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Abstract 

This study aimed to (1) compare the postural control strategies, sensory organization of 

balance control, and lower limb muscle performance of children with and without 

developmental coordination disorder (DCD), and (2) determine the association between 

postural control strategies, sensory organization parameters and knee muscle performance 

indices among children with DCD. Fifty-eight DCD-affected children and 46 typically 

developing children participated in the study. Postural control strategies and sensory 

organization were evaluated with the Sensory Organization Test (SOT). Knee muscle strength 

and time to produce maximum muscle torque (at 180°/s) were assessed using an isokinetic 

machine. Analysis of variance was used to compare the outcome variables between groups, 

and multiple regression analysis was used to examine the relationships between postural 

control strategies, sensory organization parameters, and isokinetic indices in children with 

DCD. The DCD group had significantly lower strategy scores (SOT conditions 5 and 6), 

lower visual and vestibular ratios, and took a longer time to reach peak torque in the knee 

flexor muscles than the control group (p > 0.05). After accounting for age, sex, and body mass 

index, the vestibular ratio explained 35.8% of the variance in the strategy score of SOT 

condition 5 (p < 0.05). Moreover, the visual ratio, vestibular ratio, and time to peak torque of 

the knee flexors were all significant predictors (p < 0.05) of the strategy score during SOT 

condition 6, accounting for 14%, 19.7%, and 19.8% of its variance, respectively. The children 
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with DCD demonstrated deficits in postural control strategy, sensory organization and 

prolonged duration of muscle force development. Slowed knee muscle force production 

combined with poor visual and vestibular functioning may result in greater use of hip strategy 

by children with DCD in sensory challenging environments. 

 

Keywords: Clumsy children; muscle contraction time; motor strategy; sensory inputs; 

balance 
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1. Introduction 

Developmental coordination disorder (DCD) is one of the most common pediatric 

sensorimotor disorders, affecting approximately 6% of typically developing children 

worldwide (American Psychiatric Association, 2000). The prevalence rate of DCD in Hong 

Kong has not been determined (Child Assessment Service, 2006). Children diagnosed with 

DCD are characterized by marked impairment in motor coordination that significantly 

interferes with their academic achievements and daily activities (American Psychiatric 

Association, 2000). Among the many sensorimotor problems found in children with DCD, 

poor postural control is the most common, demonstrated in 73-87% of the DCD-affected 

population (Macnab, Miller, & Polatajko, 2001). The problem requires special attention 

because suboptimal balance ability may increase the risk of falls, limit activity participation, 

and affect motor skill development (Fong, Lee, & Pang, 2011; Grove & Lazarus, 2007). 

Postural stability requires the optimal reception, processing, and integration of sensory 

inputs from somatosensory, visual, and vestibular systems along with proper muscle responses 

and execution of movement strategies such as ankle and hip strategies (Horak & Macpherson, 

1996; Nashner, 1997). It has been well documented that children with DCD have widespread 

impairment in their sensory organization that is associated with greater standing postural sway 

(Fong et al., 2011; Grove & Lazarus, 2007; Inder & Sullivan, 2005). Yet, how sensory 

organization deficits influence movement strategies that in turn lead to the greater postural 
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sway is still not known. Moreover, it has been reported that younger children with DCD have 

lower knee muscle strength (Raynor, 2001) and altered timing of postural muscle contraction 

(Johnston, Burns, Brauer, & Richardson, 2002). We hypothesize that these neuromuscular 

deficits may also affect the postural control strategies used by such children. It is important to 

understand the factors that may affect balance strategies in this pediatric group to design 

specific remedial interventions to improve their sensorimotor impairments, movement 

strategies, and balance performance.   

