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There is a growing interest in the analysis of survival data with a cured proportion particularly in tumor
recurrences studies. Biologically, it is reasonable to assume that the recurrence time is mainly affected by
the overall health condition of the patient that depends on some covariates like age, sex or treatment type
received. We propose a semiparametric frailty-Cox cure model to quantify the overall health condition of the
patient by a covariate-dependent frailty that has a discrete mass at zero to characterize the cured patients, and
a positive continuous part to characterize the heterogeneous health conditions among the uncured patients. A
multiple imputation estimation method is proposed for the right-censored case, which is further extended to
accommodate interval-censored data. Simulation studies show that the performance of the proposed method
is highly satisfactory. For illustration, the model is fitted to a set of right-censored melanoma incidence data
and a set of interval-censored breast cosmesis data. Our analysis suggests that patients receiving treatment
of radiotherapy with adjuvant chemotherapy have a significantly higher probability of breast retraction, but
also a lower hazard rate of breast retraction among those patients who will eventually experience the event
with similar health conditions. The interpretation is very different to those based on models without a cure
component that the treatment of radiotherapy with adjuvant chemotherapy significant increases the risk of
breast retraction.

Key words: Asymptotic normal data augmentation; Compound Poisson distribution; Cure
model; Interval-censored data; Multiple imputation.

1 Introduction

Medical and public health researches often involve the analysis of time to a specific event where some
individuals under study are highly susceptible to the event while others are at much lower risk. This type
of data can be found easily in many cancer studies with the variable of interest being the time to recurrence
of cancer tumors. Examples are numerous in the literature such as the study of recurrence of breast cancer
tumors (Peng and Dear, 2000; Lam et al., 2005), and the study of melanoma incidence (Chen et al., 1999;
Ibrahim et al., 2001a,b) where the melanoma patients are reported to have relapse rates of about 60% to
75% (Kirkwood et al., 2000). Another application of cure models is on the study of vaccine efficacy. Some
vaccinated subjects will develop immunity with complete protection that they will be lifetime free of the
disease, while some individuals will only have partial or even no protection from the vaccination. It is of
interest to investigate whether the vaccine is effective in developing immunity and/or in delaying the onset
time of the disease. For simplicity, the term cure is used throughout this paper even though cure models
have been studied in other areas like the analysis of time to first marriage (Aalen, 1992), duration of first
marriage, duration of unemployment and recidivism.

A common type of cure models is a simple mixture model that broadly classifies individuals in the
population into two groups using a binary random effect U , with U = 1 denoting the uncured group and
U = 0 denoting the cured group. The random effect U is more generally called frailty in standard survival
analysis. Among the cured subjects, the time to recurrence T is theoretically equal to ∞ that could not
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2 KF Lam et al.: Cure model for interval-censored data

be observed and must be right-censored in practice. Hence, U = 0 is not directly observable. In the
uncured group, T < ∞ for every individual and is assumed to follow a certain distribution F (t | x) that
may depend on a vector of covariates x. The variables U and T are called the incidence and the latency
variables, respectively (Sy and Taylor, 2000).

Prolific discussions on the frailty-Cox proportional hazards (PH) model are available in the literature
over the past two decades. In the model, the conditional hazard function of T is given by

λ (t | U = u,x) = uλ0 (t) exp
(
β′x

)
, (1)

where λ0 (t) is an arbitrary non-negative baseline hazard function and β is a vector of regression coeffi-
cients. The cure probability given the vector of covariates x is generally defined to be P (U = 0 | x) =
1 − Φ

(
θ′x

)
where θ is a vector of regression parameters associated with the incidence variable and Φ is

a binary link function like the logistic or probit function. One advantage of this mixture model is that we
can determine whether a certain treatment is effective in curing the disease, or is only effective in delaying
the time to relapse of the disease, or both. Estimation in the frailty-Cox PH model with a nonparametric
baseline hazard function is not so straightforward. Various estimation methods have been developed for
right-censored data by extending the Cox partial likelihood function (Lam et al., 2005; Taylor, 1995). Es-
timation with the nonparametric baseline hazard function is extremely complicated with interval-censored
data. Ma (2009, 2010) proposed using the penalized MLE and NPMLE to handle the nonparametric
baseline hazard function for interval-censored data. The procedures are computationally feasible, but the
standard error of the estimate is approximated by the nonparametric bootstrap procedures. To our knowl-
edge, no satisfactory estimation method for interval-censored data with a cure based on (1) is available in
the literature.

Price and Manatunga (2001) suggested that the cure model should be able to account for heterogeneity
among individuals in the uncured group when analyzing data concerning the recurrence of leukaemia
among patients receiving autologous transplantation treatment. They proposed to impose another non-
negative random effect V that quantifies the heterogeneity induced by some unobservable risk factors,
which acts multiplicatively on the conditional hazard function such that

λ (t | u, v,x) = uvλ0 (t) exp
(
β′x

)
. (2)

However, it would be more natural to use a single random effect instead of two separate random effects
for controlling the cure probability and the heterogeneity in the uncured group. Moreover, the frailties
Vi’s are generally assumed to be independently and identically distributed that they do not depend on any
covariates. Nevertheless, if we interpret the frailty as a quantification of some unobservable personal risk
factors, it may also be affected by some observed covariates.

