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ABSTRACT 

Optical imaging based on time-stretch process has recently been proven as a powerful tool for delivering ultra-high 

frame rate (> 1MHz) which is not achievable by the conventional image sensors. Together with the capability of optical 

image amplification for overcoming the trade-off between detection sensitivity and speed, this new imaging modality is 

particularly valuable in high-throughput biomedical diagnostic practice, e.g. imaging flow cytometry. The ultra-high 

frame rate in time-stretch imaging is attained by two key enabling elements: dispersive fiber providing the time-stretch 

process via group-velocity-dispersion (GVD), and electronic digitizer. It is well-known that many biophotonic 

applications favor the spectral window of ~1m. However, reasonably high GVD (> 0.1 ns/nm) in this range can only be 

achieved by using specialty single-mode fiber (SMF) at 1m. Moreover, the ultrafast detection has to rely on the state-

of-the-art digitizer with significantly wide-bandwidth and high sampling rate (e.g. >10 GHz, >40 GS/s). These stringent 

requirements imply the prohibitively high-cost of the system and hinder its practical use in biomedical diagnostics. We 

here demonstrate two cost-effective approaches for realizing time-stretch confocal microscopy at 1m: (i) using the 

standard telecommunication SMF (e.g. SMF28) to act as a few-mode fiber (FMF) at 1m for the time-stretch process, 

and (ii) implementing the pixel super-resolution (SR) algorithm to restore the high-resolution (HR) image when using a 

lower-bandwidth digitizer. By using a FMF (with a GVD of ~ 0.15ns/nm) and a modified pixel-SR algorithm, we can 

achieve time-stretch confocal microscopy at 1m with cellular resolution (~ 3m) at a frame rate 1 MHz. 

 

1. INTRODUCTION 
In practical biomedical diagnostics, high-speed and high-throughput cellular imaging is recognized to be a crucial yet 

challenging task. Such predicament stems from the fact that high speed imaging is compromised by the processing speed 

as well as the detection sensitivity of the conventional image sensors, namely charge-coupled device (CCD) and 

complementary metal-oxide semiconductors (CMOS) [1]. To this end, serial time-encoded amplified microscopy 

(STEAM), or generally called optical time-stretch confocal microscopy, has recently been demonstrated as a new 

imaging modality. STEAM can provide the solution to the aforesaid technological challenge with an ultra-high frame 

rate (> MHz) (by the use of the optical time-stretch technique) and high sensitivity (by the optical amplification) [1-6]. 

So far, most of the prior works on the time-stretch imaging operated in the telecommunication band (~1550nm), which is 

not favorable for many biophotonic applications. In contrast, employing time-stretch imaging in the shorter near infrared 

(NIR) wavelength regime (~ 1m), which is the well-known spectral window for biomedical applications, has not been 

well explored. In this regard, our group, has recently demonstrated this optical time-stretch confocal microscopy at 1m 

for cellular imaging [7] – an invaluable tool for high-throughput biomedical applications, such as imaging flow 

cytometry [1,6]. 

 

There are two key enabling components in time-stretch imaging – the low-loss dispersive fiber at 1m and the high-

speed electronic digitizer. For the dispersive fiber, it is used for mapping the spatial information of the optical signal to 

the time-domain by GVD, named as the time-stretch process. Unlike the telecommunication band (~1550nm) in which a 

wide variety of low-loss and dispersive fibers are available e.g. SMF28, dispersion compensation fibers (DCFs), 

achieving high GVD with low loss in the shorter NIR range can only be made possible by the high-cost specialty fibers. 

