tional SPICE-like simulators. However, the implicit methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 2012, November 5-8, 2012, San Jose, California, USA

Copyright c©2012 ACM 978-1-4503-1573-9/12/11... $15.00

have to solve a linear system in each time step, which is usu-
ally by LU decomposition and requires complexity of O(n1.5)
in both time and space, which cause the scalability problem
for the implicit methods. Although iterative approaches can
alleviate the memory requirement, solving an ill-conditioned
matrix from the implicit methods is still a challenge.

Beyond the traditional explicit and implicit methods, a new
class of explicit methods called exponential time differencing
(ETD) has been drawing attention in the numerical com-
munity [2], [17]. The ETD methods analytically solve an
ODE system within every discretized time step by directly
computing the exponential of a matrix. In theory, the ETD
methods avoid the local truncation error (LTE) of the polyno-
mial expansion approximation, and the stability is the same
as the trapezoidal method for passive systems. In application,
the exponential of a matrix required in the ETD methods can
be efficiently approximated by the Krylov subspace method,
which involves mainly matrix-vector multiplication and has
the advantages of scalability and parallelizability.

In [19], [20], Weng et al. have embraced the idea of
ETD for the circuit simulation and proposed an adaptive step
control scheme to enhance the performance. Although the ETD
methods demonstrate their advantages, there are still two major
limitations for ETD methods: 1) stiff circuits enforce the ETD
methods to use small step sizes for reducing the approximation
error of the Krylov subspace method, and thus the performance
is damaged; 2) larger Krylov subspace bases required by stiff
circuits, which usually need > 100 bases, pose a memory
bottleneck for simulation involving millions of unknowns.

In this paper, we propose a matrix exponential method
(MEXP) utilizing the scaling effect and restarting scheme to
address these two limitations in stiff circuits. Specifically, our
contributions are

• We reveal the scaling effect of the Krylov subspace
method to enable the use of a larger step size when
stepping forward.

• We utilize the restarting scheme to mitigate the memory
usage when a large m is needed to strengthen the scaling
effect.

• We demonstrate the parallelizability and scalability of
MEXP by implementing on the GPU platform and testing
with large-scale cases.

The experimental results show that the performance of MEXP
for highly stiff circuits is improved up to 4.8 times by

407

exploiting the scaling effect, and is accelerated in the GPU
environment up to another 11 times. Furthermore, we demon-
strate that MEXP is able to handle the circuit with up to 12
million nodes.

The rest of the paper is organized as follows. Sections II
and III introduce the background of the matrix exponential
method and our nonlinear circuit formulation, respectively.
Section IV presents the adaptive and the restarting schemes in
our matrix exponential method. Section V details the parallel
implementation and Section VI shows experimental results.
Finally, Section VII concludes the paper.

II. PRELIMINARY

A. Matrix Exponential Method
In general, MNA represents a circuit by a system of ODEs

as below:

Cẋ(t) = Gx(t) + Bu(t), (1)

where the matrix C describes the capacitances and induc-
tances, the matrix G represents the resistances and the in-
cidence between voltages and currents, and the matrix B

indicates locations of the independent sources. The vector x(t)
describes the nodal voltages and branch currents at time t,
and the vector u(t) represents the input voltage and current
sources. Given the initial value x(0) of the circuit, e.g., by
DC analysis, the analytical solution [6] of (1) from t to t + h
is given by

x(t + h) = eAhx(t) +

∫ h

0

eA(h−τ)b(t + τ)dτ. (2)

where A = C−1G (we do not need to compute C−1

explicitly, as will be shown in Section II-C), and b(t) =
C−1u(t). Although C might be singular, we adopt a practical
approach [5] that systematically regularizes C with affordable
cost and acceptable sparsity.

Assuming that the input u(t) is piece-wise linear (PWL),
the last term in (2) can be integrated analytically, turning the
solution into the sum of three terms associated with matrix
exponential operators:

x(t + h) = eAhx(t)

+ (eAh − I)A−1b(t)

+ (eAh − (Ah + I))A−2 b(t + h) − b(t)

h
.(3)

We call the solution scheme based on this formulation as
matrix exponential method, which is an A-stable explicit
method because x approaches zeros as h tends to infinity when
the real parts of A’s eigenvalues are all negative.

Note that the simulation result of the matrix exponential
method is exact when the matrix exponential is calculated
exactly, and also the inputs satisfy the PWL assumption. In
contrast, forward and backward Euler methods are the first
order approximation of (2) while the trapezoidal method is
accurate up to the second order.