Another commonly used cure model is the promotion time cure model (Chen et al., 1999; Ibrahim
et al., 2001a,b). This model assumes that the event of interest is triggered by the onset of one of the
several latent events, where the number of latent events is random and covariate-dependent. This model
has sound biological interpretation particularly in cancer studies, where a latent event corresponds to the
progression of a carcinogenic cell, and the relapse of cancer is caused by the production of a detectable
cancer mass by any of the carcinogenic cells present. The individual is considered cured when the number
of carcinogenic cell is zero. In this model, the same set of covariates affects both the time to event and
the cure probability. However, it assumes that the distributions of the onset times of the latent events are
independent and identical for all individuals, which may be restrictive in practice. On the other hand, Yin
and Ibrahim (2005) proposed a class of cure rate models that includes the usual mixture cure model and
the promotion time cure model as special cases. This class of models also allows the survival distribution
of the latency variable to depend on some explanatory variables. Bayesian inference via Markov Chain
Monte Carlo was suggested, but again, restricted to right censored data only.
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In this paper, we consider the semiparametric frailty-Cox PH model with a single frailty to accom-
modate both the cured proportion and the heterogeneity in the uncured group. Two illustrating data sets,
namely the right-censored melanoma incidence data (Ibrahim et al., 2001a) and the interval-censored breast
cosmesis data (Beadle et al., 1984a,b), are introduced in Section 2. A class of compound Poisson mixing
distributions similar to the one discussed by Aalen (1992) is extended to allow the frailties to be covariate-
dependent, so that both the incidence and latency variables may depend on some observed covariates like
age and type of treatment received. For mathematical convenience, the mixing distribution considered here
takes the form of the non-central Chi-square distribution with zero degrees of freedom proposed by Siegel
(1979). The semiparametric frailty-Cox PH model is discussed in Section 3. A simple estimation proce-
dure by means of multiple imputation for right-censored data is proposed in Section 4.1, and the method
is extended to accommodate interval-censored data in Section 4.2. Simulations are conducted to assess the
performance of the proposed estimation method and the results are reported in Section 5. In Section 6,
the model is fitted to the two illustrating data sets. Concluding remarks and some possible future research
directions are summarized in Section 7.

2 Data Sets

Two data sets are considered in this paper with the first one being a set of possibly right censored melanoma
incidence data (Ibrahim et al., 2001a). The data were collected in an Eastern Cooperative Oncology Group
phase III clinical trial, labeled as E1690, that began in 1991 to study the effects of low-dose interferon
alpha-2b (IFN) relative to OBS - a combined group of the observation and the high-dose group on survival.
IFN is an adjuvant post-operative chemotherapy proposed for the high risk melanoma patients and seemed
to have significant impact on relapse-free survival. There are altogether 427 participants with a median
follow-up time of 1.94 years. The largest uncensored failure time in the sample is t∗ = 5.065 years. The
Kaplan-Meier plot of the survival functions of the two treatment groups for this dataset, irrespective of the
covariates like age and sex, is given in Figure 1. We can see that the two estimated survival functions level
off at around 0.4 and there is a large portion of data right censored between 2 to 7 years.

The second dataset is from a retrospective study to compare the effects of adjuvant chemotherapy on
early breast cancer patients treated with radiotherapy to those treated with radiotherapy alone with respect
to the cosmetic effects of their treatment (Beadle et al., 1984a,b; Finkelstein and Wolfe, 1985). The subjects
of the study were treated at the Joint Center for Radiation Therapy in Boston between 1976 and 1980. In
the study, the early breast cancer patients not treated with mastectomy were divided into two groups, with
one group being treated with primary radiation therapy and adjuvant chemotherapy and another group
being treated with radiotherapy only. The variable of interest was the time until breast retraction and the
objective of the study was to compare the long-term cosmetic results in patients under the two treatment
regimens. The patients were followed up to 60 months, with scheduled clinic visits every 4 to 6 months and
hence the time to breast retraction of each subject was interval-censored. As patients might have missed
some scheduled visits, intervals that contained the exact time to breast retraction were irregular and were
likely to overlap with others. Upon scrutiny, more than half of the observations were right-censored in
the radiotherapy-only treatment group, with most of the censoring times being comparatively large, which
probably indicated that breast retraction would not occur in some patients.