[7]. On the other hand, in order to accommodate the ultrafast time-stretch imaging frame rate (at >MHz), it inevitably 

requires the state-of-the-art electronic digitizer with an ultra-high-bandwidth (>10 GHz) and sampling rate (>40 GS/s). It 

might hinder the widespread utility of time-stretch imaging in biomedical diagnostics, especially in the resource-limited 
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environments. Therefore, it would render time-stretch imaging a more appealing high-throughput diagnostic platform if 

one could identify the cost-effective alternatives of the specialty 1m specialty SMFs as well as the high-speed digitizer, 

without significantly compromising the imaging quality. In this regard, we here propose and demonstrate two practical 

ways for implementing a more cost-effective optical time-stretch microscopy at 1m – (i) using standard 

telecommunication-band SMF to act as the FMF in the 1m wavelength window for the time-stretch process, and (ii) 

using a pixel-SR algorithm to restore a HR image from multiple low-resolution (LR) images captured by a digitizer with 

a lower bandwidth. 

 

2. WORKING PRINCIPLES 
2.1. Optical time-stretch confocal microscopy 

Optical time-stretch microscopy consists of two main parts. The first part is spectral-encoding [8] – the spatial 

information of the sample is spectrally encoded in the wavelength spectrum. The second part is optical time-stretch, also 

coined as dispersive Fourier transform [9] – the spectrally-encoded signal is time-stretched by a dispersive fiber such 

that the spectral information is mapped into time signal via GVD. After these two processes, the spatial information of 

the samples is mapped into time domain signal. It thus facilitates ultrafast real-time optical imaging by using a high-

speed electronic digitizer, instead of the conventional camera, i.e. CCD or CMOS, and achieves an ultrafast line-scan 

rate > MHz [1-7,10], which is fundamentally not achievable with the conventional imaging modalities. 

 

2.2. Optical time-stretch with FMFs 

The main concern in optical time-stretch is to prevent ambiguity in the wavelength-to-time mapping. Therefore, multi-

mode fibers should generally be avoided in the time-stretch process because the coexistence of modal dispersion and 

GVD leads to this ambiguity. FMF, however, has been proven to be effective for low-loss and long-distance data 

transmission in fiber-optic communication with negligible modal coupling [11,12] – a feature particularly favorable for 

realizing high-dispersion, and thus high-resolution time-stretch microscopy [13]. Therefore, it is possible that by exciting 

a specific FMF mode, such as the fundamental mode (LP01) or the higher-order mode (LP11), sufficiently large GVD for 

time-stretch microscopy with cellular resolution can be attained. 

 

2.3. Pixel super-resolution algorithm 

Pixel-SR algorithm becomes crucial when the imaging resolution is limited by the camera or the image sensor [14], i.e. 

when the camera under-samples the image. Hence, such algorithm is particularly well-suited for optical time-stretch 

microscopy when a high-bandwidth digitizer is not available. In this case, a low-bandwidth digitizer undersamples the 

time-stretch image signal, resulting in an LR image. Therefore, applying a pixel-SR algorithm on the LR time-stretch 

images can reconstruct the HR time-stretch images. Pixel-SR algorithm relies on capturing multiple LR images, each of 

which differs by a sub-pixel shift. The multiples different LR images can provide different information and hence, make 

HR image reconstruction possible. After acquiring the under-sampled images, three main digital processing steps are 

required, namely registration, interpolation and restoration [14]. Registration is to map the LR images to a HR pixel 

grid. Interpolation is to re-distribute the pixels in the HR pixel grid. Restoration refers to the deconvolution and 

denoising processes which retrieve the final HR images.  