B. One Matrix Exponential Formulation
Equation (3) and its extension of nonlinear formulation

(10) have three matrix exponential terms, which are generally
referred as ϕ-functions of the zero, first and second order [17].
It has been shown in [2, Theorem 2.1] that one can obtain the
sum of them in one shot by computing the exponential of
a slightly larger (n + p) × (n + p) matrix, where n is the
dimension of A and p is the order of the ϕ-functions (p = 2
in (3)). Thus, (3) can be rewritten into

x(t + h) =
[

In 0
]

eA
′h

[

x(t)
e2

]

, (4)

with

A′ =

[

A W

0 J

]

, W =
[

b(t+h)−b(t)
h

b (t)
]

J =

[

0 1
0 0

]

, e2 =

[

0
1

] (5)

To keep the notations simple, we use A and v to represent
A′ and [x(t) e2]

T in the following sections.

C. Krylov Subspace Approximation
The computation of the matrix exponential eAhv of (3)

can be reduced using the Krylov subspace method [13], [18].
It projects eAv onto the Krylov subspace Km (A,v) with
dimension of m and then only evaluates the exponential of
an m × m Hessenberg matrix Hm constructed from Arnoldi
process, which mainly involves matrix-vector multiplications
and avoids computing C−1 explicitly by solving C−1(Gv).
Note that solving C is easier than (C/h + G) of implicit
methods because C has fewer non-zeros and better structure
that can favor direct and iterative sparse solvers.

The matrix exponential eAhv can be calculated as

eAhv ≈ VmVT

meAhv

= βVmVT

meAhVme1

= βVmeHmhe1, (6)

where β = ‖v‖2, Vm and Hm are obtained by Arnoldi
process for A and v, and e1 is the first unit vector with
dimension of m× 1. Because m is usually small (20 ∼ 100),
the overall complexity of the exponential operator is greatly
reduced. Hence, the scalability of MEXP is better than the
traditional implicit methods. The error of the approximation
(6) can be estimated by the following posteriori formula

err = βη|eT

meHmhe1|, (7)

where η = ‖Hm(: ,m)‖2 [13], [18].

D. Adaptive Step Size Control
MEXP can be further sped up by an adaptive step size

strategy, which will enlarge (shrink) the time step size when
the approximation error is less (larger) than a tolerance. Given
the global error budget Tol and the total simulation time T , the

408

relation between the error and the tolerance can be represented
as

err ≤ h
Tol

T
,

where err is calculated by (7). The scaling invariant property
of the Krylov subspace method avoids the re-calculation of
Arnoldi process and requires only evaluation of (6) with scaled
Hm. Step size h of MEXP can be fine tuned to satisfy the
error tolerance without a significant cost. In contrast, in the
implicit methods, the re-evaluation and error estimation for a
new h have to again solve a linear system. Previous work [19],
[20] showed that MEXP with adaptive step control leads to a
several times speedup over the implicit methods for large-scale
circuits.

E. Limitations
Although MEXP has advantages of accuracy, scalability and

adaptivity, one major issue of the Krylov subspace method
arises in highly stiff circuits, where the Krylov subspace
method needs a large m or a small h to provide sufficient
resolution to the spectrum of Ah. Besides that, the large
storage of m bases for the high stiffness limits the application
of large-scale circuit. Such issue of the Krylov subspace
method restricts not only the performance but also the memory
usage of MEXP for highly stiff circuits. We will address the
issue in Section IV.

III. NONLINEAR CIRCUIT FORMULATION

For nonlinear circuits, the system of ODEs can be formu-
lated as below:

q̇(x(t)) + Clẋ(t) = (Glx(t) + i(x(t))) + Bu(t), (8)

where Cl and Gl are the matrices representing linear com-
ponents, and q and i are the charges and currents induced
from nonlinear components. With a mild assumption that the
charges in nonlinear elements behave linearly within the time
step [t, t+h], we can derive the above equation into the similar
form as (1) by modeling q̇ as Cnlẋ, where Cnl is the effective
capacitance matrix for nonlinear elements within [t, t + h].
Then, the analytical solution of such nonlinear formulation
can be written as

x(t + h) = eAhx(t) (9)

+

∫ h

0

eA(h−τ) [F(x(t + τ)) + b(t + τ)] dτ,

where A = C−1
n Gl, Cn = Cl + Cnl, and F(x(t)) =

C−1
n i(x(t)). By adapting the scheme of [16], we can decouple

the nonlinear and linear terms. The second order implicit
approximation is then of the form

x(t + h) =
h

2
F(x(t + h)) + eAh

(

x(t) +
h

2
F(x(t))

)

+ (eAh − I)A−1b(t)

+ (eAh − Ah − I)A−2∆b(t), (10)

where ∆b(t) = b(t+h)−b(t)
h

. Since the nonlinear and linear
terms are decoupled, we can compute those terms associated
with the matrix exponential in advance, and then solve the
nonlinear term by some iterative approaches, e.g., Newton’s
method or the fixed point method. The advantage behind
this decoupling scheme is that iterations of solving x(t + h)
involves no computation of the exponential of a matrix.

