
Gavin Harper

Viability of Artificial Neural Networks in Mobile Health-
care

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38032235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Viability of Artificial Neural Networks in Mobile Health-
care

Gavin Harper
Bachelor’s Thesis
Spring 2011
Degree programme in
Business Information Technology
Oulu University of Applied Sciences

Abstract

Oulu University of Applied Sciences
Degree in Business Information Technology

Author(s): Gavin Harper
Title of Bachelor’s thesis: Viability of Artificial Neural Networks in Mobile Healthcare
Supervisor(s): Anu Niva
Term and year of completion: Spring 2011 Number of pages: 43 + 17 appendices

ABSTRACT:

This thesis describes the design process of an artificially intelligent algorithm capable
of differentiating between two discrete electrocardiogram readings (a signal depicting
the electrical activity of the heart at a given point in time). The paper culminates in
a reduced form implementation of one such algorithm utilising the neural computing
paradigm. Algorithms implemented under the neural computing paradigm mimic the as-
currently perceived operation of the brain cells known as neurons. By creating a network
of nodes (neurons) and altering the connections between them, an algorithm can display
rudimentary forms of what may be classified as intelligence by displaying an ability to
recognise patterns in data and adapt to better recall those patterns.

The theoretical section of this paper discusses first those concepts of electrocardiography
that directly relate to the research in this paper. The remainder of the theoretical section
is dedicated to neural computing. By reading this paper, a reader not previously familiar
with the subject should understand the various factions of the artificial intelligence com-
munity and both the operation and purpose of neural computing and what role it may
potentially play in future mobile healthcare developments.

Keywords:

Artificial Neural Networks, Electrocardiogram, ECG, Heart

3

Contents

1 Introduction 6

1.1 Research Methods . 7

1.2 Research Objective . 7

2 Electrocardiograms 9

2.1 Cardiac Anatomy . 9

2.2 Interpreting the Electrocardiogram . 10

3 Neural Networks 11

3.1 Biological Neural Networks . 12

3.2 Artificial Neural Networks . 13

3.3 Neural Network Infrastructure . 14

3.3.1 Generic Topology . 14

3.3.2 Weights, Bias and Directionality 16

3.4 Nonlinear Activation Functions . 19

3.5 Neural Network Operation . 20

3.6 Training and Validating a Neural Network 23

3.6.1 Backpropagation . 25

3.6.2 Simulated Annealing . 26

3.6.3 Genetic Algorithms . 28

4 Implementation 30

4.1 Formal Objective Parametrisation . 30

4.2 Input Data Preparation . 31

4.2.1 Sample A - Healthy . 31

4.2.2 Sample B - Unhealthy . 32

4.3 Neural Network Training . 33

5 Results 36

6 Conclusion 38

7 Discussion 40

8 Bibliography 41

A Constants and Notations 43

A.1 Constants . 43

4

A.2 Notations . 43

A.3 Number Systems . 44

B GIT Log 45

C Makefile 48

D Source Code 50

5

List of Figures

1 Idealised Representation of PQRST . 10

2 Generic Neural Network Topology Graph 15

3 Adjacency Matrix . 16

4 Inclusion of Weights, Bias and Directionality into the Network Topology 17

5 Weight Matrix . 18

6 Row Matrix for Input and Hidden Layers 18

7 Logistic Activation Function . 19

8 Logistic Activation Function Plot . 19

9 Hyperbolic Tangent Activation Function 20

10 Hyperbolic Tangent Activation Function Plot 20

11 Calculating the Output of a Neuron . 21

12 Neural Network Calculation Example Input Matrix 21

13 Example of Logistic Activation Function Output - Scaled and Unscaled . 22

14 Neural Network Calculation Example Graph 22

15 Root Mean Squared Error (RMSE) . 24

16 Derivative of the Logistic Activation Function 26

17 Step Function for Temperature Decrease in Simulated Annealing 28

18 Sample A - Healthy Visualisation . 31

19 Sample A - Extracted Points . 32

20 Sample B - Unhealthy Visualisation . 32

21 Sample B - Extracted Points . 33

22 Simulated Annealing Best Error Function 35

23 Simulated Annealing Global Error Function 35

6

1 Introduction

Mobile healthcare is a rapidly emerging subset of the healthcare industry focusing on

providing medical assistance to those who may be unable, or lack the desire to submit

to traditional healthcare methods carried out at one distinct geographical location such

as a hospital. The premise driving the mobile healthcare industry centres around the

notion that recent advances in technologies such as wireless communication and portable

computation provide a powerful platform for automated procurement, analysis and trans-

mission of patient data such as the activity of the heart at a given point in time. This

paper focuses primarily on developing automated, mobile means of intelligently analysing

the state of a patient’s heart. It is hoped that should the technology powering mobile

healthcare attain suitable accuracy and efficiency, such that wide scale deployment is

possible, these technologies may serve to the betterment of those unable to submit to

traditional medical treatment.

It is exciting to consider a device that may be worn by a patient in an unobtrusive,

discrete manner capable of intelligently analysing the electrical activity of the heart and

alerting at some early stage in the event of an anomaly or onset of arrhythmia. Such

early warning under traditional methods requires the patient to be located in a hospital.

However, if a device could conform to certain expectations such as extensive battery life,

low mass, accurate analysis and high efficiency, it is not unreasonable to suggest that

those at risk to a given heart condition can monitor their health over a long period of

time while attending to their daily life.

Utilising additional technologies such as the Global Positioning System (GPS) and 3G/High

Speed Downlink Packet Access (HSDPA) which may be trivially implemented in small

devices as evidenced by the current generation of mobile phone technology, provides ad-

ditional benefits. Accessing the internet by means of a cell phone tower allows a mobile

electrocardiogram device to communicate with a centralised server and push updates and

warnings in real-time so ensure that in the event of the onset of arrhythmia or another

undesirable state. This functionality may be coupled with the Global Positioning Sys-

tem to push location updates to the server in the event that medical assistance is required.

This research in this paper is conducted on behalf of Domuset Oy, one such company that

seeks to develop devices similar to those described above. This paper represents a small

subset of the research conducted into developing intelligent signal analysis algorithms

that may be deployed on low powered, portable devices. The research and problem set

7

has been adapted to adhere to requirements that dictate both the spacial restrictions and

the assumed knowledge of the reader. It is such that a reader with little to no background

in mathematics, signal analysis or electrocardiography may still follow the progression of

this paper as the writing style has been intentionally structured to introduce new con-

cepts in a logical and progressive manner.

1.1 Research Methods

Printed material has been employed as the preferential method of information gathering

for those sections relying on mathematical accuracy as there exists many highly respected

texts with a proven track record in the field of adaptive learning algorithms. Journals

have proven to be an invaluable source for obtaining a historical perspective on matters

such as the early history of artificial intelligence. For such topics of research that printed

material was not readily available in the time frame required, electronic sources such as

internet based material were employed. It is important to note that the preference of

printed material in no way represents the opinion that electronic material is sub par or

any less valuable to the research process. Instead it should be noted that a familiarity

with many of the printed sources pertaining to the field of artificial intelligence and adap-

tive learning algorithms was in existence prior to commencing this research project.

In addition to traditional methods of information gathering, regular meetings with the

commissioner in attendance have proven to be instrumental in directing the research

project. It is the case that many prior methods for analysing the datasets discussed

in this paper have been discussed and over a period of time, optimal solutions became

apparent. The informal nature of these meetings allowed a focus on the flow of ideas and

as such served to simultaneously educate about the subject of electrocardiograms and

the subsequent analysis methods and also to invigorate the need to continue researching

the topics discussed previously. While this paper prefers to focus on a quantitative

approach to data collection and analysis due to the highly nature of the research. It

would, however, be factually inaccurate to state that a qualitative approach had no place

during this research project. Simple encounters such as the meetings described were

highly useful.

1.2 Research Objective

The objective of this research is to develop a proof-of-concept algorithm capable of dif-

ferentiating between datasets consisting of distinct regions of electrocardiogram readings.

8

The resulting algorithm is to display characteristics that may be considered intelligent,

such as pattern recognition and adaptive behaviour. In addition, it is important that the

algorithm be designed in such a way that resources usage and complexity is minimised

allowing deployment in low-powered devices such as mobile telephones and dedicated

hardware.

The scope of this research extends to demonstrating the suitability and in some cases,

the necessity of adaptive learning algorithms for analysing and interpreting nontrivial

datasets such as those obtained from natural processes. This paper will present a subset

of the research into classifying electrocardiogram readings with adaptive learning algo-

rithms carried out for the larger. As such, the problem as it appears in this paper may

be considered to be in reduced form for brevity.

All code samples and algorithms will be presented utilising the C programming language.

C has been chosen due to the inherent portability of the language and the speed benefits

that arise from employing a compiled language. In addition, the scripts required to build

a working implementation of the algorithm will be provided in the form of a GNU Make

Makefile.

Due to the nature of the objective, the proceeding sections will first discuss the required

background knowledge in a logical, progressive and abstracted manner thus disambiguat-

ing the notion of adaptive learning software before formally introducing the objective in

a parametrised manner prior to implementation and analysis.

9

2 Electrocardiograms

The Electrocardiogram (ECG) is a tool employed for the task of analysing the electrical

activity of the heart. The electrocardiogram was invented by Dutch physiologist Willem

Einthoven in the early 20th century. An early prototype of what eventually lead to

the modern day electrocardiogram was based on a string galvanometer, a tool utilised

for amplifying electric signals over subterranean cables such as those running undersea

(MIT 2005, date of retrieval 03/05/2011). In 1901, a working model utilising a string

galvanometer was produced that was capable of measuring the electrical activity of the

heart. This working model eventually lead to a commercial model being introduced into

the market in 1903. (MIT 2005, date of retrieval 03/05/2011). Einthoven was awarded

a Nobel Prize for the conceptualisation and invention of the Electrocardiogram in 1924

(Cohen, date of retrieval 03/05/2011).

In modern times, typical Electrocardiogram readings are obtained by attaching 12 elec-

trodes onto a patient at strategic points. Cohen, (date of retrieval 03/05/2011) states

that 12 electrodes are attached as no single point is capable of providing a complete

reference of the current state of the heart. However, for the purposes of mobile health

care, it is excessive to attach 12 electrodes to a patient as this severely hampers mobility

and is beyond the expected capabilities of patients to attach correctly all 12 nodes. As a

result, in mobile solutions, far fewer electrodes are typically employed.

2.1 Cardiac Anatomy

The heart is the muscle responsible for circulating oxygen and nutrients contained within

blood to the various cells in the body. The heart is comprised of four chambers, two

atria (singular atrium) and two ventricles. Cohen (date of retrieval 03/05/2011) states

that “[t]he heart is really 2 ‘half hearts,’ the right heart and the left heart, which beat

simultaneously”. Each half contains exactly one atrium and one ventricle, located in the

upper, smaller and lower, larger chambers respectively.