To date, only one study has directly examined the postural control strategies used by 

children with DCD. Fong, Tsang, and Ng (2012a) found that DCD-affected children tended to 

over-rely on hip strategy (i.e., large and rapid motion at the hip joints with antiphase rotations 

at the ankle joints) rather than ankle strategy (i.e., body sway centered primarily about the 

ankle joints) to maintain balance when standing in sensory challenging environments, but 

they did not offer any explanation for this phenomenon (Horak & Macpherson, 1996; Nashner, 

1997). Moreover, the Fong et al. (2012a) study sample was too homogenous (i.e., DCD 

children with no indications of autistic disorder or attention deficit hyperactivity disorder) and 

small (DCD group, n = 22; control group, n = 19). Studies with larger sample sizes that use 

more representative samples (i.e., children with DCD and comorbidities) are needed to 

accurately detect differences in balance strategies between children with and without DCD 

and to improve the generalizability of results. 
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Therefore, this study aimed to (1) compare the postural control strategies, sensory 

organization of balance control, and lower limb muscle performance of children with and 

without DCD, and (2) examine the relationship between postural control strategies, sensory 

organization parameters, and muscle performance indices among children with DCD. 

 

2. Methods 

2.1. Participants 

This was a cross-sectional, case-control, and exploratory study. All sample size 

calculations were based on a statistical power of 0.80 and an alpha of 0.05 (two-tailed). 

Previous studies showed that children with DCD had lower sensory ratios than typically 

developing children, with effect sizes ranging from 0.3 to 0.8 (Fong et al., 2011; Fong, Tsang, 

& Ng, 2012b). Moreover, based on a sample of 20 children with DCD and 20 control 

participants, Raynor (2001) showed that a DCD group had significantly lower isokinetic peak 

torques, with effect sizes of 1.2 and 1.5 for knee extension and flexion, respectively. For the 

comparison of sensory organization test (SOT) strategy scores between children with and 

without DCD, our previous study (Fong et al., 2012a) showed that the minimal effect size was 

0.8. In light of the overall available scientific evidence, a medium to large effect size of 0.6 

was expected for this study. Therefore, the minimum sample size required to detect a 

significant between-group difference in outcomes was 45 for each group (objective 1). 



7 
Running head: Balance strategies in clumsy children 

Regarding the multiple regression analyses, if up to four variables were to be modeled at an 

effect size of 0.25 (medium to large), a minimum of 53 children with DCD were needed 

(objective 2). 

Children with DCD were recruited from local child assessment centers and hospitals. 

They were diagnosed with DCD (with or without comorbid conditions) after a formal 

multidisciplinary evaluation at the child assessment centres. The inclusion criteria were (1) a 

formal diagnosis of DCD made by a pediatrician, child psychologist or child psychiatrist, 

according to the criteria stated in the Diagnostic and Statistical Manual of Mental Disorders 

(American Psychiatric Association, 2000); (2) demonstrating motor coordination below that 

expected of the child’s chronological age (i.e., Bruininks Oseretsky Test of Motor Proficiency 

standard score of less than or equal to 42 according to Bruininks (1978); (3) aged between 6 

and 11 years; (4) studying in a mainstream school; (5) having no intellectual impairment as 

determined by a child psychologist at the child assessment center; (6) Chinese ethnicity; and 

(7) residing in Hong Kong. The exclusion criteria were (1) a diagnosis of neurological or 

other movement disorder (e.g., cerebral palsy); or (2) significant congenital, musculoskeletal 

(e.g., fracture) or cardiopulmonary disorder that could affect movement strategies or muscle 

force production. Age- and sex-matched healthy control children were recruited by 

convenience sampling from the local community following the inclusion and exclusion 

criteria stated above except that they did not have any history of DCD. All children in the 
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control group were screened by a pediatric physiotherapist using the Movement Assessment 

Battery for Children-2 to ensure that they had a total percentile score of greater than the 15th 

percentile (i.e., had no movement difficulty). Movement ABC-2 has been shown to have good 

to perfect test-retest (ICC ranging from 0.73 to 0.80), inter-rater (ICC ranging from 0.95 to 

1.00) reliability and criterion-related validity (Henderson, Sugden, & Barnett, 2007). 

 

2.2. Procedures 

 Ethical approval was obtained from the human subjects ethics review committee of the 

administering institute. Each participant and his or her guardian gave informed written 

consent before participating in the study. All experimental procedures were conducted by 

physiotherapists in accordance with the Declaration of Helsinki. The outcome assessors, 

except the research assistant who was responsible for interviewing the children and parents, 

were blinded to the subject groups. 