3 Model Description

We consider here a random sample of size n where Ti denotes the actual event time and xi = (xi1, · · · , xip)
′

the observed covariates of individual i, for i = 1, · · · , n. Define x
(0)
i =

(
1, x

(0)
i1 , · · · , x(0)

ip0

)′
be the set

of covariates associated with the incidence part and x
(1)
i =

(
x
(1)
i1 , · · · , x(1)

ip1

)′
be the set of covariates as-

sociated with the latency part (p0, p1 ≤ p) and that x(k)
ij is an element in xi. In the right censoring setup,
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4 KF Lam et al.: Cure model for interval-censored data

the data collected are of the form (yi, δi,xi; i = 1, . . . , n) where Yi = min {Ti, Ci}, Ci is the (right)
censoring time independent of Ti and δi is the censoring indicator with δi = I (Ti ≤ Ci) so that δi = 1
corresponds to an uncensored observation while δi = 0 corresponds to a censored observation. For general
interval-censored data, the observed data are of the form (li, ri, δi,xi; i = 1, . . . , n), where the event time
T is not directly observable for all individuals, but is only known to be within the interval (li, ri]. The
censoring indicator is defined similarly with δi = 1 if ri < ∞ and δi = 0 otherwise.

As mentioned in Section 1, we suggest a frailty model that involves only one covariate-dependent ran-
dom effect U to accommodate the cured proportion in the population as well as the heterogeneity among
the uncured individuals. The conditional hazard function of the semiparametric frailty-Cox model is then
specified by

λ
(
t | ui,x

(1)
i

)
= uiλ0 (t) exp

(
β′x

(1)
i

)
,

where λ0 (t) is the unknown arbitrary non-negative baseline hazard function and β = (β1, . . . , βp1)
′ is a

vector of regression parameters associated with the latency variable. The individual frailty Ui is assumed
to follow a non-central Chi-square distribution with zero degrees of freedom, which is an extension of
the standard non-central Chi-square distribution to include the case of zero degrees of freedom (Siegel,
1979). The frailty Ui can be constructed as the sum of Ki independent central Chi-square random variables
(W1i,W2i, . . . ,WKii), each with 2 degrees of freedom and a scale parameter σ. Conditioned on Ki = ki,
we have

Ui =

{
0, if ki = 0;
W1i +W2i + · · ·+Wkii, if ki > 0.

The number of terms in the sum, Ki, is a Poisson random variable with mean ηi/2, where ηi = exp
(
θ′x

(0)
i

)
with θ = (θ0, θ1, . . . , θp0)

′ being a vector of regression parameters associated with the frailty. In most can-
cer studies, we can conceive the random variable K to be the latent number of metastasis-competent tumor
cells and Wij is the contribution to Ui from the j-th latent tumor cell, say the relative aggressiveness of the
tumor cell, and that the contributions from different cells are non-overlapping and additive. Marginally,
the frailty Ui is a compound Poisson random variable with probability density function

g
(
u | x(0)

i

)
=

{
exp (−ηi/2) , if u = 0;∑∞

k=1
e−ηi/2(ηi/2)

k

k! × uk−1e−u/2

(2σ)kΓ(k)
, if u > 0.

The frailty has a point mass at 0. It is a special case of the compound Poisson distribution which was
considered as the frailty distribution for modeling the proportion of cured and heterogeneity in survival
analysis by Aalen (1992). Moger et al. (2004); Moger and Aalen (2005, 2008) further extended the com-
pound Poisson distribution to model clustered or correlated survival data with cured proportions, but they
only considered the fully parametric survival model with independent and identically distributed frailty due
to the complication of the resulting model. We use a slightly different representation because we find the
current formulation mathematically more convenient. Moreover, the frailty U is extended to accommodate
the effects of the covariates on the incidence part through the dependence of the mean of the Poisson dis-
tribution from the covariates. This extension allows the cure probability to be covariate-dependent which
is more natural in practice. The mean of the frailty can easily be shown to be E

(
Ui | x(0)

i

)
= σηi. As the

frailty is multiplied to the arbitrary baseline hazard function, we need to fix the value of σ beforehand to
avoid the identifiability problem due to overparameterization. Without loss of generality, we set σ = 1 so
that the logarithm of the mean of the frailty can be expressed as a simple linear function of the covariates
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x
(0)
i . The population survival function is given by

S
(
t | ηi,x(1)

i

)
= e−

ηi
2 +

∫ ∞

0

∞∑
k=1

e−
ηi
2

(
ηi

2

)k
k!

× uk−1
i e−

ui
2

2kΓ (k)
exp

{
−uiΛ0(t) exp

(
β′x

(1)
i

)}
dui

= e−
ηi
2 + e−

ηi
2

∞∑
k=1

 ηi/2

1 + 2Λ0(t) exp
(
β′x

(1)
i

)
k

1

k!

= exp

−ηi
2

1− 1

1 + 2Λ0 (t) exp
(
β′x

(1)
i

)

 , (3)

where Λ0 (t) =
∫ t

0
λ0 (u) du is the cumulative baseline hazard function. The cure probability is obtained

by taking the limit t → ∞ in (3) leading to limt→∞ S
(
t | ηi,x(1)

i

)
= P(Ki = 0) = exp (−ηi/2). A

parametric assumption makes the estimation simple and straightforward, but we will consider an arbitrary
baseline hazard function to provide a more flexible model to avoid a misspecification of the parametric
baseline hazard function.