To induce circulation, the heart employs a beating mechanism. The sinus node located in

the right atrium controls the beating of the heart by discharging at a given time, typically

60−100/minute. During discharge, an electrical impulse traverses the heart to reach the

atrioventricular node. Cohen (date of retrieval 03/05/2011) describes the atrioventricu-

lar node as “a relay point to further propagate the electrical impulse”. Upon such time

that the electrical impulse happens upon the ventricles, the ventricles contract and as a

result of this contraction, blood is carried away from the heart via arteries. (Cohen, date

10

of retrieval 03/05/2011)

2.2 Interpreting the Electrocardiogram

The electrocardiogram machine records visually the electrical activity of the heart as it

surfaces on the epidermis. Readings are typically taken at intervals of 4ms or 250/sec

are are visualised by means of the electrocardiogram trace. The electrocardiogram trace

displays, at any given point in the represented time period, the total strength of the elec-

trical activity of the heart for that point in time. (Ashley et al. 2004, date of retrieval

03/05/2011)

The Electrocardiogram readings contain five discrete points of interest, namely the P, Q,

R, S and T waves. The first point of interest is the P wave. The P wave is the result of

the sinus node depolarising. During this time the left and right atrium are in a state of

contraction. Following the P wave is the QRS Complex (an amalgamation of the Q, R

and S waves), representing the ventricular depolarisation (contraction). The final wave of

interest is the T wave, signifying ventricular repolarisation. Atrial repolarisation is typi-

cally engulfed as part of the QRS complex and is not visible on the electrocardiogram strip

under circumstances deemed normal. Figure 1 represents an idealised electrocardiogram

reading of a single depolarisation and repolarisation of the heart, with each constituent

wave emphasised. An additional point of interest is the U wave. This, however, serves

no purpose in this paper so a discussion of this wave is bypassed. The characteristics

of these five, PQRST points aid in diagnosing potential cardiac maladies. (Ashley et al.

2004, date of retrieval 03/05/2011)

Figure 1: Idealised Representation of PQRST

11

3 Neural Networks

“I propose to consider the question, ‘Can machines think?’ ” began Turing (1950) in his

seminal paper, Computing Machinery and Intelligence. In this paper, Turing proposed a

test called the “imitation game” (Turing 1950) though this has been since renamed the

Turing Test, that could determine the relative intelligence of a machine by prompting

the machine and analysing the responses. The Turing test is structured as follows: A

researcher communicates with a single machine and a single human, isolated from view

and communicating with written natural language. The researcher will interrogate both

participants and attempt to determine which participant is human and which is machine.

Assuming a machine could consistently dupe a researcher into believing the machine was

a human responding, Turing argued that this would be a display of intelligence.

Turing’s test for machine intelligence was challenged in 1980 by Berkeley professor John

Searl. In his paper, Minds, brains and, programs (1980), Searl asserted that if a ma-

chine may pass the Turing test and is able to provide serviceable responses that may be

interpreted as extruding intelligence, there is no guarantee that the same machine un-

derstands the responses it generates. To illustrate this, Searl proposed a further thought

experiment named The Chinese Room. In this thought experiment, Searl proposes that,

with no prior knowledge of written Chinese, nor spoken Chinese, he may be locked in a

room and fed sheets of paper containing Chinese symbols and English instructions for

manipulating those symbols. In the event that rules of sufficient quality and detail were

provided, Searl could generate responses that may be indistinguishable from a native

speaker of the Chinese language while not understanding the nature of what was com-

municated.

These conflicting thought experiments serve to fuel the debate as to what constitutes

true intelligence. Two distinct camps, each with ardent proponents, have arisen in the

artificial intelligence research community. The two camps are strong and weak artificial

intelligence. Strong artificial intelligence, first coined by Searl (1980) when discussing

the Chinese Room thought experiment, promotes the notion that any machine extruding

strong artificial intelligence may “literally ha[ve] cognitive states and that the programs

thereby explain human cognition”. Proponents of strong artificial intelligence envision a

machine that may be able to match or surpass human abilities in areas such as reason-

ing, planning and learn. Weak artificial intelligence, by contrast, does not aim to match

or surpass human intelligence, but rather to implement characteristics that demonstrate

intelligence in specific situations.

12

In addition to strong and weak artificial intelligence, two other factions exist within the

artificial intelligence community, that is those that practise symbolic artificial intelligence

and those that practise connectionist artificial intelligence. The former relates to at-

taining perceived intelligence by, as described by Tveter (1998, 12), “emphasiz[ing] list

processing and recursion”. Symbolic artificial intelligence is often referred to as top-down

artificial intelligence. An issue, as stated by Mitchell (1999, 4), with Symbolic or top-

down artificial intelligence is that “[e]arly on, AI practitioners believed that it would

be straightforward to encode the rules that would confer intelligence on a program”.

Mitchell (1999) continues that “[n]owadays, many AI researchers believe that the “rules”

underlying intelligence are too complex to encode by hand in a “top-down” fashion”.

This notion allowed the rise of connectionist, or bottom-up, artificial intelligence. In the

bottom-up paradigm, “humans write only very simple rules, and complex behaviors such

as intelligence emerge from the massively parallel application and interaction of these

simple rules”.

Artificial neural networks may be classified under the connectionist, bottom-up paradigm

and in this paper, will be portrayed as weak artificial intelligence. For the purposes of

the research contained within paper, it is sufficient that the intelligence quota of the

neural network implementation need not achieve sentience but rather achieve adeptness

in pattern recognition and function approximation.

3.1 Biological Neural Networks

The following description aims to provide the reader with an intuition of the underly-

ing neural processes that will serve as a model for the adaptive artificial neural network

systems described and implemented in the remainder of this paper. It is important to

note that it is unfeasible to model any of the biological processes discussed in this paper

in their entirety due to complexity and problem scope. Instead, desirable behaviourisms

will serve as a model from which to design an intelligent, adaptive system as opposed to

replicating directly the biological model.

The human brain consists largely of neurons. Neurons are described by Masters (1992,

2) as “a single cell capable of a sort of crude computation”. A neuron may receive input

from other neurons and in turn may produce an output that is sent to other neurons. In a

biological neural network, input refers to an electrical or chemical signal that, depending

on the input connection, may serve to excite or inhibit a neuron. A Neuron consists

of many component parts. Input is received over protoplasmic projections that branch,

13

similar to a tree, from the soma (cell body) named dendrites and is directed toward the

axon terminal from which the signal is transmitted via the synapses.

“[B]iological neural networks are analog” writes Heaton (2008, 41), “[b]ecause this signal

is analog, the voltage of each signal will vary. If the voltage is within a certain range,

the neuron will fire”. When a neuron fires, it transmits a signal to other neurons. The

decisions made by a neural network are based on whether a given neuron has fired or

remained inert.

3.2 Artificial Neural Networks

Artificial neural networks, hereinafter referred to as neural networks, were first pioneered

by Frank Rosenblatt in 1957 while working at the Cornell University Aeronautical Labo-

ratory. Rosenblatt proposed a single layer neural network dubbed the perceptron. “[The

perceptron] was computationally feasible on the hardware of that time, was based on

biological models, and was capable of learning”, writes Masters (1993, 4). The purpose

of the perceptron was to illustrate the potential for cognitive abilities to be attained by

means of nonlinear units massively interconnected (Schalkoff 1997, 27). The perceptron

had an intriguing quality. Rosenblatt presented an algorithm demonstrating what was

referred to as the “perceptron convergence theorem” (Masters, 1993, 4). The perceptron

convergence theorm demonstrated a training mechanism for the perceptron whereby upon

satisfying the condition that a given set of training weights were learnable, the algorithm

would converge to a series of weights that provide correct response to input data. The

perceptron suffered one fundamental flaw. In order for the perceptron to learn a pattern,

it had to be linearly separable. (Masters 1993, 4)

After an upsurge in neural network research, additional network architectures and topolo-

gies were borne. Important architectures include the Hopfield network, the multilayer

feedforward neural network and the self-organising map (SOM). One common trait among

all neural network architectures is the need to be trained before they may serve a purpose.

Training involves exposing a neural network to data that falls within a similar class as the

live, production data it is expected to operate upon. This serves as a distinction between

typical algorithms and computers. As Heaton (2008, 83) writes, “ordinary programs can

only automate repetitive tasks, such as balancing checkbooks or calculating the value of

an interest portfolio. While a program can easily maintain a large collection of images,

it cannot tell us what is illustrated in any of those images. Programs are inherently

unintelligent and uncreative”.

14

Neural networks, however, do not provide a ’silver bullet’ for every problem that may

be represented in software or hardware. While it is true that neural networks excel in

many areas, such as classifying data or predicting trends. Heaton (2008, 43) states that

the qualities of neural networks are most prominent when a given problem cannot be

expressed as a series of steps. Neural networks are most beneficial in situations requiring

the processing of unpredictable non linear data, the patterns are subtle and not trivially

distinguishable or the data may be non-absolute (such as consumer opinions) (Masters

1993, 7). In many situations, however, a neural network may serve to the detriment of

performance and accuracy. Such cases may include problems that tend to feature constant

data sets such as an unchanging business rule (Heaton 2008, 43) or the researcher requires

knowledge not just of the result but how the result was derived from the input data.

This last point is fundamental to the operation of neural networks. Neural networks are

trained to learn and identify a given input. A neural network cannot, however, provide

an intuition to the researcher what steps it took to produce a given output (Heaton 2008,

43). This paper is concerned with classifying digital signals. It is not imperative that the

reasoning be deduced providing the classification is accurate.

3.3 Neural Network Infrastructure

There exists many proven neural network topologies that differ from their counterpart

topologies in areas such as size, intention and topology. Common to all neural networks

are certain core components that define the neural computing modus operandi. This

section identifies and discusses these components, demonstrating the operation of neural

networks. Initially, the Perceptron is discussed as a foundation and gradually a generic

neural network topology is built as each required component is discussed and implemented

in place.

3.3.1 Generic Topology

As a result of the inherently connected nature of biological neurons, it becomes trivial

to represent these networks as a graph. Graphs are a powerful tool utilised in the field

of discrete mathematics for visually representing and modeling the relationships between

objects. A simple graph consists of vertices (singular vertex) and edges. A vertex rep-

resents a node in the network. An edge represents a relationship between two vertices.

For the purposes of this paper, neurons are represented by vertices and the relationships

(connections) between nodes are represented as edges.

15

i1 i2

h1 h2 h3

o1 o2

Figure 2: Generic Neural Network Topology Graph

Figure 2 shows a generic neural network structure consisting of three discrete layers. An

input layer, a hidden layer and an output layer. The neurons that comprise the input

layer (denoted in) perform no processing but instead serves to introduce input data to

the network. Masters (1993, 8) describes the input layer as “a semantic construct used

to represent the input sample”. The hidden layer acts on the data presented by the input

layer, allowing remapping of the input data. The term ‘hidden layer’ is somewhat of a

misnomer as these neurons exist and are of great importance in many neural network

topologies. The term ‘hidden’, refers to a ‘black box’ situation in which the operation of

the hidden layer may be abstracted from view. The output layer is the point at which the

overall mapping of the network input is available (Schalkoff 1997, 158). Heaton (2008,

146) advocates that in situations where the neural network is utilised for classification

(sorting inputs into discrete groups based on inherent characteristics or patterns), one

output neuron should be included for each potential classification group. However, in

such situations where a neural network is employed to perform tasks such as noise reduc-

tion, it is beneficial to correlate the number of output neurons with the number of input

neurons, that is on = in.

When transferring a neural network topology to the computational domain, one simple

method for representing a graph is by means of a matrix (plural matrices). Matrices

provide a fundamental tool in linear algebra whereby numerical values may be contained

16

in a rectangular array. The values contained within a matrix are referred to as elements

and may be referenced by their horizontal and vertical position within the matrix. It

is possible to perform many mathematical operations on matrices, many of these will

be discussed in subsequent sections of this paper as it becomes pragmatic to do so. A

matrix of order (dimensions) 7 × 7 is drawn below. Additional notations have been

included that demonstrate referential points. Figure 3 describes an adjacency matrix (a

matrix indicating 1 is a connection exists between two neurons, 0 if no connection exists)

for the network topology shown in figure 3. Note, Ψ symbol serving as an identifier for

the matrix is arbitrary.