To provide higher capability for handling nonlinearity, we
apply Newton’s method to solve the nonlinear circuit, and the
iteration equation for (10) is shown as follows:

(

Cn +
h

2

∂i

∂x

∣

∣

∣

∣

x
k+1

n+1

)

∆xk+1
n+1 =

(

h

2
ikn+1 + Cnxk

n+1 − Cnln+1

)

, (11)

where ln+1 represents the linear terms of (10), and ∂i

∂x
is the

Jacobian matrix. Such Jacobian matrix is equivalent to the
effective conductance of nonlinear components at tn, which
is denoted as Gnl. Therefore, instead of deriving the Jaco-
bian matrix directly, as most SPICE-like simulators, we can
construct Gnl via the inspection of linearized nonlinear com-
ponents. Note that, in comparison with the implicit methods,
e.g., backward Euler, the Jacobian matrix (Cn/h+Gl +Gnl)
will burden the linear system solver with much more non-zeros
from Gl.

IV. SCALING EFFECT AND RESTARTED MATRIX
EXPONENTIAL METHOD FOR STIFF CIRCUITS

The scaling effect manifests the rapid decaying nature of
fast transition components. Ideally, MEXP with the scaling
effect can eventually step an arbitrarily large size even for
stiff circuits. However, the interpolation error from the Krylov
subspace method will prevent the optimal scaling effect and
thus restrict the maximal step size.

In general, large m increases the number of interpolation
points and reduces the interpolation error. We apply the
restarting scheme to the Krylov subspace construction process
so that the number of interpolation points increases effectively
without adding the memory usage.

A. Scaling Effect in Matrix Exponential Method
With the one-exp formulation (4), time stepping in MEXP

can be regarded as a series of product of matrix exponential,
i.e., the solution at the n + 1th step is related to the initial
condition x0 by

xn+1 = eAhn+1eAhn ...eAh1x0 (12)

With the eigenvalue decomposition A = QAΣAQ−1
A , (12)

becomes

xn+1 = QAeΣAhn+1eΣAhn ...eΣAh1y0 = QAeΣAhn+1yn,
(13)

where yi = Q−1
A xi, i = 0, 1, ... is the components of xi

on the eigenvectors space of A (which are referred as the
eigencomponents of vector xi hereafter).

409

Since a circuit intrinsically contains fast and slow transition
elements, e.g. small and large capacitors, that correspond to
different eigenvalues of A, one can group the elements of
yn, with a given threshold, and use yf

n and ys
n to represent

the corresponding eigencomponents for the fast mode (neg-
ative eigenvalues with large magnitude) and the slow mode
(negative eigenvalues with small magnitude), respectively. The
effect of exponential shows the rapid decaying nature of fast
transition elements (i.e., fast damping of negative eigenvalue
with large magnitude in the exponent), and is reflected in the
eigencomponents yf

n, which attenuate drastically as stepping
forward.

In our MEXP, the Krylov subspace method still preserves
such attenuation of the fast mode. The kth basis of the Krylov
subspace at time T and in nth step can be represented as

(Ahn)kxn = QA(ΣAhn)kQ−1
A xn

= QA(ΣAhn)kyn

= QA(ΣAhn)keΣAT

[

y
f
0

ys
0

]

. (14)

The fast mode eigencomponents y
f
0 are attenuated rapidly by

eΣAT . Although the power of ΣAhn acts as a counter force
that brings those eigencomponents back to stage, the damping
rate of exponential surpasses the increase by the power, so that
the Krylov subspace method still benefits from the attenuation
of y

f
0 (as shown in Section VI-A). The rapid attenuation of

eigencomponents implies that MEXP can alleviate the effect
of stiffness, caused by the fast mode, and enables the use of
larger h in the later stage of time marching where the step
size should be more dominated by the slow mode of a circuit.
We call this phenomenon as “scaling effect”.

With the scaling effect, components of fast transition el-
ements can be rapidly attenuated after a few steps. Smaller
m, or larger h, can then be used in the Krylov subspace
method at later steps. It should be noticed that for the nonlinear
case, even though A is different every time step due to the
nonlinear components, our formulation can still exploit the
scaling effect. Since only linear terms are associated with
the matrix exponential operator, without affecting Newton’s
iteration, we can calculate ln+1 separately in the form of (12)
using the scaling effect.