In cancer studies, we can conceive the covariate-dependent frailty U as a summary index of the health
status or condition of the individuals that takes into account the information of their personal characteristics
like gender, age, smoking status and the type of treatment received. Intuitively, as a measurement of the
overall health status of a subject, U should be a continuous variable that a smaller value of U represents
better health condition leading to a much smaller risk of the event. Therefore, for some curable diseases,
it is conjectured that a relatively small value of U is an indication of a cure. Individuals with U less than a
threshold value, say τ , become more homogeneous. They are highly protected from developing the event
and can be classified as being cured. Without loss of generality, we may set τ = 0 for mathematical
convenience and replace all negative U ’s by 0. These individuals are said to be cured or at extremely low
risk of the event. As a result, U has a distribution with a point mass at 0 and is continuous in the positive
region.

The proposed frailty U affects both the cure probability and the heterogeneity among the uncured group.
It is more natural than using two separate random effects, as whether an individual is cured is likely to be
influenced by some underlying health conditions, which would also affect his time to event. It can be
assumed that low cure probability and short time to event are positively correlated induced by U . This was
also noted by Kim and Jhun (2008), who used a shared random effect V in the logistic regression model
which account for the cured probability, and in the Cox regression in the uncured group:

P
(
Bi = 1 | x(0)

i , vi

)
=

exp
(
θ′x

(0)
i + vi

)
1 + exp

(
θ′x

(0)
i + vi

)
and

λ
(
t | Bi = 1,x

(1)
i , vi

)
= λ0 (t) exp

(
β′x

(1)
i + vi

)
,

where Bi is a binary random variable with Bi = 0 representing a cure, and λ
(
t | Bi = 1,x

(1)
i , vi

)
denotes

the conditional hazard function among the uncured individuals. However, it is unrealistic that the scale of
the effects of vi on the logit of the cure probability and the hazard function are restricted to be the same.
Nevertheless, their method can be extended to a multivariate setting easily, say by using a random effect
uij = vi0 + vij for the jth subject of cluster i. Our proposed model can also be extended easily to
accommodate multivariate data with a similar idea, and the extension are briefly mentioned in Section 7.
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6 KF Lam et al.: Cure model for interval-censored data

4 Estimation Via Multiple Imputation

4.1 Right-censored Data

To make the presentation clear and simple, we start the discussion with right-censored data, and the estima-
tion method is extended to the more general interval-censored case in the next subsection. The estimation
is complicated by the presence of the frailty U , as the partial likelihood function cannot be evaluated. How-
ever, the estimation would be simple if the latent variables K and U are observable. Suppose K and U can
also be observed, and let D be the complete data with D = (yi, δi,xi, ki, ui; i = 1, . . . , n). Estimation
of θ and β is straightforward through maximizing the complete data partial likelihood LC given by

LC(θ,β|D) =

n∏
i=1

exp

{
− exp(θ′x

(0)
i )

2

}{
exp(θ′x

(0)
i )

2

}ki

ki!

×
∏
ki>0

uki−1
i exp(−ui

2 )

2kiΓ(ki)
×

n∏
i=1

 ui exp
(
β′x

(1)
i

)
∑

m∈R(yi)
um exp

(
β′x

(1)
m

)


δi

∝
n∏

i=1

exp

{
−exp(θ′x

(0)
i )

2

}
exp(kiθ

′x
(0)
i )×

n∏
i=1

 exp
(
β′x

(1)
i

)
∑

m∈R(yi)
um exp

(
β′x

(1)
m

)


δi

= L1(θ)× L2(β),

where R(yi) is the set of individuals at risk just prior to time yi. Note that L2(β) is just the partial
likelihood for β when the frailties Ui’s are observed while L1(θ) is just the likelihood function for θ
when Ki’s are observed. The two likelihood functions are orthogonal and hence θ and β can be estimated
separately by maximizing ℓ1 (θ) = logL1(θ) and ℓ2 (β) = logL2(β), respectively to give the maximum
likelihood estimate θ̂ and the maximum partial likelihood estimate β̂. Moreover the cumulative baseline
hazard function Λ0(t) can be estimated by the usual Nelson-Aalen estimator

Λ̂0(t) =
∑
i:ti≤t

 δi∑
m∈R(yi)

um exp
(
β̂
′
x
(1)
m

)
 . (4)

An estimation method using multiple imputation is proposed next. We adopt the data augmentation
technique by Tanner and Wong (1987) with the Asymptotic Normal Data Augmentation (ANDA) intro-
duced by Wei and Tanner (1991). It can essentially be treated as the Monte Carlo implementation of the
E-step in the EM algorithm. As the subject-specific frailty Ui and its dummy variable Ki are unknown,
the idea is to augment these unobserved observations according to their respective posterior distributions.
In the following, we will also adopt the zero-tail constraint suggested by Taylor (1995) by letting Uj be 0
if the jth subject is censored beyond the largest uncensored failure time t∗. The algorithm to the estima-
tion of the regression parameters α = (θ′,β′)′ and the variance-covariance matrix of α̂, namely Σα, is
summarized as follows:

1. Initialize α = α̂(0) and Σα = Σ̂
(0)

α = bI where I is a (p0 + p1 +1)× (p0 + p1 +1) identity matrix
and b is a non-negative constant, which is usually chosen to be small, say 0.1.