 

2.2.1. Demographic information 

Relevant information (e.g., comorbid conditions) was obtained by medical records and 

interviewing the participants and their parents. Body height and weight were measured using 

the Health O Meter (Continental Scale Corp., Bridgeview, IL, USA). Body mass index (BMI) 

was then calculated by the equation weight/height2. 
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2.2.2. Sensory organization and postural control strategy 

The sensory organization test of the Smart Equitest computerized dynamic 

posturography (CDP) machine (NeuroCom International Inc., Clackamas, OR, USA) is a 

valid and reliable test that provides information on the use of sensory inputs and balance 

strategies to maintain postural stability in various sensory environments (Di Fabio & Foudriat, 

1996; Fong, Fu, & Ng, 2012c; NeuroCom, 2008). During the test, participants stood as steady 

as possible barefoot on the force platform of the CDP machine. They were instructed to rest 

their arms by their sides and look forward at a distant visual target. Each participant was then 

exposed to the following six sensory conditions in sequence. In conditions 1, 2 and 3, 

participants stood on a fixed platform with eyes open, eyes closed, and eyes open in a 

sway-referenced visual surround (i.e., the visual surround tilted in response to the child’s 

anteroposterior body sway), respectively. In conditions 4, 5 and 6, participants stood on a 

sway-referenced platform (i.e., the platform tilted in response to the child’s anteroposterior 

body sway) with eyes open, eyes closed, and eyes open in a sway-referenced visual surround, 

respectively (Nashner, 1997; NeuroCom, 2008). There were three trials for each testing 

condition, and each trial lasted for 20 seconds. After a familiarization test, each participant 

underwent the SOT (total 18 trials) without receiving any feedback from the assessor. To 

prevent fall-related injuries, all participants wore a security harness throughout the test 
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(NeuroCom, 2008). 

 The CDP machine measures postural sway amplitude by capturing the trajectory of the 

participant’s center of pressure (COP) when standing. An equilibrium score (ES), which is 

defined as the non-dimensional percentage compared to the participant’s peak amplitude of 

AP sway to the theoretical limits of AP stability (8.5° anteriorly and 4.0° posteriorly), was 

generated (NeuroCom, 2008). An ES of 0 represents a sway that exceeded the limit of stability, 

whereas an ES of 100 indicates no sway in standing (Nashner, 1997; NeuroCom, 2008). After 

obtaining the ES of all trials, the mean ES of each SOT condition was computed. These mean 

equilibrium scores were then used to calculate the somatosensory ratio (i.e., mean ES of 

condition 2/mean ES of condition 1), visual ratio (i.e., mean ES of condition 4/mean ES of 

condition 1), and vestibular ratio (i.e., mean ES of condition 5/mean ES of condition 1). These 

sensory ratios represent the ability of the participant to use a particular sensory input to 

maintain standing balance. A sensory ratio close to 1 indicates that the participant had 

superior ability in using that particular sensory input to maintain postural stability (Nashner, 

1997; NeuroCom, 2008). The three sensory ratios were used for analysis in this study. 

 Apart from registering the trajectory of the participant’s COP in standing, the force 

platform of the CDP machine detects horizontal shear forces in the AP direction. Horizontal 

shear force increases when the participant sways at the hips, rather than at the ankles, to 

maintain standing balance (NeuroCom, 2008). A strategy score that quantifies the amount of 
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ankle and hip movements used in maintaining standing balance during each trial was derived 

according to the following formula. 

 Strategy score = [1 – (Maximum horizontal AP shear force – minimum horizontal AP 

shear force)/ 25] x 100 

 In the equation above, 25lb (11.3kg) is the average difference between the maximum and 

minimum horizontal shear forces measured with a group of normal participants who used hip 

strategy alone to balance (NeuroCom, 2008). A high strategy score (close to 100) indicates 

that the participant predominantly used ankle strategy to maintain standing balance whereas a 

low strategy score (near 0) indicates that the participant predominantly used hip strategy to 

maintain postural stability (NeuroCom, 2008). It is worth noting that when normal individuals 

respond to perturbations of increasing amplitudes and velocities, they gradually shift from an 

ankle to a hip strategy (i.e., their strategy scores decrease progressively) to restore equilibrium 

(Horak & Macpherson, 1996; Horak & Nashner, 1986; Nashner, 1997). In this study, the 

mean strategy score (three trials) of each SOT condition was calculated and the mean strategy 

scores of SOT conditions 1 to 6 were used for analysis. 