Theoretically, according to (14), MEXP can use extremely
large h in the later stage of simulation. Nevertheless, due
to the approximation error of the Krylov subspace method,
the allowable scaling of step size is restricted in practice.
To provide an in-depth analysis of the error, we re-interpret
the Krylov subspace approximation (6) from an interpolation
perspective [18].

Lemma 4.1: The approximation (4) is mathematically
equivalent to approximating exp(A)v by pm−1(A)v, where
pm−1 is the (unique) polynomial of degree m − 1, which
interpolates the exponential function in the Hermite sense
on the set of Ritz values, the eigenvalues of Hm, repeated
according to their multiplicities.

The exact local error vector of approximation (4) can be

written as

r = eAv − pm−1(A)v = QA

[

eΣA − pm−1(ΣA)
]

y (15)

Provided A is not highly nonnormal, i.e., the norm of QA

remains reasonably bounded, the error mainly depends on
eΣA − pm−1(ΣA), the mismatch between the exponential
function and the interpolation function evaluated at the eigen-
values of A, which we denote by the “interpolation error”. The
vector y denotes the eigencomponents of the starting vector
v.

B. Restarted Krylov Subspace Method
We adopt the restarted Krylov subspace method specific for

matrix exponential computation [1], [10], [11]. Such restarting
scheme mitigates the memory usage of the Krylov subspace
method when a larger m is needed to strengthen the scaling
effect. The Arnoldi process in computing matrix exponential
is restarted every m iterations with the last basis vector from
the previous cycle being the new starting vector.

v
(k)
1 = v

(k−1)
m+1 (16)

The approximation f of the matrix exponential (multiplied
with a vector) is updated with a correction term in each
restarting.

f (k) = f (k−1) + βV(k)
m

[

eĤkme1

]

(k−1)m+1:km
, (17)

where Ĥkm collects all the Hm from the k cycles of restarting

Ĥkm =

H
(1)
m

E
(2)
m H

(2)
m

.
E

(k)
m H

(k)
m

, (18)

where E
(k)
m = ηkeT

me1. The posterior error of (17) can be
estimated by

eAv − f (k) = ηk

2
∑

j=1

[

eT
kmφj

(

Ĥkm

)

e1

]

ωj−1 (A)v
(k)
m+1,

(19)
where φj is the divided differences of the exponential function
and ωj is the nodal function w.r.t. the minimal and maximal
eigenvalues of H

(k)
m .

It is shown in [11] that the k cycles of this restarting is
equivalent to interpolating the exponential function (in the
Hermite sense) at the union of the k set of eigenvalues of
Hm. This way, a much larger “effective” m is allowed without
increasing the memory demand. In principle, given a sufficient
number of restarting, the restarted method is able to work with
arbitrary step size.

One major shortcoming of the above restarting scheme lies
in calculation of the exponential of a matrix whose complexity
increases with km. As a consequence, we would like to
limit the number of restarting k at each step and adjust
the step size adaptively to meet the accuracy requirement.
This naturally calls for an integration of the restarted Krylov

410

subspace method and the adaptive step control based on the
scaling effect. Such integration utilizes the restarting scheme
to reduce the interpolation error so that the scaling effect can
be manifested and exploited by adaptively stepping.

C. Overall Restarted Algorithm

Algorithm 1: Restarted MEXP
Input: C, G, B, u(t), initial h, initial m, total error

budget TOL and total time tf
Output: x(t)
t = 0; x(0) = DC analysis;
while t ≤ T do

[Cr, Gr, Br] = regularization(C, G, B);
Compute xnew by restarted Krylov subspace method
(17);
Estimate err by (19);
tol = h

tf
TOL;

if err > tol then
Reduce h and re-compute xnew;

else if err < tol then
Estimate hnew by repeated tuning to fully use
error margin;

else
hnew is unchanged

end
t = t + h;
x(t) = xnew;
h = hnew;

end

The context of restarted MEXP follows the MEXP described
in Section II. The step size is adaptively adjusted according
to the posterior error estimate. The two main distinctions lie
in that: 1) the maximal number of restarting kmax is fixed
to a small value, e.g., 5, in each step. It is intended to
enlarge the effective m to roughly kmaxm, without inducing
too much overhead from the evaluation of eĤkm ; 2) unlike
in the unrestarted case, there is no fast re-evaluation once
h is changed, since the basis vectors Vm from previous
restarting cycles, which are not stored to save memory, are
all required to generate an updated approximation f . Hence,
we only employ re-evaluation(s) when the error exceeds the
tolerance. If the step size can be increased owing to a small
error, we use the step size in the next step, instead of applying
it right in the current step with re-evaluation. In this way, we
could still benefit from the scaling effect while minimizing the
number of re-evaluations. The posterior error estimate with
a changed h is calculated by (19), with the storage of some
auxiliary quantities. The whole restarted MEXP is summarized
in Algorithm 1.