2. Compute Λ̂
(0)
0 (t) based on equation (4) by setting β̂ = β̂

(0)
and ui = u

(0)
i = δi.

3. At the jth step (j = 1, 2, . . .):

c⃝ zzzz WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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(a) generate αh from N
(
α̂(j−1), Σ̂

(j−1)

α

)
for h = 1, 2, . . . ,M ;

(b) by setting α = αh and Λ0(t) = Λ̂
(j−1)
0 (t), generate kh = (kh1, . . . , khn) (h = 1, . . . ,M ) from

the posterior distribution of Ki given by

(Ki − δi) | (yi,xi, δi) ∼ Poisson

 exp(θ′x
(0)
i )

2 + 4Λ0 (yi) exp
(
β′x

(1)
i

)
 ;

(c) by setting k = kh, α = αh and Λ0(t) = Λ̂
(j−1)
0 (t), generate uh = (uh1, . . . , uhn) (h =

1, . . . ,M ) from the conditional posterior distribution of Ui given by

Ui | (yi, δi,xi, ki)

 = 0, if ki = 0;

∼ Gamma
(
ki + δi,

{
0.5 + Λ0 (yi) exp

(
β′x

(1)
i

)}−1
)
, if ki > 0.

Moreover, set uhi = 0 if yi > t∗ where t∗ is the largest observed time to event;

(d) for h = 1, . . . ,M , maximize ℓ (α | Dh) = logLC (θ,β | Dh) with Dh = (yi, δi,xi, khi, uhi; i =

1, . . . , n) to obtain the estimates θ̂
(j,h)

, β̂
(j,h)

, and use β̂ = β̂
(j,h)

to obtain Λ̂
(j,h)
0 (t) based on

equation (4);

(e) update the estimate by

θ̂
(j)

=
1

M

M∑
h=1

θ̂
(j,h)

, β̂
(j)

=
1

M

M∑
h=1

β̂
(j,h)

and Λ̂
(j)
0 (t) =

1

M

M∑
h=1

Λ̂
(j,h)
0 (t);

(f) update the estimated variance-covariance matrix by

Σ̂
(j)

α =
1

M

M∑
h=1

[
− ∂2

∂α′∂α
{ℓ1(θ) + ℓ2(β)}

]−1

α=α̂(j,h),D=D(j,h)

(5)

+

(
1 +

1

M

) M∑
h=1

(
α̂(j,h) − α̂(j)

)(
α̂(j,h) − α̂(j)

)′

M − 1
.

4. Repeat step 3 until convergence is achieved with final estimates θ̂, β̂ and Λ̂0(t).

The second term in (5) is to account for the “between-imputation” variance (Tanner and Wong, 1987;
Rubin, 1987; Schenker and Welsh, 1988). The inflation factor (1 + 1/M) in the between imputation
variance is to account for the fact that only a finite number of imputations are drawn. We will further
discuss the choice of M in the next section.

4.2 Interval-censored Data

For interval-censored data, the observed time yi is only known to be within the interval (li, ri]. Denote the
complete data by D = (li, ri, yi, δi,xi, ki, ui; i = 1, . . . , n). It is natural to extend the proposed multiple
imputation algorithm for right censored data by imputing the yi’s for the interval-censored data. This can
be done by first setting the initial value of yi to be

yhi = (li + ri) /2 if δi = 1, for i = 1, . . . , n;h = 1, . . . ,M

in step (1) of the algorithm, and add an additional step between 3(a) and 3(b):
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8 KF Lam et al.: Cure model for interval-censored data

3(a)*: generate yh = (yh1, . . . , yhn):

1. for individuals with δi = 0, yhi = li for h = 1, . . . ,M .

2. for individuals with δi = 1, by setting α = αh and Λ0(t) = Λ̂
(j−1)
0 (t) for h = 1, . . . ,M ,

generate yhi from the conditional distribution

P (Y > y | li, ri,θ,β,xi) =
S (y | θ,β,xi)− S (ri | θ,β,xi)

S (li | θ,β,xi)− S (ri | θ,β,xi)
,

where the survival function S (y | θ,β,xi) is given by (3).

We will replace yi by its realizations yhi in steps 3(b) to 4 of the algorithm in Section 4.1. Since yi varies at
every iteration, we modify the zero-tail constraint by setting Uj = 0 if the jth subject is censored beyond
r∗ where r∗ = maxj {rjδj}.