 

2.2.3. Lower limb isokinetic performance 

 Concentric isokinetic muscle strength and the time taken to reach peak torque of both 

knee extensors and flexors were evaluated using a Cybex Norm dynamometer (Computer 



12 
Running head: Balance strategies in clumsy children 

Sports Medicine Inc., Stoughton, MA, USA) because isokinetic measurements have been 

found to be valid and reliable in young individuals (Jones & Stratton, 2000; Merlini, 

Dell’Accio, & Granata, 1995). Only the dominant leg (i.e., the leg that the participant used to 

kick a ball) was tested, as there is no significant side-to-side difference in knee muscle peak 

torques (Holmes & Alderink, 1984) and the time taken to achieve peak torque (Barber-Westin, 

Galloway, Noyes, Corbett, & Walsh, 2005) in children. The whole assessment was conducted 

while participants were sitting with their hips flexed to 85° and trunk and ipsilateral thigh 

stabilized by straps. The rotational axis of the dynamometer was aligned with the knee joint 

axis (i.e., lateral femoral epicondyle), and the shin pad of the adaptor was placed just above 

the lateral malleolus of the tested leg (CSMI, 2005). Each participant performed a full range 

of knee flexion and extension at an angular velocity of 180°/s. Before the test, all participants 

were asked to perform three sub-maximal and three maximal concentric knee extensor and 

flexor contractions as familiarization trials (Chan, Maffulli, Korkia, & Li, 1996). After 

correcting the gravitational effect on knee torque, the participants performed five knee flexion 

and extension movements consecutively at maximal effort throughout the range as a test 

ensemble (CSMI, 2005). To facilitate the comparison of knee muscle strength between the 

two groups, the average body-weight-adjusted isokinetic peak torques of the five trials of both 

knee extensors and flexors were documented and used for analysis. In addition, average ‘time 

to peak torque’ (i.e., the duration from the beginning of muscle torque development until the 
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point at which peak torque was first developed) of the five trials of both knee extensors and 

flexors were analyzed (CSMI, 2005).  

 

2.3. Statistical analysis 

Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL, USA), 

using a significance level of 0.05 (two-tailed). Descriptive statistics are used to report all 

relevant variables. Kolmogorov-Smirnov tests were used to ascertain the normality of data. 

Independent t tests and the χ2 test were used to compare the continuous (i.e., age, height, 

weight, and body mass index) and categorical (i.e., sex) demographic variables, respectively, 

between the DCD and control groups.  

To compare the SOT-derived sensory ratios, SOT-derived strategies scores, and 

isokinetic outcome parameters between the two groups, three separate multivariate analyses 

of variance (MANOVA) were performed to avoid the increased probability of committing 

type I errors associated with multiple comparisons. The Bonferroni-adjusted p value and 

effect size (partial eta-squared) are reported for each outcome variable. By convention, partial 

eta-squared values of 0.01, 0.06, and 0.14 represent small, medium, and large effect sizes, 

respectively (Portney & Watkins, 2009). 

The Pearson product-moment correlation (r) was used to examine the degree of 

association between SOT-derived scores and isokinetic outcome variables among children 
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with DCD. Next, multiple linear regression analyses were performed to identify the 

determinants of strategy scores (SOT conditions 5 and 6). Demographics including age, sex, 

and BMI were first forced into the regression model (enter method) because these factors may 

influence balance strategies (Greve, Alonso, Bordini, & Camanho, 2007; Steindl, Kunz, 

Schrott-Fischer, & Scholtz, 2006). Body height and weight were not entered into the 

regression model because the strategy score is derived from the ratio of sway amplitude (sway 

angle) to horizontal shear forces and is not affected by the height and weight of the participant 

(NeuroCom, 2008). Those sensory ratios and isokinetic indices that were significantly 

associated with any of the aforementioned strategy scores in the bivariate correlational 

analysis (p < 0.05) were then entered into the regression model (enter method). To avoid 

multicollinearity, the degree of association among the predictor variables was also examined 

using Pearson’s r. Any predictors that had a correlation of > 0.20 were not included in the 

same regression model. 