Ψ =



0 0 1 1 1 0 0

0 0 1 1 1 0 0

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

0 0 1 1 1 0 0

0 0 1 1 1 0 0



Figure 3: Adjacency Matrix

3.3.2 Weights, Bias and Directionality

The topology discussed in this section has a topology not dissimilar to the generic topol-

ogy discussed in earlier sections, however, certain key characteristics will be introduced

and receive a formal definition. A neural network is deemed ‘feedforward’ if each neuron

may only communicate with a neuron or neurons in the next layer (ii may communicate

only with hi, hi may communicate only with oi). This unidirectional nature of the mul-

tilayer feedforward network is represented by means of a directed graph (directionality is

represented by arrows).

In most neural network topologies, merely connecting neurons is not sufficient for achiev-

ing a learning capability. Referencing the biological model of a neural network, it is such

that when a neuron fires, it emits an electrical or chemical signal of a given strength based

on the level of excitation exhibited by that neuron. This signal may be implemented in

artificial neural networks by means of weights. A weight is a real value (wij ∈ R) that

is associated with a given connection between two neurons. In the event that a neuron

fires, the connected neurons receive an input equal to the weight of the neuron(s) that

17

have fired. To formally define this notion, Schalkoff (1997, 71) writes “wij represents

the strength of the connection to neuron unit i from (either) neuron unit j or input j”.

Schalkoff (1997, 71) continues that “a large positive value of wij indicates a strong exci-

tory input from unit or input j to unit i, whereas a large negative weight value may be

used to represent a highly inhibitory input”. Weights allow a certain value to be associ-

ated to a given neuron. This is of importance when multiple input datum are presented

to a network. Masters (1993, 188) discusses a situation in which one neuron may have

a higher precedence than another neuron due to the contribution that neuron provides

to the output of the network. “[S]uppose we train a neural network to classify people as

overweight or normal weight, based on four variables: Height, Hair Color, Eye Color and

Weight. We may find that Hair Color and Eye Color are not important to the network’s

decision. The other two variables need more careful analysis, though. Certainly Height

alone tells us nothing about obesity. Even Weight alone tells us little. But taken together,

they tell all.”

One special type of weight is a bias. As written by Schalkoff (1997, 86), “[b]iases may be

used, for example, to selectively inhibit the activity of certain neurons”. A bias provides

a constant value of bi = 1.0 into each layer subsequent to the input layer. Inclusion of

a bias into a neural network topology is optional and is dependent on the nature of the

problem encountered.

i1 i2

h1 h2 h3

o1 o2

b1

b2

2
.3

−
3
.9

4.1 0.
4

9
.1

4
.7

−
1
.8

2.2

−
2
.9 2

.1 5.
4

0
.9

1.0 1.
0

1
.0

1.0

1.
0

Figure 4: Inclusion of Weights, Bias and Directionality into the Network Topology

18

Heaton (2008, 85) describes the weight matrix as “the ‘memory’ of the neural network,

and will allow the neural network to recall certain patterns when they are presented”.

There exists some notational differences in figure 5 from figure 3. The symbol∞ replaces

0 for indicating that a connection between two neurons does not exist. This serves the

purpose of conveying that a given connection between two neurons has an infinitely large

weight and thus may not be traversed. Note that while this convention is employed in this

paper, other conventions exist. Additionally, the boolean values that indicate a connection

are replaced with values such that wij ∈ R. The method in which elements are indexed is

not reciprocal. When referencing a connection, rows in the weight matrix represent the

start node and columns represent the end node. Consider briefly the connection between

i1 and h1. Since this is unidirectional, a value exists at (i1, h1) but not at (h1, i1). A bias,

if it exists, will not be included in the weight matrix as the value is constant (bi = 1.0)

and if included, the bias of a given layer may be assumed to be connected to each node

in the following layer.

Ψ =



∞ ∞ 2.3 −3.9 4.1 ∞ ∞
∞ ∞ 0.4 9.1 4.7 ∞ ∞
∞ ∞ ∞ ∞ ∞ 1.8 2.2

∞ ∞ ∞ ∞ ∞ −2.9 2.1

∞ ∞ ∞ ∞ ∞ 5.4 0.9

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞



Figure 5: Weight Matrix

One consideration to be made when dealing with lower powered devices is handling the

nonreciprocal nature of connections in a feedforward neural network. The weight matrix

for this simple 2× 3× 2 network requires 49 allocations for a floating point data type, of

which 12 are required. One possible method of combating this misuse of resources is to

amalgamate the collective weight matrix into a row matrix.

Weight =
[

2.3 −3.9 4.1 0.4 9.1 4.7 1.8 2.2 −2.9 2.1 5.4 0.9
]

Figure 6: Row Matrix for Input and Hidden Layers

19

3.4 Nonlinear Activation Functions

The degree to which a neuron may or may not fire is influenced heavily by an activation

function. In the case of the original Perceptron, the activation function employed resem-

bled a piecewise function. The Perceptron applied a threshold value (t ∈ R) whereby if

the weighted sum of the input exceeded the threshold value, the output from the neu-

ron would be 1, otherwise 0 (Masters 1993, 80). For non-trivial problems, however, the

boolean nature of the Perceptron limits the ability of the neural structure to classify

problems that cannot be represented as a 1 or a 0 but instead rely on fuzzy definitions

(0 ≤ i ≤ 1, i ∈ R or −1 ≤ i ≤ 1, i ∈ R). For this reason, many modern neural network

implementations employ a continuous, nonlinear, real-valued function. Two common ac-

tivation functions will be discussed.

The most common activation function employed in modern networks is a sigmoid function

named the logistic activation function (Masters 1993, 81). The logistic function scales

the output of the neural network into proper ranges (Heaton 2008, 150). An inherent

property of the logistic activation function is that the possible range of possible y = f(x)

values that may result is 0 ≤ f(x) ≤ 1. The logistic activation function and associated

visual representation can be seen in figures 7 and 8 respectively.

f(x) =
1

1 + e−x

x = Input

Figure 7: Logistic Activation Function

Figure 8: Logistic Activation Function Plot

20

In situations where a neural network is required to produce negative values, other activa-

tion functions must be considered. One such function sigmoidal function is the hyperbolic

tangent or tanh(x) function (figure 9. The hyperbolic tangent function is represented

visually in figure 10.

tanh(x) =
ex − e−x

ex + e−x

x = Input

Figure 9: Hyperbolic Tangent Activation Function

Figure 10: Hyperbolic Tangent Activation Function Plot

An important characteristic of sigmoid functions is that a sigmoid function never reach

their theoretical maximum or minimum (Masters 1993, 82). As a result of this, Masters

(1992, 82) suggests that neurons that utilise the logistic activation function be considered

fully activated at values surrounding 0.9 and fully inhibited at values surrounding 0.1.

3.5 Neural Network Operation

The fundamental operation of a neural network may be described with the equation

described in figure 11. Consider the neural network described in figure 14. The operations

carried out to calculate the output of this network follow the operations described in figure

11. The example given describes the series of calculations carried out within a neural

network for one hidden neuron. This process is repeated n times where n is directly

proportional to the number of hidden and output neurons.

21

oi =

(
n−1∑
i=0

xiwi

)
+ bi

oi = Output

xi = Input

wi = Weight

bi = Bias

Figure 11: Calculating the Output of a Neuron

Figure 12 represents the input to the network for the purposes of this demonstration. As

stated previously, these input values are arbitrary and serve no purpose other than to

demonstrate the reaction of a neural network to some external stimulus over the input

nodes.

Input =
[

5.4 3.5 8.2
]

Figure 12: Neural Network Calculation Example Input Matrix

An additional step that can be incorporated into the calculation of the neural network,

while not strictly necessary, is scaling the input to fall within the range 0 ≤ inputi ≤ 1.

Scaling may be implemented in future neural network calculations as the values in the

implemented neural network in a future section of this paper do not necessarily occur

within the range 0 ≤ inputi ≤ 1. Scaling becomes beneficial as with large input values for

the activation function, the output value may occupy the upper limits of the function and

thus providing less of a variance in output between large samples. One common method

for linearly scaling the input values is to use the equation 1
inputi

. This ensures a range

of 0 ≤ inputi1 that ensures that the ratios between input values are not altered, only

the range. Figure 13 demonstrates the output of passing the unscaled and scaled values

to the logistic activation function. Note that the scaled input allows a wider range of

values to take advantage of the range of the logistic activation function. This difference

is not necessarily visible on a single example, however, scaling may prove beneficial over

the course of network output calculation. The use of input scaling is determined on a

case-by-case basis and should only be implemented if the results of the network deem

that a positive benefit is introduced by the use of scaling.

22

f(6.21) =
1

1 + e−6.21
= 0.99

f(0.16) =
1

1 + e−0.16
= 0.64

Unscaled = 6.21

Scaled = 1
Unscaled

= 0.16

Figure 13: Example of Logistic Activation Function Output - Scaled and Unscaled

Figure 14 highlights a simplified neural network with the resulting calculations involved

in determining the output of this network. In this example, the input matrix will be

scaled to ensure the input values fall within the range 0 ≤ inputi ≤ 1.

i1 i2 i3

h1

o1

2.3

1
.4 2.

9

1
.8

Figure 14: Neural Network Calculation Example Graph

To calculate the output of this simple network, the input matrix is first scaled to provide

the values (rounded to 2 decimal places)

Input =
[

1
5.4

= 0.19 1
3.5

= 0.29 1
8.2

= 0.12
]

23

Add the product of each input and each weight ((xiwi) + bi) with a bias of 1.0

h1 = ((0.19 ∗ 2.3) + (0.29 ∗ 1.4) + (0.12 ∗ 2.9) + 1.0) = 2.19

Applying the logistic activation function to this value provides

f(2.19) =
1

1 + e−2.19
= 0.90

This new value serves as input to the output layer which in turn is multiplied by the

weight of the connection

o1 = ((0.90 ∗ 1.8) + 1.0) = 2.62

Applying the logistic activation function to this value provides the output of the network

for this given path

f(2.62) =
1

1 + e−2.62
= 0.93

The output for this network and input combination is 0.93 which would, in most circum-

stances, be interpreted as a value of 1.0. This interpretation is due to the property of

sigmoid functions dictating they only approach their maximum and minimum values of

0 and 1 as limi→±∞.

3.6 Training and Validating a Neural Network

As a core requirement of a neural network, the adaptability of a neural network serves to

distinguish ‘intelligent’ software from conventionally programmed software. The weights

assigned to the neurons in a neural network determine the reaction of the network to

input data samples. A network that has an optimal set of weights for each neuron, such

that the network can accurately classify new (unseen) data to a low margin or error is

considered ready for live use. The process of adjusting these weights is referred to as

training. “One of the most important aspects of biological and artificial neurons is their

learning capability”, writes Cichocki et al. (1994, 47), “whereby synaptic (or connection)

weights are adaptively changed according to an adaptive algorithm”.

Neural networks are typically trained under one of three paradigms, supervised training,

unsupervised and hybrid training. Under the supervised training paradigm, a training set

is assembled that provides the neural network with a complete representation of the inputs

that the network is required to learn (Masters 1993, 9). For each sample in the training

set, an ideal output is included. As various subsets of the training set are presented

24

to the neural network, the weights are adjusted based on how well the neural network

performed and the validity of the result (Heaton 2008, 44). “One pass through the sub-

set of training samples with an updating of the network’s weights is called an epoch”,

writes Masters (1993, 10), “The number of samples in the subset is called the epoch size”.

Supervised training is the most common method for training a neural network (Heaton

2008, 44), however, there exists many situations in which ideal outputs are not available.