It should be noted that the estimated survival function Ŝ (y | xi) is a step function due to the nature of
the estimated cumulative baseline hazard function Λ̂0 (y). When we draw yi’s from the estimated survival
function, it is possible to have lots of ties, which is undesirable in the maximization of the Cox partial
likelihood. To remedy the problem, we propose to replace the cumulative baseline hazard function by a
monotonic increasing function by joining the midpoints of adjacent steps of Λ̂0 (y) by straight lines. Let
q be the number of observations with δ = 1 in the data and let z =

(
z(1), . . . , z(Mq)

)
be the set of points

of discontinuity on the cumulative baseline hazard function Λ̂0 (y) with 0 = z(0) < z(1) < · · · < z(Mq).
There are a total of Mq points of discontinuity since, in each iteration, each of the q observations with
δ = 1 contributes to a jump on the estimated cumulative baseline hazard function, resulting in Mq points
of discontinuity. We further let z′(i) =

(
z(i) + z(i+1)

)
/2 for i = 0, . . . ,Mq − 1 and z′(Mq) = z(Mq). The

survival function can then be evaluated using the estimated cumulative baseline hazard function

Λ̃0 (y) =
Λ̂0

(
z′(j−1)

)(
z′(j) − y

)
+ Λ̂0

(
z′(j)

)(
y − z′(j−1)

)
z′(j) − z′(j−1)

(6)

at every point y with j chosen such that z′(j−1) ≤ y < z′(j) and Λ̃0 (y) = Λ̂0 (y) for y ≥ z(Mq). This
modification would not induce much bias to the estimation as in the Cox partial likelihood, only the order
of the times to event are used, but not the exact times.

Using this multiple imputation algorithm, the jump points on the hazard function are updated at every
iteration and the values are not forced to take from a set of finite values. This is in contrast with some
methods proposed in the literature where the set of jump points is a fixed subset of the boundary points
of the intervals (Finkelstein, 1986; Liu and Shen, 2009; Ma, 2010). Our approach is more natural as we
avoid arbitrarily setting the jump points at the initialization step which is hard to be justified. Also, it works
well with different distributions of the intervals, even when the intervals are wide and irregular. We note
that when the imputation size is large, the number of steps on the cumulative baseline hazard function will
be large and ties in the imputed yhi are improbable. The proposed method of eliminating the jumps is
recommended as we can guarantee that there is no tie in the imputed values even for large sample sizes
and imputation sizes to facilitate the evaluation of the partial likelihood function.

5 Simulation Study

5.1 Right-censored Data

Simulation studies were carried out to assess the performance of the proposed method. We assume a
baseline hazard function λ0(t) = t and a censoring variable C = min(5, 15 × A) where A is a uniform
random number. We mimic a clinical trial with p = 2 where X1 is the treatment indicator that takes
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on the value 0 or 1, each with probability 0.5 and X2 is a continuous explanatory variable generated
independently from the standard normal distribution. Throughout the simulations, we assume p0 = p1 = 2

with X
(0)
i = (1, Xi1, Xi2)

′ and X
(1)
i = (Xi1, Xi2)

′. We set θ = (−1, 1, 0)′ and β = (0, 0.5)′. With
θ1 = 1 and β1 = 0, the treated patients (X1 = 0) have better health condition, leading to higher cure
rate than the untreated patients (X1 = 1) but the treatment has no direct effect on the hazard rate among
the uncured patients. On the other hand, X2 has no effect on the overall health condition of the patients
and hence the cure probability (θ2 = 0), but patients with larger value of X2 have higher risk among the
uncured patients (β2 = 0.5).

Two sample sizes n = 200 and n = 500 are considered. 500 data sets are generated for each case.
To investigate the effect of the imputation size M , we repeat the simulations using imputation sizes M =
10, 50, 100. An important issue here is how to determine the convergence of the estimates as it is difficult
to have some objective convergence criteria. We monitored the estimates under various setups and found
that the estimates generally became very stable in less than 30 iterations. To be conservative towards early
termination, we propose to take the estimate at the 100th iteration as the final estimate for each data set
throughout this and the next subsections. The results are shown in Table 1.

The mean, the empirical standard deviation of the 500 estimates and the average of the estimated stan-
dard errors based on (5) for each parameter are reported. Moreover, for each data set, we compute the
asymptotic 95% and 99% confidence intervals for each regression parameter, and their corresponding em-
pirical coverages are also given in Table 1. The performance of the estimation method is highly satisfactory.
Irrespective of the sample size and imputation size, the averages of the estimates are all very close to their
corresponding true values. Moreover, the standard error estimates closely resemble their corresponding
empirical standard deviations, and their empirical coverages are reasonably close to the nominal levels.
For M = 10, we noticed that the empirical standard deviations and the average standard errors of β̂1

and β̂2 are generally larger than those cases with a moderate M value. This indicates that under such a
complicated missing mechanism of K and U , a larger value of M relative to M = 10 will lead to sig-
nificant improvement in producing fewer extreme estimates and smaller standard errors. Nevertheless, an
imputation size greater than 100 shows no further improvement in the standard error estimates and hence
M = 50 is generally adequate. Other investigators suggested that such a large value of M may not be nec-
essary (Glynn et al., 1993; Pan, 2000; Lam et al., 2005) but this is not true in the current situation where the
amount of missing information is huge. Here, we can observe that though the imputation size does not have
an effect on the accuracy of the estimates, it does affect the standard error estimates. Larger imputation
size would lead to a better performance in the standard error estimates, as demonstrated by increasing the
imputation size from 10 to 50, yet not much improvement is gained through further increasing it from 50
to 100. We postulate that this phenomenon is common in other estimation algorithms with augmentation
when the missing information is huge and the missing mechanism is complex.