 

3. Results 

3.1. Participant characteristics  

Fifty-eight children with DCD and 46 control children participated in the study. There 

was no significant difference in demographic characteristics between the two groups (Table 

1).  
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3.2. Comparison of outcome variables 

The DCD-affected children had significantly lower visual (p < 0.001) and vestibular (p = 

0.003) ratios than the control participants, but the somatosensory ratio was comparable 

between the two groups (p > 0.05). In addition, the strategy scores of SOT condition 5 (p = 

0.005) and 6 (p = 0.005) were significantly lower among children in the DCD group. No 

significant difference (p > 0.05) was observed between groups in the strategy scores for SOT 

conditions 1 to 4 (Table 2).  

 For the isokinetic outcome variables, no significant difference was identified between 

groups in the body-weight-adjusted peak torques of knee extensors and flexors (p > 0.05). 

However, the DCD group participants generated peak torque in knee flexion that was 

substantially slower than the control group (p = 0.001). Delayed muscle force production was 

not observed (p > 0.05) in the knee extensor muscles of children with DCD when compared to 

their typically developing peers (Table 2). 

 

3.3. Associations with SOT-derived strategy scores 

 Moderate correlations (p < 0.05) were found between SOT-derived strategy score 

(condition 6), the visual ratio, vestibular ratio and time to peak torque of the knee flexors 

among children with DCD. The SOT-derived vestibular ratio was also moderately correlated 
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with (p < 0.05) the strategy score obtained during SOT condition 5 (Table 3). Moreover, 

moderate to high correlations (p < 0.05) existed among the predictor variables (i.e., SOT 

visual ratio, vestibular ratio and time to peak torque of the knee flexors) (Table 3). Therefore, 

separate regression models were used in the subsequent analyses to avoid possible 

multicollinearity. 

 In the first set of regression models (model 1), the vestibular ratio was used to predict 

strategy score of SOT condition 5. After accounting for age, sex, and BMI, the vestibular ratio 

explained 35.8% of the variance (p < 0.001) in the strategy score of the condition 5 (Table 4). 

In the second set of regression models, the visual ratio, vestibular ratio and time to peak 

torque of the knee flexors were used to predict the strategy score of SOT condition 6. As in 

the previous model, we first accounted for demographics including age, sex, and BMI. The 

results showed that the visual ratio (model 2), vestibular ratio (model 3), and time to peak 

torque of the knee flexors (model 4) were all significant predictors of strategy score (SOT 

condition 6), accounting for 14% (p = 0.004), 19.7% (p < 0.001), and 19.8% (p < 0.001) of its 

variance, respectively (Table 4).  

 

4. Discussion 

4.1. Differential sensorimotor performance and balance strategies of children with and 

without DCD 



17 
Running head: Balance strategies in clumsy children 

This appears to be the first study that has examined the time course of the development 

of peak torque in children with DCD. Our results revealed that the DCD-affected children 

took a longer time (0.1s) to produce maximum muscle force during knee flexion at moderate 

movement velocity (180°/s). However, delayed maximal muscle force production was not 

observed in the knee extensor muscles (Table 2). The physiological reasons for this 

phenomenon are unclear but it has been suggested that the contractile speed of muscle or 

shortening speed of sarcomeres (Asai & Aoki, 1996; De Ste Croix, Deighan, & Armstrong, 

2004), degree of motor unit activation and synchronization (Asai & Aoki, 1996; Kannus & 

Beynnon, 1993), amount and rate of neural activation (Komi, 1986), degree of co-activation 

in the antagonist muscle (De Ste Croix et al., 2004), muscle fiber type and composition 

(Hosking, Young, Dubowitz, & Edwards, 1978), and stiffness of muscle and tendons 

(Mayhew & Bemben, 1994) may account for the rate of muscle torque development. Further 

studies could explore the physiological mechanisms that contribute to the slower maximum 

torque production of specific postural muscles in children with DCD. 