Under the unsupervised training paradigm, a similar training set typical of the range of

inputs is collected however no ideal output is presented to the network. Masters (1993,

10) describes the unsupervised training process as “[t]he process of training the network

[,] letting it discover salient features of the training set, and using these features to group

the inputs that it (the network) finds distinct”.

Heaton (2008, 45) describes hybrid training as “combin[ing] aspects of both supervised

and unsupervised learning”. One such example of hybrid learning is reinforcement learn-

ing. During training that is carried out by reinforcement learning, a training set is

presented to the network but no ideal outputs are provided. Instead, the neural network

is informed manually as to the validity of the response it generated. (Masters 1993, 10)

Training a neural network is a non-trivial task. Masters (1993, 94) states “Training a

practical network is usually a numerical nightmare”. In most cases of neural network

training, whether supervised or unsupervised, an initial weight matrix is populated with

random values (Heaton 2008, 123). The optimum weight matrix is achieved when the

neural network output error is minimised. Error is loosely defined as the difference

between expected output and actual output. Heaton (2008, 123) advocates calculating

the Root Mean Squared Error at such time when all samples in the training set have been

presented to the network. Figure 15 describes the formula for the Root Mean Square Error

calculation.

RMSE =

√√√√ 1

n

n−1∑
i=0

(ti − oi)2

n = Number of Epochs

ti = Expected Output

oi = Actual Output

Figure 15: Root Mean Squared Error (RMSE)

25

Several issues may arise in training, including that of false minima. False minima are

those points where a training algorithm may settle with a given weight matrix and assume

that the error achieved is the lowest error possible. It is the goal of any training algorithm

to locate the global minima, the set of weights that provide the lowest error possible. Lo-

cal minima are those points that are preceded by a download slope (decreasing error)

and resolve to a slope of near zero (that is, any attempts to ‘escape’ this minima are met

by slopes that provide a worse-case error). It is in these points that a naive training algo-

rithm may land. The local minima is by definition, not the optimal minimum error. To

combat this phenomenon, specialised algorithms for training neural networks to optimise

while avoiding local minima have been introduced. Three such algorithms are discussed

for the remainder of this section.

At such time that the training of a neural network is deemed complete, the network must

then be validated. Network validation requires that the network is presented with unseen

data to ensure correct operation (Heaton 2008, 45). Masters (1993, 10) stipulates that

“[i]n many respects, proper validation is more important than proper training”. During

training, a network may ‘overfit’ the data, as Masters (1993, 10) describes, “[r]ather than

learning the basic structure of the data, enabling it to generalize well, it learns irrelevant

details of the individual cases. In such cases that the validation phase performs poorly,

Heaton (2008, 46) suggests that potential cause may include unique validation data not

represented by the training set. The process of validating a neural network will be

discussed in further detail once the neural network has been implemented. Postponing a

formal analysis of the validation stage until such time is beneficial as it is possible to track

the progress of the neural network training algorithms by means of gathering diagnostic

data from the neural network.

3.6.1 Backpropagation

Training by backpropagation is typically associated with the training of multilayer feed-

forward neural networks, not least because the backpropagation training method was, as

Masters (1993, 100) states, “the first practical method for training a multiplelayer feed-

forward network”. Masters (1993, 100) attributes the resurgence of interest into the field

of artificial neural networks to the backpropagation training method. The backpropaga-

tion algorithm, as described by Masters (1993, 100) is a gradient descent algorithm, the

operation of which is discussed for the remainder of this section.

During the training process of a neural network, the network is presented with a train-

ing set. The training set, as discussed in previous sections, contains a selection of data

26

representative to the data that a neural network is expected to encounter during normal

operation. The purpose of training a neural network is to minimise the error produced

when a network is exposed to data. Training by backpropagation seeks to minimise this

error by modifying the weights and thresholds associated with the neural network. The

backpropagation algorithm works by first calculating the error of the output layer and

determining the contribution of each neuron in the layer to the error returned. It follows

that neurons with a higher weight value contribute more significantly and thus are to be

adjusted more. This process then moves through the preceeding layers and adjusts each

layer in turn. (Heaton 2008, 162-163)

For backpropagation to operate, the activation function must be differentiable. Differen-

tiation represents the instantaneous rate of change of a given function as the input to the

function changes. It is not required for the reader to be familiar with differential calculus

to understand this paper as the derivative of any function is provided for the reader. The

importance of derivatives with regard to training by backpropagation are described by

Masters (1993, 95). “Derivatives are priceless to the numerical analyst who must optimize

a function. If we know the partial derivative of the error with respect to each weight, we

know (at least on a local scale) which way the weights must move in order to reduce the

error”. Figure 16 demonstrates the derivative for the logistic activation function.

dy

dx

1

1 + e−x
= f ′(x) = f(x)(1− f(x))

x = Input

Figure 16: Derivative of the Logistic Activation Function

There are two additional important parameters to consider when training by backprop-

agation, learning rate and momentum. The learning rate is the rate at which the values

are adjusted. A higher learning rate results in more radical adjustments being made in

a shorter number of iterations. The momentum determines the degree to which training

from a previous iteration may affect the current iteration. (Heaton 2008, 421)

3.6.2 Simulated Annealing

Annealing is a process employed in the field of metallurgy. The annealing process involves

heating metal to a high temperature, at which point, the atoms have a greater degree

of freedom than at lower temperatures. During the cooling process, the temperature is

27

gradually lowered allowing the atoms to form stable structures. If the temperature is

lowered too rapidly (rapid quenching), anomalies in the structures formed by the atoms

may occur and thus the metal may be defective or brittle. Simulated annealing, as pio-

neered in the mid 1970s by Scott Kirkpatrick, applies these principles to such problems

as function optimisation or searching a nonlinear search space. Simulated annealing, in

addition, serves simultaneously as a highly effective training algorithm for artificial neural

networks. The remainder of this section will discuss in more detail the operation of the

simulated annealing process with regards to artificial neural networks. (Masters 1993,

118)

The simulated annealing algorithm operates on the weight matrix of an artificial neural

network attempting to produce an optimal set of weights that minimise the error of the

network. Press et al. (1999, 451) state that “[t]he basic ideas of simulated annealing are

also applicable to optimization problems with continuous N-dimensional control spaces,

e.g., finding the (ideally global) minimum of some function f(x)”. A typical simulated

annealing algorithm consists of two main processes (Heaton 2008, 201). A brief natural

language description of the simulated annealing algorithm will be discussed as it per-

tains to artificial neural networks, utilising annealing nomenclature where required for

the purposes of maintaining a relationship between the physical process and the simu-

lated process.

Prior to discussing the operation of the simulated annealing algorithm, it is advanta-

geous to first discuss the key parameters in use. The first parameter to be discussed

is the temperature parameter. The temperature value represents the standard deviation

of the employed random number generator (Masters 1993, 119). Initially, a high stan-

dard deviation is chosen to allow a large degree of potential values for the elements of

the weight matrix to assume. This standard deviation is gradually reduced. Another

important parameter to consider is the current best solution. The current best solution

represents the seed of the random number generator that has performed most desirable

(that is, produced the lowest neural network error) weight matrix and is replaced in such

cases that another matrix produces a lower error. A final parameter to define prior to

discussion of the operation of the algorithm is the lower bound temperature. The lower

bound temperature provides a value determining the minimum temperature the algo-

rithm may operate at. This may serve as a failsafe to prevent an infinite loop. (Masters

1993, 119)

The operation of the simulated annealing algorithm is simple (Press et al. 1999, 444).

28

An initial randomised weight matrix is produced as per the range permitted by the cur-

rent temperature. The initial weight matrix is marked as the current best solution and

provided to the artificial neural network. Upon completion of the required training data,

the error is compared to that generated by the current best solution. In such cases that

the error shows improvement over the existing current best solution then the previous

solution is replaced with the solution containing more favourable characteristics. For

each temperature, a predetermined number of iterations may occur. After this number

of iterations has been met, the temperature is reduced and the process repeats, using

the current best solution for each temperature as a central point for the random number

generator. This process continues until such time that the lower bound temperature is

met. (Heaton 2008, 201)

One important calculation performed in the simulated annealing process is the rate at

which the temperature decreases. It is often beneficial to calculate a non-static step

value to ensure that the temperature decreases in such a way that a similar number of

steps may occur for all ranges of start and end temperatures. The equation commonly

employed for calculating the step value for temperature decrease can be found in figure

17. (Heaton 2008, 204).

step = e
ln(start

end)
cycles−1

start = Temperature Upper Bound

end = Temperature Lower Bound

cycles = Number of cycles

Figure 17: Step Function for Temperature Decrease in Simulated Annealing

It should be noted that simulated annealing is the preferred training method for the

artificial neural networks deployed as part of this research.

3.6.3 Genetic Algorithms

Genetic algorithms are a prominent subset of the field of evolutionary computing. Evolu-

tionary computing is an adaptive paradigm, mimicking natural processes such as natural

selection and applying those principles to complex computational problems that may

extrude large run-times under conventional methods. Genetic algorithms were origi-

nally devised by John Holland, along with his students and colleagues at the Univer-

29

sity of Michigan in the 1960’s (Mitchell 1999, 2). As Mitchell (1999, 2) states, Genetic

algorithms were initially intended to model biological evolution and adaptation, their

contributions to problems in computer science such as optimisation and searching were

incidental. Genetic algorithms, similarly to all evolutionary computational models, begin

with a random population of candidate solutions. These samples combine and mutate,

allowing those candidate solutions that provide superior character traits (read: better

solutions) to continue to reproduce new candidate solutions (Heaton 2008, 177). This

section first discusses the biological processes that will be modelled, then applies that

understanding to computationally feasible algorithms that allow the searching nonlinear

spaces for optimal threshold and weight values for a neural network.

A typical genetic algorithm begins by creating a population that are typically initialised

to random values. Each member of the population represents one potential solution to the

problem being studied. Upon successful generation of a population, the fitness of each

solution is tested to determine to what degree a given solution performed. Following

Darwinian theory of evolution, those potential solutions that performed most desirably

have a higher probability of reproducing new potential solutions. Those solutions that re-

produce share material defined by a random cutoff point, additionally, random mutation

occurs to ensure new material is introduced. Mutations may or may not provide desirable

characteristics, however, this is a moot point as the fitness verification will determine if

these mutations proved successful. (Heaton 2008, 176-177)

30

4 Implementation

This section discusses the implementation specifics of an artificial neural network capable

of differentiating between two conditions of the heart. Prior to specific implementation

details being discussed, the objective detailed in section 1.2 will be expanded upon,

formally defining the problem. It is deemed beneficial to the reader to formally introduce

the objective at this later stage as the reader, assuming a logical and progressive order

of reading, is now aware of the theoretical constructs that underpin the research in this

paper. Promptly following this formal objective parametrisation is a discussion regarding

data collection techniques. This section will discuss the source of the data and how it is

to be prepared for exposure to the neural network. The construction and training of the

neural network, including relevant C code samples are included and discussed detailing

the construction and operation of the neural network as it is implemented and trained.

4.1 Formal Objective Parametrisation

The implementation stage of this research project will continue in three discrete parts.

First, two samples will be obtained from Physiobank ATM, one representing a healthy

signal and serving as a control, and another representing an onset of arrhythmia. Specific

points from each sample are to be extracted. To ensure a large, consistent training and

validation set, further input samples from each case are to be randomly generated based

on ranges of the respective values over a 10 second interval from the original samples.

The values obtained will represent the peak values of the P, Q, R, S and T waves.