 

3. EXPERIMENTAL SETUP 
The experimental setup of optical time-stretch microscopy is shown in Fig. 1. The supercontinuum (SC) laser source is 

first dispersed by a grating (1200 lines/mm). This creates a one-dimensional (1D) spectral shower. Then, the spectral 

shower is focused by the objective lens (NA = 0.66 or 0.4) and is illuminated on the sample. As a result, the spatial 

information of the sample is spectrally encoded in the SC spectrum. The time-stretch microscope operates in the 

transmission mode, which is in contrast to our previous report [7]. The spectrally encoded signal is then mapped to the 

time domain signal by GVD of the dispersive fiber. A photo-detector and a real-time oscilloscope (16 GHz, 80 GS/s) are 

used for acquiring the time signal. By scanning the sample in the orthogonal direction with respect to the spectral shower, 

a two-dimensional (2D) image can be acquired [2,4-7]. We emphasize that this 1D line-scan mode can readily be applied 

in high-speed flow cell imaging (at a MHz line-scan rate), in which the unidirectional cell flow automatically facilitates 

all the 1D line-scans of individual cells without beam scanning of the spectral shower [4,6,15]. This time-stretch 
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microscope is essentially a confocal microscope as the core of the SMF acts like a pin-hole for rejecting the out-of-focus 

light [5]. 

 

For implementing practical optical time-stretch confocal microscopy at 1m, a standard SMF, which is commonly used 

in the telecommunication band (SMF28 or DCF), are employed as an FMF in 1m, were directly spliced with a short 

1m SMF for exciting the LP01 mode. For exciting the LP11 mode, we introduced a small offset < 4 m (shown on the 

right inset of Fig. (1)). By using the time-stretch technique, the GVD values of the LP01 modes in SMF28 and DCF are 

~0.15 ns/nm and ~0.17 ns/nm respectively, while the 1m specialty SMF has a GVD of ~0.15 ns/nm. On the other hand, 

for acquiring multiple LR time-stretch images, it is required to translate the sample along the spectral shower direction 

(i.e. along x-axis). In particular, we used 4 to 5 sub-pixel shifted LR images for reconstructing a HR image (details will 

be explained in the results section). The corresponding pixel-shift trajectory (for 5 sub-pixel shifts) is shown on the left 

inset of Fig. 1. 

 

 

Fig. 1. Schematic of optical time-stretch confocal microscope. Two key parts for implementing cost-effective optical time-

stretch confocal microscopy are shown on the left (sub-pixel shift for the pixel-SR algorithm) and right (employing a FMF 

for the optical time-stretch process. Note that higher-order FMF modes can also be excited, by introducing lateral offset at 

the fiber fusion facets between the SMF and the FMF). 

 

4. RESULTS 
4.1. FMF-based optical time-stretch confocal microscopy 

We first performed time-stretch imaging of the smallest features of a resolution target (group 7 of USAF-1951) in order 

to evaluate the performance of the selected dispersive fibers (SMF28, DCF and 1m specialty SMF). For comparison, 

we also captured the spectral encoded image by a conventional spectrometer (Fig. 2(a)). The captured time-stretch 

images using different fibers, including 1m specialty SMF, the LP01 mode of SMF28, the LP01 mode of DCF, and the 

LP11 mode of SMF28 are shown in Fig. 2. These time-stretch confocal images are captured by scanning the sample in y-
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direction for 200 lines with 0.5m step size and ultrafast line-scan rate (10MHz). The field-of-view (FOV) is as large as 

~0.44 mm  0.1 mm. The captured time-stretch images based on the LP01 modes in the SMF28 and DCF (Figs. 2(c)-(d)) 

show the similar image quality compared with that using 1m specialty SMF (Fig. 2(b)) and resolve well the smallest 

line feature (a line-width of 2m in Group 7).  

 

(a)  

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 2. Comparison of spectral encoded image with time-stretch confocal images based on different FMF modes as well as 

the 1m specialty SMF. (a) spectrally encoded image captured by conventional spectrometer. (b)-(e) time-stretch confocal 

images of USAF-1951 by 1m specialty SMF (b), LP01 of SMF28 (c), LP01 of DCF (d) and LP11 of SMF28 (e). Note that 

the scale bars represent 50 m in (b)-(d), and 100m in (e). 

 

Time-stretch imaging based on the LP01 modes in SMF28 and DCF achieves the resolution of ~2m, which is primarily 

digitizer-limited [7,13]. This resolution is high enough for cellular imaging based on time-stretch microscopy (See Fig. 