V. PARALLEL RESTARTED MATRIX EXPONENTIAL
METHOD

In this section, we present the parallel version of MEXP. We
focus on the sparse matrix-vector multiplication—one of the

key components in restarted MEXP that shows strong potential
for parallelism. The basic idea of parallel sparse matrix-vector
multiplication is to simultaneously calculate each row of the
product vector. Many researchers [3], [4], [15] have inves-
tigated and parallelized such matrix arithmetic on different
environments, such as FPGA, cluster and GPU. In this paper,
we target the parallel restarted MEXP using the GPU platform
for two reasons. First, GPU has better cost-toperformance
ratio. Designers can adopt the parallel restarted MEXP with
affordable cost. Second, the communication overhead of the
sparse matrix-vector multiplication is mitigated since the com-
munication is now inter-thread instead of intermachine.

Our parallel restarted MEXP uses a hybrid CPU-GPU im-
plementation. We only parallelize Arnoldi process and matrix
exponential operation of a smaller matrix while keeping other
operations serial on CPU. For Arnoldi process, the parallel
matrix-vector multiplication is implemented by [3]. Although
the parallel sparse matrix-vector multiplication has up to an
order of magnitude speedup comparing to CPU implementa-
tion, the limited memory on GPU (2GB ∼ 4GB) imposes a
restriction on the dimension of Krylov subspace method for
large-scale circuits. Fortunately, with the restarting scheme,
MEXP method can make the effective m sufficiently large
under restricted memory resource.

In the computation of matrix exponential, even though the
reduced matrix by Krylov subspace method can be efficiently
evaluated on CPU, the restarting scheme would increase the
dimension of matrix up to hundreds, and the performance of
evaluation on CPU will significantly drop. We implement the
parallel matrix exponential based on a scaling and squaring
method [12], which involves only basic dense matrix arith-
metic that has already been optimized in the GPU environ-
ment [15].

Besides the parallelization on GPU, we minimize the data
transfer cost between GPU and CPU that is one potential per-
formance hazard of the hybrid implementation. To minimize
the memory transfer, we keep the intermediate matrices, e.g.,
Vm and Hm, on GPU, and consecutively execute Arnoldi
process and matrix exponential computation. Thus, we only
transfer the solution vector of the next time step back to CPU.
For linear circuits, we transfer G and L and U decomposed
from C at the beginning of MEXP since those linear elements
remain the same during simulation. For nonlinear circuits, even
though C of every time step changes, we do not have to
transfer matrices for every Newton’s iteration. This is because
we decouple the linear and nonlinear terms, and thus, at each
time step, only one data transmission for C is required. The
execution flow of Algorithm 1 between CPU and GPU are
shown in Figure 1.

We would like to mention that the backward and forward
substitutions for L and U are also parallelized on GPU [15].
For large-scale circuit that cannot be decomposed, we adopt
iterative approaches that are also based on matrix-vector
product, and then solve C on GPU in parallel.

411

Fig. 1. Execution flow between CPU and GPU.

VI. NUMERICAL RESULTS

The experiments are performed on a Linux machine with
an Intel i7 2.67GHz processor and 4GB memory. The parallel
operations are implemented on a NVIDIA C1060 device with
Tesla T10 architecture and maximum 77.6 GFLOPs for double
precision. The MEXP method is prototyped in MATLAB, and
the parallel restarting Krylov subspace method and matrix
exponential computation are implemented in CUDA. The LU
decomposition is performed by KLU package [7].

A. A Case Study of Scaling Effect
We analyze the scaling effect with the following simple

model problem mainly for the ease of reproduction. One can
also use a RC ladder and obtain similar observations. Let A be
a 100 × 100 diagonal matrix with the diagonal elements range
logarithmically in −

[

10−2, 102
]

, i.e. −logspace(−2, 2, 100),
and x0 = [1, 1, ..., 1]

T
/
√

100. We run 100 steps in the form
of (12), and record for each step the eigencomponents of the
solution vector (y) and r in (15). Adaptive step is applied
based on the posterior error estimate (constant local tolerance
is used tol = 10−6). The number of interpolation points
m = 10. Fig. 2 shows the eigencomponents for 6 selected
eigenvalues with different magnitudes.