Despite the slowness of muscle force generation in the children with DCD, their 

maximal level of force production (i.e., body-weight-adjusted peak torque) was as high as the 

typically developing children. This finding is in exact agreement with that of our previous 

study (Fong, Chung, Chow, Ma, & Tsang, 2013). Although one earlier study suggested that 

younger children aged 6 to 8 years with DCD had lower levels of peak torque during knee 



18 
Running head: Balance strategies in clumsy children 

extension and flexion than typically developing children (Raynor, 2001), these findings do not 

contradict our results. Because the DCD-affected children in our study were aged 6 to 11 

years, they might have grown out of the muscle weakness problem during the maturation 

process (Fong et al., 2013). 

Concurring with several previous reports (Fong et al., 2011; Fong et al., 2012a; Fong et 

al., 2012b; Grove & Lazarus, 2007; Inder & Sullivan, 2005), this study confirmed that the 

children with DCD were less able to rely on visual and vestibular inputs to maintain standing 

balance than their typically developing counterparts. Dysfunction of the parietal cortex may 

explain the visual-motor (e.g., visual-postural control) deficits (Kashiwagi, Iwaki, Narumi, 

Tamai, & Suzuki, 2009), and inadequate vestibular stimulation during development may 

explain the lower vestibular function (Fong et al., 2012b). Moreover, our finding suggests that 

the DCD-affected children used somatosensory information for maintaining balance as 

effectively as the children with normal motor development. This could be the case because 

somatosensory feedback is re-weighted more heavily for postural control in children with 

DCD due to their visual and vestibular deficits (Fong et al., 2012a; Grove & Lazarus, 2007; 

Przysucha & Taylor, 2004). 

This study also demonstrated a trend for strategy scores to decrease progressively from 

SOT condition 1 to 6 in both groups. The DCD group attained significantly lower strategy 

scores in SOT conditions 5 and 6 than the control group (Table 2). These findings were 
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anticipated, and in agreement with those of our previous study (Fong et al., 2012a). Under 

simple sensory conditions (e.g., SOT conditions 1 to 4), both groups of children 

predominantly fine-tuned their standing posture by swaying on their ankles. A shift towards 

hip strategy, especially in children with DCD, occurred in SOT conditions 5 and 6 when the 

participants experienced greater postural instability. Previous studies have proposed several 

neurophysiological mechanisms such as cerebellar and basal ganglia dysfunctions (Fong et al., 

2012a; Groenewegen, 2003; Zwicker, Missiuna, & Boyd, 2009) and neuromuscular deficits 

(Fong et al., 2012a; Raynor, 2001; Smits-Engelsman, Westenberg, & Duysens, 2008) to 

explain the motor dysfunctions among children with DCD. However, these explanations are 

yet to be confirmed in the context of postural control. 

 

4.2. Determinants of altered postural control strategies in children with DCD 

 This study sought to explain the exaggerated hip movements used by children with DCD 

to maintain standing balance under sensory depriving (SOT condition 5) and conflicting (SOT 

condition 6) environments. We found that the vestibular ratio was independently associated 

with the strategy score obtained during SOT condition 5 (Table 4). As that condition only 

provided accurate vestibular information to the participants (Nashner, 1997; NeuroCom, 

2008), the children with DCD who had poor reliance on vestibular input to control their 

posture may have been challenged. When they became unstable, those children might have 



20 
Running head: Balance strategies in clumsy children 

responded by increasing the sway of their hips to maintain equilibrium (Horak & Macpherson, 

1996; Nashner, 1997).  