4). The highest resolution, i.e. the spatial-dispersion-limited resolution, can be attained if the dispersion is further 

enhanced > 180 ps/nm. This can be achieved by using a longer fiber together with the optical amplification to 

compensate the inherent dispersive loss. Indeed, a GVD as high as > 10ns/nm has been demonstrated in time-stretch 

spectroscopy [16]. It should be emphasized that all the time-stretch images were captured here at an ultrafast spectral 

acquisition rate (i.e. line-scan rate) of 10 MHz, determined by the repetition rate of the SC source. This is orders-of-

magnitude faster than that achievable in the conventional spectrometers (5 Hz). In addition, each single-shot line scan 

(along the x-direction) of the time-stretch image is obtained only within few ns (i.e. a duty cycle of ~4% given a scan rate 

of 10MHz), determined by the GVD and the illumination bandwidth. Such duty cycle is already sufficient for achieving 

high-resolution time-stretch imaging. Interestingly, despite of having the limited dispersion, time-stretch imaging based 

on the LP11 mode in SMF28 (Fig. 2(e)) is also possible with a limited resolving power, i.e. being able to resolve a 
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minimum line-width of 15m (Group 6 of the resolution target). The image also shows a ghosting effect. It indicates that 

the presence of ambiguous wavelength-time mapping during the time-stretch process. We attribute two possible 

mechanisms resulting in such mapping ambiguity: (1) mode coupling and (2) polarization mode dispersion (PMD) of the 

degenerate LP11 modes due to perturbation along the FMF [17]. 

 

The above results thus clearly show the feasibility of selectively exciting and utilizing the LP01 mode in the FMF for 

efficient time-stretch confocal microscopy. Moreover, the fact that the higher-order FMF modes can also be employed 

for time-stretch imaging offers an additional degree of freedom for realizing time-stretch imaging. Albeit the 

complication introduced by the modal coupling, we anticipate that careful modal dispersion and GVD engineering of 

FMFs [17] can open up a wide variety of opportunities for optimizing the time-stretch imaging performance based on 

either the LP01 mode or the higher-order modes in FMFs. 

 

4.2. Optical time-stretch confocal microscopy with pixel-SR algorithm 

For evaluating the performance of pixel-SR algorithm with time-stretch imaging, we lowered the bandwidth and the 

sampling rate of the digitizer down to 8 GHz and 20 GS/s, respectively. This emulates the scenario in which the final 

image resolution is limited by the digital resolution (imposed by the sampling rate of the digitizer), instead of the optical 

resolution (i.e. diffraction-limited resolution). We verified it by the theoretically estimated optical resolution and digital 

resolution of time-stretch microscopy, i.e. ~1.5 m and ~2.3 m (with GVD of 0.15 ns/nm), respectively. In this case, 

the captured image is an LR image, which is under-sampled (Fig. 3(a)). We acquired 4 sub-pixel shifted LR images at 2 

MHz line-scan rate (150 line-scans in total). Note that the sub-pixel shift is only performed in the x-direction.  

 
(a) 

 

(b) 

 

(c) 

 

Fig. 3. Time-stretch confocal images (NA = 0.66) of a resolution target (USAF-1951) captured based on different 

conditions: (a) an LR image captured by a lower-bandwidth digitizer (8 GHz bandwidth and 20 GS/s sampling rate), (b) an 