The input values, coupled with expected output, are to be presented to the neural net-

work. The neural network will employ simulated annealing as the training method.

Training will occur in cycles and iterations until such time that the weight matrix in use

by the network is sufficiently optimised, that is, the error is reduced to an acceptable rate.

The final stage of involves validating a new dataset against the trained neural network.

The outcome expected is that the neural network can differentiate between the healthy

signal and the unhealthy signal by means of outputting close to 0 when the healthy signal

is detected and close to 1 if characteristics of the unhealthy signal are detected.

It is the purpose of the algorithm to identify and react to the diminished P wave of

the ‘unhealthy’ sample. If the neural network is able to assimilate this diminished P

wave characteristic into a weight matrix and provide a ≥ 70% detection accuracy, this

algorithm will be considered successful.

31

4.2 Input Data Preparation

The data generated is to serve as training data and as validation data so it follows that

two discrete batches from each sample set are to be generated. To ensure consistent sam-

ple sets that may scale in size in the event that current training data proves inadequate or

of insufficient length, a sample of peak values from the relevant data points and random

values are to be generated within the maximum and minimum range of the sample values

taken. This mimics potential fluctuations in a live signal within a small range that fall

within an expected range for that given signal.

The data points of interested are peak values from the P, Q, R, S and T waves. These

values are to be collected and hard coded into the resulting software implementation to

alleviate system incompatibilities between systems such as Unix based systems (Linux,

BSD, Macintosh) and Windows based systems. Included in each given sample in the

training set is an expected value from which the accuracy of the classification made by

the neural network may be measured.

4.2.1 Sample A - Healthy

The sample chosen to serve as the control sample, serving as the baseline from which

deviations are considered unhealthy. This electrocardiogram readings chosen to represent

the healthy control sample were obtained from Physiobank ATM, with the particular

sample set being the Challenge 2010 Test Set C sample set. Only the readings from the

II node were used for generating a base set of training and validation data. Noteworthy

points in this sample include the existence of well-defined and formed P and T waves and

an obviously discernible QRS complex.

Figure 18: Sample A - Healthy Visualisation

32

Figure 19: Sample A - Extracted Points

4.2.2 Sample B - Unhealthy

The unhealthy sample set employed to serve as an anomalous reading also originated from

the Physiobank ATM database, specifically the Intracardiac Atrian Fibrillation Database.

Similarly to Sample A, only the II node readings were obtained. This sample serves as

an apt pattern for neural network classification due to the reduced P wave and elevated

QRS complex peaks.

Figure 20: Sample B - Unhealthy Visualisation

33

Figure 21: Sample B - Extracted Points

4.3 Neural Network Training

The training algorithm employed for this neural network implementation was the sim-

ulated annealing training method. Simulated annealing was chosen for the interesting

properties it extrudes. Figure 22 provides provides a visual representation of the decrease

in error from those weight matrices generated during the simulated annealing training

algorithm that displayed increasingly optimal weight values. Figure 23 represents the

error fluctuation over the entire training cycle. Displayed below is the output from the

neural network algorithm that generated these error function plots. It is encouraging to

note that the resulting accuracy of the network was 95.3%. A behaviour of this particular

implementation that may be considered somewhat noteworthy is that while the simulated

annealing training method produced an accuracy far in excess of the anticipated 70%,

the algorithm ceased to optimise after a relatively short period. This is likely due to the

trivial nature of the training data, and as a result, such positive results should not be

expected so quickly from larger networks with considerably more complex input patterns.

Arch% bin/ecgnn

|--|

| PQRST Analysis Artificial Neural Network |

| Thesis Work by Gavin Harper 08.05.2011 |

|--|

(New Best Error: 0.68201713), (Temp: 400.00)

(New Best Error: 0.67112941), (Temp: 400.00)

34

(New Best Error: 0.65418777), (Temp: 400.00)

(New Best Error: 0.65175272), (Temp: 400.00)

(New Best Error: 0.64616436), (Temp: 400.00)

(New Best Error: 0.59962134), (Temp: 400.00)

(New Best Error: 0.54911686), (Temp: 400.00)

(New Best Error: 0.53239386), (Temp: 400.00)

(New Best Error: 0.49881412), (Temp: 400.00)

(New Best Error: 0.49048498), (Temp: 400.00)

(New Best Error: 0.48953939), (Temp: 400.00)

(New Best Error: 0.48944191), (Temp: 400.00)

(New Best Error: 0.48889536), (Temp: 400.00)

(New Best Error: 0.46721348), (Temp: 398.98)

(New Best Error: 0.33996150), (Temp: 387.78)

(New Best Error: 0.22568789), (Temp: 387.78)

(New Best Error: 0.21086273), (Temp: 387.78)

(New Best Error: 0.17777691), (Temp: 386.77)

(New Best Error: 0.13902444), (Temp: 386.77)

(New Best Error: 0.09757576), (Temp: 386.77)

(New Best Error: 0.05510005), (Temp: 386.77)

(New Best Error: 0.04694315), (Temp: 386.77)

|------Training Accuracy------|

(Best: 95.3057%)

|---Optimal Training Matrix---|

([00]: 3.51)

([01]: -5.86)

([02]: -5.35)

([03]: 1.69)

([04]: 9.15)

([05]: -1.81)

([06]: -0.09)

([07]: 1.87)

([08]: 1.29)

([09]: 1.10)

([10]: 2.80)

([11]: 3.84)

35

([12]: 15.66)

([13]: -2.61)

([14]: -6.26)

([15]: 17.80)

([16]: -9.56)

([17]: 1.87)

Figure 22: Simulated Annealing Best Error Function

Figure 23: Simulated Annealing Global Error Function

36

5 Results

The results gathered during the training stage of the neural network implementation far

surpass the original expectations placed upon the network in the design stage. Upon

verifying the simulated annealing training algorithm operated correctly and efficiently,

verification measures were then introduced. To verify the correct operation of the net-

work, newly generated samples that had not been previously exposed to the network

were introduced into the topology. To reiterate the purpose of the verification of a neural

network, verification ensures that the network has identified generic patterns and formed

generic rules with regards to the data, as opposed to learning only the training set. In this

case, four tests were set up with threshold values of 70%. In almost all cases, the neural

network correctly identified and differentiated between both samples at an accuracy and

certainty of ≥ 70%. With such a trivial training set and small neural network topology,

difficulties arise in determining if the neural network is overfitting data. However, in

cases such as this, the results show definite potential.

|------Neural Validation------|

Entering a subset of Sample A (Expecting 0.0)

Actual: 0.12734469

PASS

Entering a subset of Sample B (Expecting 1.0)

Actual: 0.77359891

PASS

Entering a subset of Sample A (Expecting 0.0)

Actual: 0.16785368

PASS

Entering a subset of Sample B (Expecting 1.0)

Actual: 0.90986073

PASS

Detailed above is an except from a training cycle demonstrating correct identification

to within 70%. One important consideration is the fundamental nature of stochastic

37

algorithms. The results are likely to fluctuate between different executions and as a result,

the figures obtained on one complete training cycle will vary from those in subsequent

cycles. These results do not, however, conclusively prove or disprove the benefits or

necessities of artificial neural networks in mobile health care beyond the trivial example

discussed in this paper. Further research should be carried out, implementing artificial

neural networks in relevant use cases before any commercial product should be introduced

into the market. In many cases, the success of the simulated annealing training algorithm

varied at run-time with values ranging from 50% to 90%, however this was remedied

by better implementing the function that inflicted random modifications to the weight

matrix. This research should be considered successful as the algorithm performed most

admirably, exceeding original expectations.

38

6 Conclusion

Neural computing provides a solid foundation for designing digital signal analysis algo-

rithms. Compared to traditional methods, there exists some initial complexity in the

training and validation stages that may deter those unfamiliar with neural computing

from considering a neural network as a candidate solution to a problem. An argument

that may be deduced from this paper, however is more apparent with larger networks

searching larger spaces, is that the accuracy and adaptability provided by a well-designed

and well-trained neural network can provide significant benefits over longer periods of

time.

While other, perfectly capable, neural network topologies exist such as the Self-Organising

Map (SOM) or the Hopfield Network, the decision to utilise the multilayer feedforward

neural network topology for this paper was borne from this specific topology serving as

the archetypal neural network structure. Lessons learned from the multilayer feedforward

neural network apply across a wide number of disciplines and topologies in neural com-

puting and it serves as a sound basis from which neural computing may be introduced to

readers unfamiliar with the paradigm.

It is important to note that the example provided in this paper does not constitute a real-

world electrocardiogram analysis algorithm. It is not enough to present a neural network

with three peak values from the P wave, QRS complex and T wave and expect that under

laboratory conditions a suitable detection rate with a real-time signal could be achieved.

This research intends to demonstrate the characteristics of neural computing that make

it a suitable candidate to the problem of analysing a digital signal for anomalies. This

paper, however, has suitably demonstrated that given appropriate conditions (to be dis-

cussed in a subsequent paragraph), a neural network is able to classify and identify data

presented in a coherent manner to a high degree of accuracy.

To elaborate further on what may be deemed appropriate conditions, it is beneficial to

consider first the nature of a digital electrocardiogram signal and then how a neural

network operates. It can be stated that the challenge in analysing any digital signal is

appropriately and consistently quantifying desired characteristics of the signal so they

can be presented to a neural network in a predictable manner. To achieve this, the

signal must be filtered and operated on using further mathematical techniques that are

beyond the scope of this paper though are employed in the continuation of this research

project post-thesis. Obtaining desired data from a real time signal, which may essentially

39

be considered as a one dimensional matrix of floating point numbers, is no trivial task.

The success or lack thereof of this project depends entirely on an appropriate filtering

technique being designed and implemented.

One final consideration is the suitability of artificial neural networks for mobile healthcare.

Based soley on the knowledge that while this paper has demonstrated the adaptability

and classification qualities of artificial neural networks, this example does not constitute

a real-world case and as a result, should undergo further testing and experimentation

before a sound recommendation can be made. This scepticism is based entirely on a lack

of empirical data supporting the viability of artificial neural networks in a real-world case,

but in no way seeks to cast down on the viability if, and only if, further specialised testing

is carried out. It is the intention of this author to continue researching this matter and

over a period of some years, correctly implement a neural computing solution capable of

adapting to real-word cases.

40

7 Discussion

This paper and associated research has posed some curious and exciting challenges over

the past weeks. It is always intriguing and holds a certain appeal to tackle challenges

beyond that which is typically encountered at that given point in time with regards to

education. All research and study into the topics discussed within the confines of this

paper have been based entirely on a rigorous self-educating and experimentation process

that has provided much insight into an area of computer science and engineering not

previously considered.

This paper represents a subset of the research into developing artificially intelligent sig-

nal analysis software capable of differentiating electrocardiogram readings for Domuset

Oy. Immediately after submission of this paper, the research process will resume with

the shortcomings exemplified in this paper being met with new methods and approaches

learned since the formalisation of the thesis topic. Research into the field of artificial in-

telligence and signal analysis provide exciting avenues for self-betterment and challenges

beyond what one would normally encounter at this stage in the education process. It is

such that this research project will continue, directly or indirectly relating to further stud-

ies, for some years to come. It is hoped that the problem of machine based, intelligent

electrocardiogram analysis can be continued beyond Master of Science level education

and into the realm of doctorate degrees.