5.2 Interval-censored Data

Simulations are also conducted for the case with interval-censored data to assess the performance of the
proposed estimation method. The generation of the covariates x, the time to event T , and the right-
censoring time C is identical to the case of right-censored data. We assume that the individuals are followed
periodically through check-ups, which are not regular and are different for different individuals. For each
individual, the first check-up time is at t = 0 and the duration between each check-up time is a random
variable from a Uniform (0.1, 0.5) distribution. As a result, an observation would be right-censored at
time C if the time to event T is larger than C, and would be interval-censored otherwise. For an interval-
censored observation, the endpoints of the interval would be the check-up times immediately before and
after the event. In the current setup, among the uncured patients, the median time to event is about 0.725,
and about 70% have an event time < 1.0. Hence, the widths of the intervals are not too wide nor too
narrow so that the performance of the estimation method will neither be penalized nor benefited from this
interval-censoring mechanism. For comparison purpose, we consider imputation sizes M = 10, 50, 100
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and sample sizes n = 200, 500 as in the last subsection. 500 data sets for each setting are generated. The
results are presented in Table 2.

The performance of the estimation method with interval-censored data is highly satisfactory and is better
than our expectation. We observe that the estimates are all very close to their true values irrespective of the
imputation size and sample size. Again, with an imputation size M = 50, the distribution of the estimator
is obviously better approximated by its asymptotic normal distribution relative to the case with M = 10
in terms of the empirical coverages. Moreover, the estimates and estimated standard errors tend to be
more stable, but further increasing the imputation size to M = 100 only provides marginal improvement.
Therefore, a moderate imputation size of M = 50 is generally adequate in the current setting for right-
censored and interval-censored data. In view of the inexpensive computation cost, we can always increase
the value of M to a reasonably large number for a single data analysis attempt, say M = 1000 .

Comparing the results with that of the right-censored case, we observe that the empirical standard
deviations and standard errors of θ̂ are quite close. It is reasonable as the interval-censoring mechanism
should not have much effects on the estimation of θ. When comparing the empirical standard deviations
and estimated standard errors of β̂, those in the interval-censored case are, however only marginally, larger
than those in the right-censored case. This is expected because we have less information in the interval-
censored case, but we did not expect that the difference is so small.

6 Application

6.1 Right-censored Data

We apply the model and estimation method to the melanoma incidence data discussed in Section 3. Ibrahim
et al. (2001a) modeled the melanoma data using the semiparametric promotion time (SPT) model via a
Bayesian framework. In their study, a bounded cumulative hazard model was considered and an extra
parameter κ was used to control the degree of parametricity in the right tail of the survival curve. In order
to compare with the proposed model and method, we consider the same set of covariates, namely treatment
(X1 = 0 for OBS and X1 = 1 for IFN), age (X2) and gender (X3 = 0 for male and X3 = 1 for female) in
the following analyses. Their estimates, by setting κ = 0.95, are reproduced in Table 3.

We also fit the data to the cure model proposed by Price and Manatunga (2001) as specified in (2) with
U being a binary variable that is modeled by a logistic regression model with logit

[
P
(
U = 1 | x(0)

)]
=

θ′x(0), λ0 (t) = exp (β0) is a constant, and V follows a Gamma distribution with mean 1 and variance
ω−1 that represents the non-covariate dependent heterogeneity among the uncured patients only. Here we
simply let X(0) = (1, X1, X2, X3) and X(1) = (X1, X2, X3) . The maximum likelihood estimates for
α and their estimated standard errors are listed in Table 3. We fit the proposed model to the data with
X(0) = (1, X1, X2, X3) To compare the results with that based on model (2) and the SPT model, we
consider model A with X(1) = (X1, X2, X3) and model B with X(1) = 0, respectively. To facilitate
determination of convergence, the estimation algorithm starts with an imputation size M = 50 and the
progress of the algorithm is monitored. As suggested by Tanner and Wong (1987) when the processes
appear to be stationary, a much larger imputation size (M = 500) is adopted to force the fluctuations of
the estimates to be within a very small range. We take the estimates at the 100-th iteration since switching
to M = 500 as the final estimates for both models A and B. They are summarized in Table 3.