In the upper subfigure of Fig. 2, the eigencomponents for
fast mode (negative eigenvalues with large magnitude) gen-
erally attenuate rapidly, while the eigencomponents for slow
mode (the two smallest eigenvalues) stay nearly constant. The
relatively slow and oscillating drop of the eigencomponent of
−100 is due to the oscillation of the maximal Ritz value [11],
which induces large interpolation error and weaker attenuation
when the two values are out of phase. In the lower subfigure
of Fig. 2, the eigencomponents of large eigenvalues in the
error vector are heavily attenuated, while the contribution from
small eigenvalues remains at the same order, indicating that
the error in later stage is largely determined by the small
eigenvalues. The attenuation of some components in the error
vector reduces the norm of error and thus allows the usage of
gradually increasing h in later steps under the same tolerance,
which is shown in Fig. 3.

In Fig. 3, when m is set as 10, the sum of h over 100 steps
is 68.42, and the ratio of the initial h to the largest allowable h
is 22.55. When we increase m to 15, the increased m reduces
the interpolation error and thus allows a larger step size in
each step. The sum of h for m = 15 achieves 196.52, which

0 10 20 30 40 50 60 70 80 90 100
10−40

10−30

10−20

10−10

100
Eigencomponents of xold

−100
−43.2876
−6.7342
−0.16298
−0.025354
−0.01

0 10 20 30 40 50 60 70 80 90 100
10−40

10−30

10−20

10−10

100
Eigencomponents of real error vector

−100
−43.2876
−6.7342
−0.16298
−0.025354
−0.01

Fig. 2. Eigencomponent vs. # of steps (m = 10, fixed tol = 10−6)

0 10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101
Max permissible h vs. steps

m = 10
m = 15

Fig. 3. Max permissible h vs. steps for m = 10 and m = 15 (fixed
tol = 10−6)

is nearly triple of that for m = 10, with just a half increase of
computational cost, while the ratio of the initial and the largest
allowable h is still 22.55. Therefore, it is beneficial to use a
larger m in large, stiff, problems, realized by the restarting of
Krylov subspace method.

B. Performance of Restarted MEXP
Table I details the functionality, size, type (L for linear and

NL for nonlinear), stiffness of cicuits and also the number
of nodes without grounded capacitance for each benchmark
circuit. We represent the stiffness of a circuit with the largest
generalized eigenvalue of the matrix pencils (G, C). Highly
stiff circuits have a value ranged from 1016 ∼ 1020. Table II
records the result of regularization [5] for the cases (D2,
D3, and D6). From the table, we can see that the number
of nonzeros of C + G before and after the regularization

412

process is not affected signifiantly and even decreased because
some elements are eliminated. Furthermore, the regularization
process still maintains a reasonable condition number of Cr

for inverse and spends acceptable runtime for each cases.

TABLE I
SPECIFICATIONS OF BENCHMARK CIRCUITS

Design Category Type Nodes Nodes
w/o Cap. Stiffness

D1 power grid L 2.5K 0 3.9 × 1017

D2 trans. line L 5.6K 431 1.6 × 1019

D3 ALU NL 10K 373 8.7 × 1018

D4 IO NL 630K 0 1.6 × 1020

D5 power grid L 800K 0 2.6 × 1014

D6 power grid L 1.6M 0.6M 1.6 × 1017

D7 power grid L 12M 0 2.6 × 1014

TABLE II
RESULT OF REGULARIZATION

Design cond(Cr) nnz(C + G) nnz(Cr + Gr) runtime
D2 1.1 × 107 0.9M 0.9M 5.9s
D3 4.4 × 105 44K 43K 1.2s
D6 1.4 × 106 5.4M 4.8M 191.2s

Table III shows the performance gained from the scal-
ing effect. We compare the performance of ordinary MEXP
with adaptive step size (MEXP) and restarted MEXP with
both restarting and adaptive control (RMEXP) as outlined
in Algorithm 1, where the number of restarting is 5. In
addition, we implement the trapezoidal method (TRAP) with
adaptive step control as the baseline performance of the circuit
simulation. All three methods adopt the same adaptive scheme
in Algorithm 1, and the total error budget TOL is 10−4 for
all cases. The total simulation time and the initial step size for
each case are denoted in columns tf and “init. h”, respectively.