In spite of the relative success in demonstrating the viability of artificial neural networks

for mobile medical analysis, it is still such that the problem tackled in this paper was

a reduced, trivialised form of the challenges faced external to this thesis. The respec-

tive fields of Artificial Intelligence, Signal Analysis and Electrocardiography are vast and

interesting topics too large to be covered with any consistent accuracy in a short paper

such as this. One challenge encountered during the writing of this paper was approaching

what is considered a vastly complex subject in such a way that the relevant information

may be provided to a reader with no background knowledge in artificial intelligence, sig-

nal analysis nor electrocardiography. It is the case that many fundamental operations in

Neural Networks, to isolate one example, are constructed from multiple smaller, simpler

parts. To cover all of these parts in any detail including tracing back the theory behind

each part to prevent assumed knowledge being applied proved a challenge.

41

8 Bibliography

Ashley, E. A. & Niebauer, J. 2004. Conquering the ECG - Cardiology Explained. Date

of retrieval 03/05/2011.

http://www.ncbi.nlm.nih.gov/books/NBK2214/

Cohen, J. S. Year Unknown. Electrocardiogram (ECG). Date of retrieval 03/05/2011.

http://www.emedicinehealth.com/electrocardiogram ecg/article em.htm

Cichocki, A & Unbehauen, R. 1994. Neural Networks for optimisation and signal por-

cessing. Stuttgart: John Wiley & Sons Ltd. & B. G. Teubner.

Cormen, T. H. & Leiserson, C. E. & Rivest, R. L. & Stein, C. 2009. Introduction to

Algorithms. Third Edition. Massachusetts: The MIT Press.

Croft, A. & Davison, R. & Hargreaves, M. 2003. Engineering Mathematics: A Founda-

tion for Electronic, Electrical, Communications and Systems Engineers. Third Edition.

Essex: Pearson Education Limited.

Haykin, S. 1999. Neural Networks A Comprehensive Foundation. Second Edition. New

Jersey: Prentice-Hall, Inc.

Heaton, J. 2008. Introduction to Neural Networks with Java. Second Edition. St Louis:

Heaton Research, Inc.

Masters, T. 1993. Practical Neural Network Recipes in C++. San Diego: Academic

Press, Inc.

MIT. 2005. Inventor of the Week: Archive. Date of retrieval 03/05/2011.

http://web.mit.edu/invent/iow/einthoven.html

Mitchell, M. 1999. An Introduction to Genetic Algorithms. Fifth Printing. Mas-

sachusetts: The MIT Press.

Peterson, J. & Kynor, D. 2003. Intracardiac Atrial Fibrillation Database. Date of re-

trieval 08/05/2011.

http://www.physionet.org/physiobank/database/iafdb/

42

Physionet. 2010. Challenge 2010 Test Set C. Date of retrieval 08/05/2011.

http://www.physionet.org/physiobank/database/challenge/2010/set-c/

Press, W. H. & Teukolsky, S. A. & Vetterling, W. T. & Flannery, B. T. 1999. Numerical

Recipes in C: The Art of Scientific Computing. Second Edition. Cambridge: The Press

Syndicate of the University of Cambridge.

Schalkoff, R. J. 1997. Artificial Neural Networks. New York: McGraw-Hill

Searle, J. R. 1980. Minds, brains, and programs. Behavioral and Brain Sciences. 3 (3).

417-424.

Sedgewick, R. 1992. Algorithms in C++. Massachusetts: Addison-Wesley Publishing

Company, Inc.

Turing, A. M. 1950. Computing Machinery and Intelligence. Mind. 59 (236), 433-460.

Tveter, D. R. 1998. The Pattern Recognition Basis of Artificial Intelligence. Los Alami-

tos: IEEE Computer Society Press.

43

A Constants and Notations

A.1 Constants

e = 2.71828 . . .

∞ = Infinity

A.2 Notations

α A value represented by some non-numerical character

αn The ‘nth’ value contained within α

αβ The product of a value, α multiplied by itself β times

√
α Denotes the square root of α

αβ The product (multiplication) of two values, α and beta

α
β

The division of two values, α divided by β

α > β The value of α is greater than the value of β

α < β The value of α is less than the value of β

α ≥ β The value of α is greater than or equal to the value of β

α ≤ β The value of α is less than or equal to the value of β

α 6= β The value of α is not equal to the value of β

0 ≤ α ≤ 1 The value of α is in the range 0→ 1

∑n
i=0 αiβi Denotes the summation of the product for all αi and βi in the range i→ n

44

∈ Denotes set membership. α ∈ A is read as α is contained within some set A

f(x) Denotes some function that receives an independent variable x and outputs exactly

one dependent variable y

f ′(x) Denotes the derivative of some function f(x)

dy
dx
f(x) Denotes the derivative of some function f(x)

ln (α) The base of the natural logarithm is e. The natural logarithm of α is the power e

is raised to to equal α

limx→∞ The limit of a function as x tends to infinity or some value[
1 0

0 1

]
Denotes some 2× 2 matrix.

A.3 Number Systems

R The set of all Real Numbers (x ∈ R : −∞ ≤ x ≤ ∞)

45

B GIT Log

commit e0b9d4b51f4992301a8ece0445b4a7b261dae753

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 19 : 50 : 27 2011 +0300

Fina l Commit

commit 1 ec3d03cd08802791bc43d3c527a78d24fd6e834

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 16 : 47 : 59 2011 +0300

Removed ob so l e t e matrix dup l i c a t i on func t i on

commit acb03d55706d2125f62970db4c243a42f86e227d

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 05 : 53 : 21 2011 +0300

Pedantic OCD kicked in . Had to update the va l i d a t i o n heading

commit e7a0bf865f3e36dc0d5223e285bc31d4e0171e22

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 05 : 34 : 40 2011 +0300

Fina l v e r s i on − commented

commit c89f649391c508fe390b89277413105458783a27

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 02 : 55 : 31 2011 +0300

Removed redundant s c a l e input func t i on

commit 6 c0a508936c89810c30ac45868015e753b042b4f

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 02 : 40 : 07 2011 +0300

Network seems to be handl ing t r a i n i n g data we l l

commit 776 f645b89654d72cdc93f625932d77beaf054f4

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 00 : 29 : 21 2011 +0300

General s t a b i l i t y updates

commit 2 e0880 f5b4 f8041e27a873 fb9e9a f3505ee4 fa2d

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 00 : 28 : 31 2011 +0300

Added Root Mean Squared Error func t i on

commit 63 f382de3ed5b0d62031d8cb2c2944a52657732b

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Mon May 9 00 : 28 : 10 2011 +0300

Added sample genera tor

46

commit 3 e19a4e19d130ac f00dc9 f293 f0eb6a6 f9 f2e8b4

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 18 : 46 : 39 2011 +0300

Fixed i n c on s i s t e n cy in e r r o r d i sp l ay

commit c fec9da604f4720d3a1eafbb3fdd14b47a2657c5

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 18 : 38 : 27 2011 +0300

Added annea l ing shake func t i on

commit c5add29590896a686fbde85eb2813bda09276cec

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 17 : 48 : 52 2011 +0300

Added e r r o r func t i on

commit 7 e9d28299f8a0da808cc9e240413270569656243

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 17 : 15 : 04 2011 +0300

Fixed annea l ing matrix dup l i c a t i on

commit 38 fdb7f031ae5f11070d330923ec260b8da4153e

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 16 : 50 : 57 2011 +0300

Fixed header i n c l u s i o n e r r o r in fndup l i c a t emat r i x . h

commit 302 c746c6ddbe050e4d7835beddc3cf9eda91900

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 16 : 48 : 28 2011 +0300

Added func t i on f o r dup l i c a t i ng the weightmatr ix

commit 2 e2cace1e75404366d2e5d1f329965eb0aa3a9a0

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 16 : 40 : 19 2011 +0300

Added step func t i on f o r annea l ing temperature dec r ea s e

commit 2 a02c f e e1e90c5 fd f47 f 8 f fd96b20925a4e8ee85

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 16 : 27 : 08 2011 +0300

Fixed inaccu ra t e c a l c u l a t i o n va lue s in fnca l cu l a t ene twork . c

commit bba9efa0d5f3acc61ea66232e07f2d3e9e80a635

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 16 : 08 : 29 2011 +0300

Added s imulated annea l ing t r a i n i n g func t i on

commit ec2273078b345b7b79e75a6beba8162cfb7946c6

47

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 42 : 55 2011 +0300

Added random number f u n c t i o n a l i t y

commit c569cee9cf5d4ad8af3e4bb7f75541480735947d

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 22 : 23 2011 +0300

Added sigmoid a c t i v a t i o n func t i on

commit 2 e f17 fe10f28cadb4d4e922bd728119f95492e7a

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 21 : 59 2011 +0300

Added func t i on to s c a l e input to range 0 . . 1

commit f819813c2edfa22d2a7d2042a9f13e710d6e6091

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 21 : 26 2011 +0300

Added func t i on to dynamical ly a s s i gn a weight matrix

commit b8956998a72ed660b91031dad49ea6758908d47e

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 20 : 53 2011 +0300

Added network c a l c u l a t i o n f u n c t i o n a l i t y

commit c33fd5bf2b353a1348b31ce7dd748b08ae6d711a

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 20 : 27 2011 +0300

Added Make f i l e

commit 0 ae9829aaec62eac0931d2aeef1dd4ad5f734b67

Author : Gavin Harper <k9haga00@students . oamk . f i>

Date : Sun May 8 14 : 20 : 09 2011 +0300

Repo i n i t i a l i s a t i o n

48

C Makefile

#

Makef i l e f o r Thesis Work : PQRST Analys i s (Mu l t i l a ye r Feedforward Neural Network)

#

Gavin Harper − F8827

#

Compiler : Gnu GCC 4.6 . 0 20110415

#

CC=gcc

CFLAGS= −lm −O3 −Wall

OBJ = obj /main . o obj / fngetwe ightmatr ix . o obj / fnca l cu l a t ene twork . o \
obj / f n a c t i v a t i o n f un c t i o n . o obj / fngetrandom . o obj / fnannea l . o \
obj / fnannea l s t ep . o obj / f n g e t e r r o r . o obj / fnannea l shake . o \
obj / fngetrmse . o

FNGETWEIGHTMATRIX = fngetwe ightmatr ix . h fngetwe ightmatr ix . c

FNCALCULATENETWORK = fnca l cu l a t ene twork . h fnca l cu l a t ene twork . c

FNACTIVATIONFUNCTION = fna c t i v a t i o n f un c t i o n . h f n a c t i v a t i o n f un c t i o n . c

FNGETRANDOM = fngetrandom . h fngetrandom . c

FNANNEAL = fnannea l . h fnannea l . c

FNANNEALSTEP = fnannea l s t ep . h fnannea l s t ep . c

FNANNEALSHAKE = fnannea l shake . h fnannea l shake . c

FNGETERROR = fng e t e r r o r . h f n g e t e r r o r . c

FNGETRMSE = fngetrmse . h fngetrmse . c

a l l : ecgnn

ecgnn : $ (OBJ)

$ (CC) $ (CFLAGS) $ (OBJ) −o bin /ecgnn

obj /main . o : main . c $ (FNANNEAL)

$ (CC) $ (CFLAGS) −c main . c −o obj /main . o

obj / fngetwe ightmatr ix . o : $ (FNGETWEIGHTMATRIX) $ (FNGETWEIGHTMATRIX)

$ (CC) $ (CFLAGS) −c fngetwe ightmatr ix . c −o obj / fngetwe ightmatr ix . o

obj / fnca l cu l a t ene twork . o : $ (FNCALCULATENETWORK) $ (FNACTIVATIONFUNCTION)

$ (CC) $ (CFLAGS) −c fnca l cu l a t ene twork . c −o obj / fnca l cu l a t ene twork . o

obj / f n a c t i v a t i o n f un c t i o n . o : $ (FNACTIVATIONFUNCTION)