Another important finding of this study is that time to peak torque of the knee flexors 

was the major determinant of the strategy score obtained during SOT condition 6, and that the 

vestibular and visual ratios were also significant, but less strong, predictors (Table 4). Our 

results point to the powerful influence of the knee flexors’ force production time on postural 

control strategy. The major knee flexor muscles, hamstrings, are also important hip extensors 

because they cross both hip and knee joints (Standring, 2008). The hamstring muscle group is 

thus particularly important in controlling the forward sway of the body (i.e., hip flexion) in 

balance strategies (Horak & Nashner, 1986). Horak and Nashner (1986) showed that 

hamstring muscle reflex contraction latency can be as short as 100-150ms in response to a 

forward postural disturbance. This hints that when the hamstring muscles cannot produce 

enough torque within a short period to control forward sway, the result might be excessive hip 

flexion (hip sway) as observed in the children with DCD. Moreover, although SOT condition 

6 provided visual and vestibular inputs to the participants, the children with DCD had 

difficulties in relying on these senses to balance. They might have swayed their hips more as a 

compensatory strategy (Horak & Macpherson, 1996; Nashner, 1997). When they swayed their 

hips, the hamstring muscles would have worked slowly, thereby exaggerating the postural 

sway and further compromising their body balance. In summary, excessive sway of the hips 
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when balancing in a sensory conflicting environment may be a manifestation of slowed 

hamstring muscle contraction and poor vestibular and visual functions in children with DCD. 

 

4.3. Clinical implication  

The overuse of hip strategy to balance increases energy consumption and may increase 

the risk of falling, especially when standing on an unstable surface (Ray, Horvat, Croce, 

Mason, & Wolf, 2008). We found that the significant determinants of excessive hip sway were 

prolonged time to peak torque in the knee flexors and a decreased ability to rely on visual and 

vestibular inputs to balance. Our findings shed light on the causes of poor postural control in 

children with DCD. Results also imply that balance training programs should be designed to 

improve postural muscle contraction speed, sensory organization, and postural control 

strategies, thereby improving the balance performance and reducing the susceptibility to falls 

within DCD-affected children. 

  

4.4. Limitations and future research directions 

One of the limitations of this study is that we could not assess the temporal changes of 

balance strategies and other neuromuscular parameters within the subjects due to the 

cross-sectional study design. Individual variation in growth and maturation may have 

confounded the results. Another possible confounding factor is the comorbid conditions. For 
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example, 14% of our DCD group participants had attention deficit hyperactivity disorder 

(ADHD). This disorder may also affect sensory organization and balance functions in children 

(Shum & Pang, 2009). Nevertheless, given the high prevalence of comorbidities in children 

with DCD (e.g., 43% of children with DCD have ADHD) (Child Assessment Service, 2006), 

we included a relatively heterogeneous sample to improve the generalizability of the findings. 

Finally, the determinant of postural control strategies is undoubtedly multifaceted, and 

potential contributing factors such as postural muscle recruitment timing, pattern, and 

sequence during balance movements were not measured. Further studies could record the 

postural muscles’ temporal and spatial activities directly by electromyography and in a more 

functional context (e.g., during balance movements).  

 

5. Conclusions 

The children with DCD demonstrated deficits in postural control strategy, speed of 

muscle force production, and sensory organization. It seems that the greater use of hip 

strategy in sensory challenging environments was a manifestation of slowness to generate 

knee flexor muscle torque and poor visual and vestibular functions in this type of child. 
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Tables 

Table 1  

Characteristics of participants. 

 DCD group  

(n = 58) 

Control group 

(n = 46) 

P 

value 

Age, years 7.6 ± 1.2 8.0 ± 1.8 0.235 

Sex (boys/girls), n 49/9 34/12 0.182 

Height, cm 126.6 ± 10.2 128.4 ± 14.7 0.482 

Weight, kg 27.8 ± 8.5 30.0 ± 7.7 0.169 

BMI, kg/m2 16.9 ± 2.7 18.1 ± 3.6 0.058 

Comorbidity 

Attention deficit disorder, n 7 0  

Attention deficit hyperactivity disorder, 

n 

8 0  

Dyslexia, n 6 0  

Asperger syndrome, n 6 0  

Autism spectrum disorders, n 6 0  

Values are mean ± SD.
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Table 2 

Comparison of outcome variables. 