HR image reconstructed by 4 sub-pixel shifted LR images, and (c) an time-stretch image captured by a higher-bandwidth 

digitizer (16 GHz bandwidth and 80 GS/s sampling rate). The insets on the right are the close-up views of the enclosed areas. 
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The LR multiple images are then undergo registration, interpolation and restoration. In particular, we have adapted 

spline interpolation method and blind deconvolution for deconvolution. After these digital image processing steps, a HR 

time-stretch image is resulted (Fig. 3(b)).  For comparison, we have captured a time-stretch image with a higher 

bandwidth (16 GHz) and higher sampling rate (80 GS/s) at a line-scan rate of 10 MHz (Fig. 3(c)). Comparing the LR 

image and HR image, we observe that the HR image obviously shows sharping edges and is able to resolve the fine 

features that are originally not resolvable in the LR image. With a reasonable compromise in speed (a reduced line-scan 

rate by a factor of 4 because of the 4 sub-pixel shifts), the HR image using a digitizer with 8-GHz bandwidth shows a 

comparable image quality with the image captured by high-bandwidth digitizer (16 GHz). To apply this algorithm in 

flow cell imaging applications, we recently proposed a technique based on the use of high-speed acousto-optic device 

(AOD) to provide ultrafast sub-pixel shift and thus to achieve high-resolution time-stretch microscopy without 

sacrificing the imaging speed significantly [18]. 

 

4.3. FMF-based optical time-stretch confocal microscopy with pixel-SR algorithm 

We also demonstrate the feasibility of applying FMF as the dispersive element and pixel-SR algorithm in cellular 

imaging using time-stretch microscopy at 1m. Here, we chose the LP01 mode of the SMF28 as the FMF mode in the 

time-stretch process. Using a lower-bandwidth digitizer (8 GHz), we estimated the optical resolution and digital 

resolution are ~2.5 m and ~4.2m, respectively. Again, the image resolution is digitizer-limited. We acquired 5 sub-

pixel shifted LR images at 5MHz line-scan rate (Fig. 4(a)) for HR image reconstruction. Using the same algorithm 

employed in the previous section, we reconstructed a HR image of the nasopharyngeal epithelial cells (Fig. 4(b)). We 

also captured a time-stretch image using the digitizer with higher bandwidth (16 GHz) and sampling rate (80 GS/s) and 

1m specialty SMF at the same line-scan rate for comparison (Fig. 4(c)). The image essentially shows a similar image 

quality with the one using a lower-bandwidth digitizer and a standard telecommunication fiber as FMF. It proves that 

such cost-effective implementations (i.e. without the needs for high-cost specialty dispersive fiber at 1m, and the state-

of-the-art electronic digitizer) are feasibility to offer reasonable image quality in high-speed time-stretch microscopy. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 4. Time-stretch confocal images (NA = 0.4) of nasopharyngeal epithelial cells captured based on different conditions: 

(a) LR image captured by a lower-bandwidth digitizer (8 GHz bandwidth and 20 GS/s sampling rate) and LP01 mode of the 

SMF28, (b) HR image reconstructed by 5 sub-pixel shifted LR images, and (c) an image captured by a higher-bandwidth 

digitizer (16 GHz bandwidth and 80 GS/s sampling rate) and 1m specialty SMF. 
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5. CONCLUSIONS 
To conclude, we have proposed and experimentally demonstrated two cost-effective approaches for realizing high-speed 

and high-resolution time-stretch imaging at 1m. By using the standard telecommunication SMF as FMF, and 

implementing the pixel-SR algorithm for relaxing the stringent requirement on the considerably high-speed digitizer, we 

can achieve practical time-stretch confocal microscopy at 1m with cellular resolution (~3 m) at a scan rate of ~MHz. 

Without significantly compromising the imaging quality, the present techniques could facilitate widespread utility of 

time-stretch imaging in biomedical diagnostics, especially in the resource-limited environments. We expect further 

improvements in high-speed sub-pixel shift enabled by AOD as well as optimizing the pixel SR-algorithm (especially the 

restoration steps) would yield enhanced time-stretch image quality. On the other hand, the use of FMF for optical time-

stretch also opens up a wide variety of opportunities of further optimizing the time-stretch imaging performance by e.g. 

modal dispersion engineering as well as the GVD engineering of the FMFs [17]. 
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