For MEXP and TRAP, TRAP outperforms MEXP only
in small case D1 because a linear system can be solved
efficiently in such scale. As the size of circuit becomes large,
TRAP is slowed down by solving a large linear system while
MEXP benefits from the scaling effect and the sparse matrix-
vector multiplication. For stiff cases D2, D3 and D4, MEXP
achieves a 2.06× speedup over TRAP by the scaling effect
on average. For moderately stiff cases (D5 and D7), since
MEXP can use much larger step size than that in stiff cases,
MEXP outperforms TRAP by over 100 times. MEXP also
demonstrates the scalability in the cases with millions of nodes
(D6 and D7), while TRAP encounters the scalability issues in
runtime and memory. Notice that although both MEXP and
TRAP have to perform Newton’s method for nonlinear circuits,
the Jacobian in our formulation has much fewer non-zeros
than that in the traditional implicit methods. For example, in
D4, solving the Jacobian in MEXP takes only 0.73 seconds
whereas TRAP requires 6.86 seconds due to those extra non-
zeros.

Our restarting scheme can further improve the scaling effect
in RMEXP. For linear cases with high stiffness (D1, D2
and D6), RMEXP improves the performance over MEXP

by up to 4.1×. For the nonlinear cases (D3 and D4), our
nonlinear formulation in RMEXP still takes advantage of the
scaling effect that improves the performance up to 4.8 times,
because the decoupling scheme minimizes the calculation of
the matrix exponential during Newton’s iterations. Overall,
RMEXP achieves 3.6× speedup over MEXP on average, and
achieves an average of 8.25× speedup over TRAP on stiff
cases D2, D3 and D4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (ns)

V
o
l
t
a
g
e

RMEXP
TRAP
HSPICE

Fig. 4. Results of D5 by RMEXP and HSPICE

Fig. 4 shows the waveforms by TRAP and RMEXP as well
as the golden reference waveform by HSPICE for testcase
D5. The errors to the golden reference for both waveforms
of TRAP and RMEXP are 5.78 × 10−4 and 2.02 × 10−4,
respectively.

Fig. 5 shows the speedup of the parallel Krylov subspace
method (Krylov-GPU) and computation of eHm (exp(Hm))
over the serial version. For small matrices, Krylov-GPU and
exp(Hm) accelerate little in the throughput-oriented GPU.
For example, Krylov-GPU and exp(Hm) gain 0.9× and 0.5×
speedup for the matrix size of 10K and 20. As the matrix
size goes up, the massive parallelism of GPU surpasses faster
floating point operations of CPU. Then, both operations can
achieve 12× and 10× speedup for the size of 10M and
2000. Overall, with integrating both parallel operations into
Algorithm 1, the performance of parallel restarted MEXP
(RMEXP-GPU) (also shown in Table III) presents an average

Fig. 5. Speedup of core operations by GPU

413

TABLE III
PERFORMANCE COMPARISON (SAME ADAPTIVE STEP SCHEME WITH TOL = 10−4 FOR ALL METHODS AND CIRCUITS)

Design tf init. h m TRAP # steps MEXP # steps RMEXP # steps RMEXP-GPU comm.
D1 1ns 1ps 30 67.85s 151 475.46s 2,595 199.10s 143 348.55s 0.8ms
D2 100ps 0.1ps 30 3,085.91s 390 2,113.51s 165 891.03s 56 982.14s 41.1ms
D3 100ps 0.1ps 30 8,053.45s 451 2,502.30s 285 572.54s 43 535.93s 53.7ms
D4 10ps 0.01ps 20 10,071.40s 357 6,646.38s 333 1,384.35s 92 194.11s 396.0ms
D5 1ns 1ps 20 16,431.12s 483 159.73s 249 83.20s 47 7.20s 121.5ms
D6 10ps 0.01ps 30 >1 day n/a 12,626.88s 133 3,114.84s 34 239.46s 189.8ms
D7 1ns 1ps 20 fails n/a 12,498.83s 223 7,821.65s 74 629.56s 1478.6ms

of 11× speedup for large-scale cases, compared with the serial
RMEXP.

Take the largest case D7 as an example. TRAP fails the sim-
ulation due to insufficient memory while MEXP and RMEXP
require about 3.5 and 2.2 hours, respectively. RMEXP-GPU
shows the simulation takes only 10 minutes using GPU. The
speedup by GPU over MEXP and RMEXP are 19.9× and
12.4×, respectively.

Note that the communication overhead between CPU and
GPU is negligible since we minimize the data transmission
in the hybrid CPU-GPU architecture. Although, for nonlinear
circuits, the change of C and G by nonlinear devices at every
time step increases the communication between CPU and
GPU, such overhead is still negligible. The column “comm.” in
Table III shows the time of transferring L, U and G once from
CPU to GPU. We can see that even the largest case D7 requires
only about 1.5 seconds. This is because the sparsity of the
matrices in the circuit simulation application greatly reduces
the transferred data, and also KLU [7] maintains acceptable
sparsity in both L and U matrices.