 DCD group  

(n = 58) 

Control group 

(n = 46) 

P value Effect 

size 

SOT – Sensory ratio 

Somatosensory ratio 0.9 ± 0.1 1.0 ± 0.0 0.084 0.030 

Visual ratio 0.6 ± 0.2 0.7 ± 0.2 < 0.001c 0.130 

Vestibular ratio 0.4 ± 0.2 0.5 ± 0.2 0.003b 0.084 

SOT – Strategy score 

Condition 1 97.7 ± 8.0 99.2 ± 2.7 0.247 0.013 

Condition 2  97.5 ± 6.4 99.2 ± 1.7 0.079 0.031 

Condition 3 96.3 ± 7.6 97.7 ± 5.8 0.284 0.011 

Condition 4 83.4 ± 5.7 85.1 ± 6.7 0.166 0.019 

Condition 5 64.7 ± 15.6 73.5 ± 15.3 0.005b 0.076 

Condition 6 49.7 ± 26.5 64.1 ± 23.2 0.005b 0.076 

Body-weight-adjusted isokinetic peak torque at 180°/s, Nm/body weight 

Knee extensors 73.1 ± 21.4 73.9 ± 27.3 0.889 < 0.001 

Knee flexors  43.5 ± 17.8 49.4 ± 17.8 0.151 0.027 

Time to peak torque at 180°/s, s  
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Knee extensors 0.3 ± 0.2 0.3 ± 0.1 0.131 0.030 

Knee flexors 0.3 ± 0.1 0.2 ± 0.1 0.001c 0.127 

Values are mean±SD. 

ap < 0.05. 

bp < 0.01. 

cp < 0.001. 
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Table 3 

Correlations among SOT-derived and isokinetic outcome variables in the children with DCD. 

 Strategy 

score of SOT 

condition 5 

Strategy 

score of SOT 

condition 6 

SOT visual 

ratio 

SOT 

vestibular 

ratio 

Strategy score of 

SOT condition 5 

--- --- --- --- 

Strategy score of 

SOT condition 6 

0.466c --- --- --- 

SOT visual ratio 0.260 0.374b --- --- 

SOT vestibular ratio 0.582c 0.446c 0.613c --- 

Time to peak torque 

of the knee flexors 

-0.089 -0.399b -0.368b -0.201 

ap < 0.05. 

bp < 0.01. 

cp < 0.001. 
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Table 4  

Multiple regression analysis for determining the SOT strategy scores in the children with DCD. 

Model Predictors F R2 change Unstandardized 

regression 

coefficient (B) 

95% Confidence 

interval (CI) 

Standardized 

regression 

coefficient (β) 

P value 

Dependent variable 1: Strategy score of SOT condition 5 

Model 1 Age 9.790 0.009 0.138 -3.029, 3.306 0.011 0.930 

 Sex (boy = 1, girl = 2)   6.610 -2.541, 15.760 0.156 0.153 

 BMI   -1.443 -2.892, 0.005 -0.251 0.051 

 SOT vestibular ratio  0.358 46.665 30.268, 63.062 0.639 <0.001c 

Dependent variable 2: Strategy score of SOT condition 6 

Model 2 Age 3.282 0.002 0.005 -6.437, 6.446 <0.001 0.999 
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 Sex (boy = 1, girl = 2)   14.451 -3.916, 32.817 0.200 0.120 

 BMI   -1.255 -4.154, 1.644 -0.128 0.389 

 SOT visual ratio  0.140 46.736 15.692, 77.780 0.401 0.004b 

Model 3 Age 4.541 0.002 0.219 -5.931, 6.369 0.010 0.943 

 Sex (boy = 1, girl = 2)   12.483 -5.281, 30.248 0.173 0.164 

 BMI   -1.579 -4.391, 1.233 -0.161 0.265 

 SOT vestibular ratio  0.197 59.043 27.212, 90.874 0.475 <0.001c 

Model 4 Age 4.552 0.002 1.483 -4.597, 7.562 0.069 0.627 

 Sex (boy = 1, girl = 2)   16.632 -1.040, 34.305 0.231 0.065 

 BMI   -2.182 -5.074, 0.710 -0.223 0.136 

 Time to peak torque of the 

knee flexors 

 0.198 -210.140 -323.261, 

-97.019 

-0.480 <0.001c 
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ap < 0.05. 

bp < 0.01. 

cp < 0.001. 

 

 