$ (CC) $ (CFLAGS) −c f n a c t i v a t i o n f un c t i o n . c −o obj / f n a c t i v a t i o n f un c t i o n . o

obj / fngetrandom . o : $ (FNGETRANDOM)

$ (CC) $ (CFLAGS) −c fngetrandom . c −o obj / fngetrandom . o

obj / fnannea l . o : $ (FNANNEAL) $ (FNANNEALSTEP) $ (FNANNEALSHAKE) \
$ (FNGETERROR) $ (FNGETWEIGHTMATRIX) $ (FNGETERROR) \
$ (FNGETRMSE)

$ (CC) $ (CFLAGS) −c fnannea l . c −o obj / fnannea l . o

obj / fnannea l s t ep . o : $ (FNANNEALSTEP)

$ (CC) $ (CFLAGS) −c fnannea l s t ep . c −o obj / fnannea l s t ep . o

49

obj / f n g e t e r r o r . o : $ (FNGETERROR)

$ (CC) $ (CFLAGS) −c f n g e t e r r o r . c −o obj / f n g e t e r r o r . o

obj / fngetrmse . o : $ (FNGETRMSE)

$ (CC) $ (CFLAGS) −c fngetrmse . c −o obj / fngetrmse . o

obj / fnannea l shake . o : $ (FNANNEALSHAKE)

$ (CC) $ (CFLAGS) −c fnannea l shake . c −o obj / fnannea l shake . o

c l ean :

rm −r f bin /ecgnn dgn/∗ $ (OBJ)

50

D Source Code

####################

#∗∗∗∗∗ main . c ∗∗∗∗∗#
####################

#include <s t d i o . h>

#include <s t d l i b . h>

#include ” fnannea l . h”

int main (int argc , char ∗argv [])

{
p r i n t f (”|−−|\n”) ;
p r i n t f (” | PQRST Analys i s A r t i f i c i a l Neural Network | \n”) ;
p r i n t f (” | Thes i s Work by Gavin Harper 08 .05 . 2011 | \n”) ;
p r i n t f (”|−−|\n”) ;
p r i n t f (”\n”) ;

fnAnneal () ;

return 0 ;

}

########################

#∗∗∗∗∗ fnannea l . h ∗∗∗∗∗#
########################

#ifndef FNANNEAL H

#define FNANNEAL H

#include <f loat . h>

#include <s t d i o . h>

#include ” fnannea l s t ep . h”

#include ” fnannea l shake . h”

#include ” fngetwe ightmatr ix . h”

#include ” f n g e t e r r o r . h”

#include ” fngetrmse . h”

#include ” fnca l cu l a t ene twork . h”

#include ” fngetrandom . h”

/∗ Train the network us ing s imula ted annea l ing . Due to s imp l i c i t y ,

network v a l i d a t i o n i s inc luded in t h i s func t i on to reduce

unnecessary f i l e s ∗/

void fnAnneal () ;

#endif

51

########################

#∗∗∗∗∗ fnannea l . c ∗∗∗∗∗#
########################

#include ” fnannea l . h”

void fnAnneal ()

{
int eS i z e = 20 ; /∗ Si ze o f error matrix ∗/
int nCycles = 40 ; /∗ Number o f c y c l e s per temperature ∗/
double bErr = DBLMAX; /∗ High o r i g i n a l b e s t error ∗/
double sTemp = 400 . 0 ; /∗ S ta r t i n g temperature ∗/
double eTemp = 200 . 0 ; /∗ Ending temperature ∗/
double cTemp = sTemp ; /∗ Current Temperature ∗/
double s tep ; /∗ Value by which temperaure i s decreased ∗/
double cErr ; /∗ Current error ∗/
double oNet ; /∗ Output o f Neural Network Ca l cu la t i on ∗/

double ∗wMtx = fnGetWeightMatrix () ; /∗ Weight matrix ∗/
double ∗bMtx = (double ∗) mal loc (30 ∗ s izeof (double)) ; /∗ Best matrix ∗/
double ∗eMtx = (double ∗) mal loc (eS i z e ∗ s izeof (double)) ; /∗ Error matrix ∗/

i n i t r and () ; /∗ Seeds random number generator ∗/

while (cTemp > eTemp)

{
int i ;

for (i = 0 ; i < nCycles ; i++)

{
fnAnnealShake (sTemp , cTemp , wMtx) ; /∗ Al ter the weight matrix ∗/

/∗ Ca lcu la t e output then error o f neura l network ∗/
oNet = fnCalculateNetwork (wMtx, 0 . 59 , 0 . 41 , 1 . 39 , 0 . 22 , 0 . 6) ;

eMtx [0] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.03 , −0.21 , 2 . 22 , −0.29 , 0 . 54) ;

eMtx [1] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 59 , 0 . 41 , 1 . 39 , 0 . 23 , 0 . 6 1) ;

eMtx [2] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.05 , −0.2 , 2 . 42 , −0.2 , 0 . 3 7) ;

eMtx [3] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 55 , 0 . 41 , 1 . 43 , 0 . 23 , 0 . 6 1) ;

eMtx [4] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.08 , −0.16 , 2 . 36 , −0.25 , 0 . 44) ;

eMtx [5] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 57 , 0 . 41 , 1 . 4 , 0 . 25 , 0 . 65) ;

eMtx [6] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.09 , −0.17 , 2 . 2 , −0.24 , 0 . 46) ;

eMtx [7] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 56 , 0 . 43 , 1 . 39 , 0 . 24 , 0 . 6 4) ;

eMtx [8] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.05 , −0.19 , 2 . 2 , −0.22 , 0 . 53) ;

eMtx [9] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 57 , 0 . 4 , 1 . 4 , 0 . 23 , 0 . 62) ;

eMtx [1 0] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.08 , −0.15 , 2 . 19 , −0.26 , 0 . 51) ;

eMtx [1 1] = fnGetError (oNet , 1 . 0) ;

52

oNet = fnCalculateNetwork (wMtx, 0 . 57 , 0 . 43 , 1 . 41 , 0 . 26 , 0 . 6 3) ;

eMtx [1 2] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.05 , −0.23 , 2 . 25 , −0.22 , 0 . 39) ;

eMtx [1 3] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 55 , 0 . 41 , 1 . 39 , 0 . 25 , 0 . 6 4) ;

eMtx [1 4] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.05 , −0.21 , 2 . 25 , −0.3 , 0 . 4 7) ;

eMtx [1 5] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 57 , 0 . 43 , 1 . 42 , 0 . 25 , 0 . 6 4) ;

eMtx [1 6] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.06 , −0.24 , 2 . 2 , −0.25 , 0 . 41) ;

eMtx [1 7] = fnGetError (oNet , 1 . 0) ;

oNet = fnCalculateNetwork (wMtx, 0 . 58 , 0 . 41 , 1 . 4 , 0 . 22 , 0 . 64) ;

eMtx [1 8] = fnGetError (oNet , 0 . 0) ;

oNet = fnCalculateNetwork (wMtx, −0.05 , −0.24 , 2 . 38 , −0.3 , 0 . 4 9) ;

eMtx [1 9] = fnGetError (oNet , 1 . 0) ;

/∗ Return RMSE ∗/
cErr = fnGetRMSE(eMtx , eS i z e) ;

/∗ Replace current error with b e s t i f current i s lower ∗/
i f (cErr < bErr)

{
bErr = cErr ;

/∗ Dump current matrix in to b e s t matrix ∗/
int i ;

for (i = 0 ; i < 30 ; i++)

{
bMtx [i] = wMtx [i] ;

}

p r i n t f (” (New Best Error : %.8 f) , (Temp: %.2 f) \n” , bErr , cTemp) ;

}

/∗ Write the g l o b a l and b e s t error va lue s f o r p l o t t i n g ∗/
FILE ∗ fp ;

fp = fopen (”dgn/ g l oba l . e r r ” , ”a”) ;

f p r i n t f (fp , ”%.8 f \n” , cErr) ;

f c l o s e (fp) ;

}
/∗ Ca lcu la t e temperature decrease ∗/
s tep = fnAnnealStep (sTemp , eTemp , nCycles) ;

cTemp −= step ;

}
/∗ S t a t i s t i c s ∗/
p r i n t f (”\n”) ;
p r i n t f (”|−−−−−−Train ing Accuracy−−−−−−|\n”) ;
p r i n t f (” (Best : %.4 f \%)\n” , (100 . 0 − (bErr ∗ 100 . 0))) ;

p r i n t f (”\n”) ;
p r i n t f (”|−−−Optimal Train ing Matrix−−−|\n”) ;
int j ;

for (j = 0 ; j < 18 ; j++)

{
i f (j < 10)

{

53

p r i n t f (” ([0%d] : %.2 f) \n” , j , bMtx [j]) ;

}
else

{
p r i n t f (” ([%d] : %.2 f) \n” , j , bMtx [j]) ;

}

}

/∗ Val ida t ion ∗/

/∗ 70% Accuracy expec ted . This i s somewhat h igh f o r such a

smal l t r a i n i n g s e t and network s i z e but i t seems to pass

c o n s i s t e n t l y ∗/
p r i n t f (”\n”) ;
p r i n t f (”|−−−−−−Neural Val idat ion−−−−−−|\n”) ;
p r i n t f (”\n”) ;

p r i n t f (”Enter ing a subset o f Sample A (Expecting 0 . 0) \n”) ;
oNet = fnCalculateNetwork (bMtx , 0 . 55 , 0 . 43 , 1 . 41 , 0 . 26 , 0 . 6 1) ;

p r i n t f (”Actual : %.8 f \n” , oNet) ;

i f (oNet <= 0 . 3)

{
p r i n t f (”PASS\n”) ;

}
else

{
p r i n t f (”FAIL\n”) ;

}
p r i n t f (”\n”) ;

p r i n t f (”Enter ing a subset o f Sample B (Expecting 1 . 0) \n”) ;
oNet = fnCalculateNetwork (bMtx , −0.02 , −0.17 , 2 . 4 , −0.26 , 0 . 38) ;

p r i n t f (”Actual : %.8 f \n” , oNet) ;

i f (oNet >= 0 . 7)

{
p r i n t f (”PASS\n”) ;

}
else

{
p r i n t f (”FAIL\n”) ;

}
p r i n t f (”\n”) ;

p r i n t f (”Enter ing a subset o f Sample A (Expecting 0 . 0) \n”) ;
oNet = fnCalculateNetwork (bMtx , 0 . 57 , 0 . 42 , 1 . 43 , 0 . 25 , 0 . 6 5) ;

p r i n t f (”Actual : %.8 f \n” , oNet) ;

i f (oNet <= 0 . 3)

{
p r i n t f (”PASS\n”) ;

}
else

{
p r i n t f (”FAIL\n”) ;

}
p r i n t f (”\n”) ;

54

p r i n t f (”Enter ing a subset o f Sample B (Expecting 1 . 0) \n”) ;
oNet = fnCalculateNetwork (bMtx , −0.05 , −0.2 , 2 . 27 , −0.29 , 0 . 51) ;

p r i n t f (”Actual : %.8 f \n” , oNet) ;

i f (oNet >= 0 . 7)

{
p r i n t f (”PASS\n”) ;

}
else

{
p r i n t f (”FAIL\n”) ;

}
p r i n t f (”\n”) ;

f r e e (wMtx) ;

f r e e (eMtx) ;

}

#############################

#∗∗∗∗∗ fnannea l shake . h ∗∗∗∗∗#
#############################

#ifndef FNANNEALSHAKE H

#define FNANNEALSHAKE H

#include ” fngetrandom . h”