VII. CONCLUSION

In this paper, we propose a parallel and restarted matrix
exponential to utilize the scaling effect, which can overcome
the stiffness of circuitry. The scaling effect enables the use
of gradually larger step size as time frame marches forward.
Moreover, our method has better scalability and paralleliz-
ability, which are the major limitations of existing implicit
methods. The experimental results show that MEXP has a
speedup over the trapezoidal method in orders of magnitude
for cases with millions of nodes. For stiff circuits, our restarted
MEXP improves the performance of MEXP by up to 4.8
times, and the performance can be further accelerated by
up to another 11 times by GPU parallelization. For cases
with millions of nodes, our method is able to simulate with
acceptable runtime and memory usage while the trapezoidal
method breaks down. The superior scalability and paralleliz-
ability of the proposed method enable a substantial expansion
of computational capability for modern extremely large circuit
simulation problems.

VIII. ACKNOWLEDGMENTS

The authors would like to acknowledge the support of NSF
CCF-1017864, Hong Kong General Research Fund (GRF)
project 718711E and Hong Kong University Grant Council
(AoE/P-04/08).

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Guttel. Implementation
of a restarted Krylov subspace method for the evaluation of matrix
functions. Linear Algebra and its Applications, 429(10):2293 – 2314,
2008.

[2] A. H. Al-Mohy and N. J. Higham. Computing the action of the
matrix exponential, with an application to exponential integrators. SIAM
Journal on Scientific Computing, 33(2):488–511, 2011.

[3] M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector
multiplication on gpus. IBM research report RC24704, IBM, 2009.

[4] N. Bell and M. Garland. Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In SC, page 18. ACM, 2009.

[5] Q. Chen, S.-H. Weng, and C.-K. Cheng. A practical regularization
technique for modified nodal analysis in large-scale time-domain circuit
simulation. IEEE Trans. on Computer-Aided Design, 31(7):1031–1040,
2012.

[6] L. O. Chua and P.-M. Lin. Computer Aided Analysis of Electric Circuits:
Algorithms and Computational Techniques. Prentice-Hall, 1975.

[7] T. A. Davis. Direct Method for Sparse Linear Systems. SIAM, 2006.
[8] A. Devgan and R. A. Rohrer. Event driven adaptively controlled explicit

simulation of integrated circuits. In ICCAD, pages 136–140, 1993.
[9] W. Dong and P. Li. Parallelizable stable explicit numerical integration

for efficient circuit simulation. In DAC, 2009.
[10] M. Eiermann and O. G. Ernst. A restarted Krylov subspace method for

the evaluation of matrix functions. SIAM J. NUMER. ANAL, 44:2481–
2504, 2006.

[11] M. Eiermann, O. G. Ernst, and S. Guttel. Deflated restarting for matrix
functions. SIAM J. MATRIX ANAL. APPL., 32(2):621–641, 2011.

[12] N. Higham. The scaling and squaring method for the matrix expo-
nential revisited. SIAM Journal on Matrix Analysis and Applications,
26(4):1179–1196, 2005.

[13] M. Hochbruck and C. Lubich. On Krylov subspace approximations to
the matrix exponential operator. SIAM Journal on Numerical Analysis,
34(5):1911–1925, 1997.

[14] P. Li. Parallel circuit simulation: A historical perspective and recent
developments. Foundations and Trends in Electronic Design Automation,
5(4):211–318, 2001.

[15] R. Nath, S. Tomov, and J. Dongarra. Accelerating gpu kernels for
dense linear algebra. High Performance Computing for Computational
Science–VECPAR 2010, pages 83–92, 2011.

[16] Q. Nie, Y. Zhang, and R. Zhao. Efficient semi-implicit schemes for stiff
systems. Journal of Computational Physics, 214(2):521–537, 2006.

[17] J. Niesen and W. M. Wright. A Krylov subspace algorithm for evaluating
the ϕ-functions appearing in exponential integrators. ACM Trans. Math.
Software. in press.

[18] Y. Saad. Analysis of some Krylov subspace approximations to the matrix
exponential operator. SIAM Journal on Numerical Analysis, 1992.

[19] S.-H. Weng, Q. Chen, and C.-K. Cheng. Circuit simulation using matrix
exponential method. In ASICON, pages 369–372. IEEE, 2011.

[20] S.-H. Weng, Q. Chen, and C.-K. Cheng. Time-domain analysis of large-
scale circuits by matrix exponential method with adaptive control. to be
appeared in IEEE Trans. on CAD, 2011.

[21] X. Ye, W. Dong, P. Li, and S. Nassif. Maps: Multi-algorithm parallel
circuit simulation. In ICCAD, pages 73–78, 2008.

414