/∗ Shake the weight matrix e lements to generate randomness ∗/
void fnAnnealShake (double sTemp , double cTemp , double ∗wMtx) ;

#endif

#############################

#∗∗∗∗∗ fnannea l shake . c ∗∗∗∗∗#
#############################

#include ” fnannea l shake . h”

void fnAnnealShake (double sTemp , double cTemp , double ∗wMtx)

{
int i ;

for (i = 0 ; i < 30 ; i++)

{
/∗ Determine random va lue change ∗/
double de l t a = 0 .5 − fnGetRandom () ;

d e l t a ∗= (cTemp / sTemp) ;

wMtx [i] = wMtx [i] + de l t a ;

}
}

55

############################

#∗∗∗∗∗ f nannea l s t ep . h ∗∗∗∗∗#
############################

#ifndef FNANNEALSTEP H

#define FNANNEALSTEP H

#include <s t d l i b . h>

#include <math . h>

/∗ Reduce temperature va lue l o g a r i t hm i c a l l y ∗/
double fnAnnealStep (double sTemp , double eTemp , int nCycles) ;

#endif

############################

#∗∗∗∗∗ f nannea l s t ep . c ∗∗∗∗∗#
############################

#include ” fnannea l s t ep . h”

double fnAnnealStep (double sTemp , double eTemp , int nCycles)

{
return exp ((l og (sTemp / eTemp)) / ((double) nCycles − 1)) ;

}

#################################

#∗∗∗∗∗ fngetwe ightmatr ix . h ∗∗∗∗∗#
#################################

#ifndef FNGETWEIGHTMATRIX h

#define FNGETWEIGHTMATRIX h

#include <s t d l i b . h>

#include ” fngetrandom . h”

/∗ Return a random weight matrix to beg in t r a i n i n g ∗/
double ∗ fnGetWeightMatrix () ;

#endif

56

#################################

#∗∗∗∗∗ fngetwe ightmatr ix . c ∗∗∗∗∗#
#################################

#include ” fngetwe ightmatr ix . h”

double ∗ fnGetWeightMatrix ()

{
int i ;

/∗ 30 i s the weight matrix s i z e . Yes , t h i s shou ld be

a #de f ine but i t i s 3AM ∗/
double ∗wMtx = (double ∗) mal loc (30 ∗ s izeof (double)) ;

for (i = 0 ; i < 30 ; i++)

{
wMtx [i] = fnGetRandom () ;

}

return wMtx ;

}

##################################

#∗∗∗∗∗ f n ca l cu l a t ene twork . h ∗∗∗∗∗#
##################################

#ifndef FNCALCULATENETWORKH

#define FNCALCULATENETWORKH

#include <s t d i o . h>

#include <s t d l i b . h>

#include ” f n a c t i v a t i o n f un c t i o n . h”

/∗ Ca lcu la t e neura l network output ∗/
double fnCalculateNetwork (double ∗wMtx, double i1 , double i 2 \
double i3 , double i4 , double i 5) ;

#endif

##################################

#∗∗∗∗∗ f n ca l cu l a t ene twork . c ∗∗∗∗∗#
##################################

#include ” fnca l cu l a t ene twork . h”

double fnCalculateNetwork (double ∗wMtx, double i1 , double i2 , \
double i3 , double i4 , double i 5)

{
double h1 = 0 . 0 ; /∗ Hidden Neuron 1 ∗/
double h2 = 0 . 0 ; /∗ Hidden Neuron 2 ∗/
double h3 = 0 . 0 ; /∗ e t c ∗/
double h4 = 0 . 0 ;

double h5 = 0 . 0 ;

double o1 = 0 . 0 ; /∗ Output Neuron 1 ∗/

57

/∗ Get product o f a l l input va lue s and r e s p e c t i v e we igh t s

then squash with the l o g i s t i c a c t i v a t i o n func t i on ∗/
h1 = ((i 1 ∗ wMtx [0]) + (i 2 + wMtx [1]) + (i 3 + wMtx [2]) + \

(i 4 ∗ wMtx [3]) + (i 5 ∗ wMtx [4]) + 1 . 0) ;

h1 = fnAct ivat ionFunct ion (h1) ;

h2 = ((i 1 ∗ wMtx [5]) + (i 2 + wMtx [6]) + (i 3 + wMtx [7]) + \
(i 4 ∗ wMtx [8]) + (i 5 ∗ wMtx [9]) + 1 . 0) ;

h2 = fnAct ivat ionFunct ion (h2) ;

h3 = ((i 1 ∗ wMtx [1 0]) + (i 2 + wMtx [1 1]) + (i 3 + wMtx [1 2]) + \
(i 4 ∗ wMtx [1 3]) + (i 5 ∗ wMtx [1 4]) + 1 . 0) ;

h3 = fnAct ivat ionFunct ion (h3) ;

h4 = ((i 1 ∗ wMtx [1 5]) + (i 2 + wMtx [1 6]) + (i 3 + wMtx [1 7]) + \
(i 4 ∗ wMtx [1 8]) + (i 5 ∗ wMtx [1 9]) + 1 . 0) ;

h4 = fnAct ivat ionFunct ion (h4) ;

h5 = ((i 1 ∗ wMtx [2 0]) + (i 2 + wMtx [2 1]) + (i 3 + wMtx [2 2]) + \
(i 4 ∗ wMtx [2 3]) + (i 5 ∗ wMtx [2 4]) + 1 . 0) ;

h5 = fnAct ivat ionFunct ion (h5) ;

o1 = ((h1 ∗ wMtx [2 5]) + (h2 ∗ wMtx [2 6]) + (h3 ∗ wMtx [2 7]) + \
(h4 ∗ wMtx [2 8]) + (h5 ∗ wMtx [2 9]) + 1 . 0) ;

o1 = fnAct ivat ionFunct ion (o1) ;

return o1 ;

}

####################################

#∗∗∗∗∗ f n a c t i v a t i o n f un c t i o n . h ∗∗∗∗∗#
####################################

#ifndef FNACTIVATIONFUNCTION H

#define FNACTIVATIONFUNCTION H

#include <s t d l i b . h>

#include <math . h>

/∗ Squash neuron output va lue s to the range 0 . . 1 ∗/
double fnAct ivat ionFunct ion (double nVal) ;

#endif

58

####################################

#∗∗∗∗∗ f n a c t i v a t i o n f un c t i o n . c ∗∗∗∗∗#
####################################

#include ” f n a c t i v a t i o n f un c t i o n . h”

double fnAct ivat ionFunct ion (double nVal)

{
return ((1 . 0) / (1 . 0 + exp(−nVal))) ;

}

##########################

#∗∗∗∗∗ f n g e t e r r o r . h ∗∗∗∗∗#
##########################

#ifndef FNGETERROR H

#define FNGETERROR H

/∗ Return simple error − Di f f e rence between ac tua l and expec ted output ∗/
double fnGetError (double actua l , double expected) ;

#endif

##########################

#∗∗∗∗∗ f n g e t e r r o r . c ∗∗∗∗∗#
##########################

#include ” f n g e t e r r o r . h”

double fnGetError (double actua l , double expected)

{
return (ac tua l − expected) ;

}

#########################

#∗∗∗∗∗ fngetrmse . h ∗∗∗∗∗#
#########################

#ifndef FNGETRMSE H

#define FNGETRMSE H

#include <math . h>

/∗ Return Root Mean Squared Error f o r t r a i n i n g cy c l e ∗/
double fnGetRMSE(double ∗eMtx , int nCycles) ;

#endif

59

#########################

#∗∗∗∗∗ fngetrmse . c ∗∗∗∗∗#
#########################

#include ” fngetrmse . h”

double fnGetRMSE(double ∗eMtx , int nCycles)

{
double sigma = 0 . 0 ;

int i ;

for (i = 0 ; i < nCycles ; i++)

{
sigma += pow(eMtx [i] , 2) ;

}

return s q r t (sigma / nCycles) ;

}

###########################

#∗∗∗∗∗ fngetrandom . h ∗∗∗∗∗#
###########################

#ifndef FNGETRANDOMH

#define FNGETRANDOMH

#include <s t d l i b . h>

#include <f loat . h>

#include <time . h>

/∗ I n i t random seed ∗/
void i n i t r and () ;

/∗ Get random f l o a t ∗/
double fnGetRandom () ;

#endif

###########################

#∗∗∗∗∗ fngetrandom . c ∗∗∗∗∗#
###########################

#include ” fngetrandom . h”

void i n i t r and ()

{
/∗ Seed random number generator to increase random d i s t r i b u t i o n ∗/
srand ((unsigned) (time (0))) ;

}

double fnGetRandom ()

{
/∗ Return a random doub le p r e c i s i on va lue ∗/
return ((double) rand () / RANDMAX) ;

}

60

#############################

#∗∗∗∗∗ wri tesamples . py ∗∗∗∗∗#
#############################

#!/ usr / bin /python2

Python s c r i p t to generate C func t ion c a l l s f o r sending

generated ECG va lue s to the neura l network

from random import ∗ # Import random f u n c t i o n a l i t y

f = open (’Smp−T. ecg ’ , ’w ’) # Dump va lue s to a t e x t t i l e

j = 0 # Loop counter to ensure t ha t 40 va lue s may be wr i t t en

for i in range (20) :

p = s t r (round (uniform (0 . 5 5 , 0 . 62) , 2)) # Healthy P wave range

q = s t r (round (uniform (0 . 4 0 , 0 . 46) , 2)) # Healthy Q wave range

r = s t r (round (uniform (1 . 3 8 , 1 . 45) , 2)) # Healthy R wave range

s = s t r (round (uniform (0 . 2 6 , 0 . 21) , 2)) # Healthy S wave range

t = s t r (round (uniform (0 . 6 0 , 0 . 66) , 2)) # Healthy T wave range

o = s t r (0 . 0 0) # Expected output

Generate C func t ion c a l l s

c a l c s t r = ”oNet = fnCalculateNetwork (wMtx, ” + s t r (p) + ” , ” + s t r (q) + \
” , ” + s t r (r) + ” , ” + s t r (s) + ” , ” + s t r (t) + ”) ; ” + ”\n”

f . wr i t e (c a l c s t r)

e r r s t r = ”eMtx [” + s t r (j) + ”] = fnGetError (oNet , 0 . 0) ; ” + ”\n”
f . wr i t e (e r r s t r) # Append hea l t hy func t i on c a l l to f i l e

j += 1

p = s t r (round (uniform (−0.09 , −0.02) , 2)) # Unhealthy <ecg wave> range

q = s t r (round (uniform (−0.26 , −0.14) , 2)) # . . .

r = s t r (round (uniform (2 . 1 9 , 2 . 42) , 2)) # . . .

s = s t r (round (uniform (−0.2 , −0.3) , 2)) # . . .

t = s t r (round (uniform (0 . 3 7 , 0 . 55) , 2)) # . . .

o = s t r (1 . 0 0) # Expected output

Generate C func t ion c a l l s

c a l c s t r = ”oNet = fnCalculateNetwork (wMtx, ” + s t r (p) + ” , ” + s t r (q) + \
” , ” + s t r (r) + ” , ” + s t r (s) + ” , ” + s t r (t) + ”) ; ” + ”\n”

f . wr i t e (c a l c s t r)

e r r s t r = ”eMtx [” + s t r (j) + ”] = fnGetError (oNet , 1 . 0) ; ” + ”\n”
f . wr i t e (e r r s t r) # Append unhea l thy func t i on c a l l to f i l e

j += 1

f . c l o s e () # Close f i l e stream

61