Using a 0.05 level of significance, the analyses show that the latency variable does not depend on any
of the Xj’s, and age and sex are not significantly associated with the incidence variables in all 4 models.
The SPT model reveals that the treatment IFN significantly increases the cure probability when compare
to the OBS group, but not in other models. In fact, model B and the SPT model share some common
characteristics that covariates are not included in the analysis of the latency variable. We use the Nelson-
Aalen type estimator to estimate the baseline cumulative hazard function in model B, taking into account of
the frailty U , while the SPT-model assumed a piecewise constant hazard function for the latency variable
which are very similar in nature. However, the difference mainly comes from the covariate-dependent
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frailty, the model for the incidence variable. Taking the melanoma data as an example, the proposed
model assumed that the frailty is the sum of the relative aggressiveness of each of the ki latent metastasis-
competent tumor cells that each cell may have different level of relative aggressiveness biologically, but
the SPT-model assumes that each cell has the same level of aggressiveness with the same contribution.
Moreover, different choice of κ may also lead to different results. Therefore, the proposed model may be
a bit more general and flexible over the SPT-model. In addition, the proposed model allows the latency
variable to depend on some explanatory variables, which is more flexible in practice.

6.2 Interval-censored Data

The proposed model is also fitted to the interval-censored breast retraction data discussed in Section 3.
Forty-six early breast cancer patients received only radiotherapy (X = 0) and 48 patients received both
radiotherapy and chemotherapy (X = 1). The treatment indicator X is the only available covariate. We
include X in both the frailty part and the Cox regression part. Similar to the first application, we start with
a moderate imputation size M = 50 and M = 1000 is adopted when the processes appear to be stationary.
We take the estimates at the 100-th iteration since switching to M = 5000 as the final estimates. The
results are shown in Table 4 under Method 1.

The treatment effect is significant in both the Poisson regression in the frailty part and the Cox re-
gression for the uncured patients. A positive θ̂1 indicates that treatment of radiotherapy with adjuvant
chemotherapy is associated with a larger frailty leading to a deterioration in the health conditions of the
patients, and thus a smaller cure rate relative to the radiotherapy-only group (3.39% vs 45.22%). This is
in line with our observations where more observations were right-censored in the radiotherapy-only group.
Based on a semiparametric model for interval-censored data without considering a cured proportion in the
population, Finkelstein and Wolfe (1985) concluded that the group receiving chemotherapy in addition
to radiotherapy experienced a significantly earlier cosmetic deterioration measured by the appearance of
breast retraction. Finkelstein (1986) and Zhang et al. (2010) came up with a similar conclusion based on
the standard Cox PH model for interval-censored data that the treatment of radiotherapy with adjuvant
chemotherapy significantly increases the risk of the breast retraction.

In addition, our approach considers a cured proportion in the population and a Cox-type PH model
among the uncured patients. The estimate β̂1 is significantly different from 0 which implies that, condi-
tioned on U > 0, the treatment of radiotherapy with adjuvant chemotherapy reduces the risk of breast
retraction. Our analysis result suggests that patients receiving treatment of radiotherapy with adjuvant
chemotherapy have a significantly higher probability of breast retraction, but also a lower hazard rate of
breast retraction among those patients who will eventually experience the events with similar health con-
ditions.

The above results highlight the importance of the choice of an appropriate model and to identify whether
the treatment is effective in curing the disease or delaying/expediting the time to onset of the disease or
both. It may be more reasonable to adopt a cure model when the event time of a substantial proportion of
the patients are right-censored at some reasonably large values.

The estimated survival functions obtained by using the estimated baseline hazard function (6), which
look like step functions, are plotted in Figure 2. Upon scrutiny, they are not “steps” but very steep slopes
as the imputed failure times, though being distinct, would cluster around several time points after several
iterations. These “steps”, once formed, cannot be smoothed out easily. To obtain a smooth estimate for
the survival functions, we propose an alternative imputation method for the interval-censored failure times.
To impute Yi1, . . . , YiM from the conditional distribution of Yi | (li, ri, δi,xi), we evaluate the survival
function based on a modified cumulative baseline hazard function:

Λ̀0 (t) =
Λ̂0 (li) (ri − t) + Λ̂0 (ri) (t− li)

ri − li
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for li ≤ t < ri. In other words, when imputing each Yi, we replace the cumulative baseline hazard function
by a straight line with the values of the two ends being Λ̂0 (li) and Λ̂0 (ri). The imputed Y ’s would be more
spread out that leads to smoother estimated cumulative baseline hazard function and hence the estimated
survival functions.

The breast cosmesis data were analyzed using the alternative imputation method. The regression pa-
rameters estimates are reported in Table 4 under Method 2. The estimates between the two imputation
methods are consistent. The smoothed estimated survival functions (they are indeed piecewise linear func-
tions) are also plotted in Figure 2 with those based on the original imputation method. The two sets of
estimated survival functions are also very consistent that the latter estimated survival functions are just
like the smoothed versions of the original ones. Therefore, this alternative imputation method would not
affect the estimates much, as we are only interested in the ranks of the observations when evaluating the
partial likelihood but not the actual values on the baseline hazard function. The latter imputation method
has the advantage that the computation is faster. However, when the sample size is small, its performance
is inferior to the original method that the empirical standard deviations and the standard error estimates are
generally larger from some simulation results not reported here. Nevertheless, the difference is negligible
when the sample size is large, say n = 500.

7 Discussion

A frailty-Cox PH model is proposed in this paper, which accommodates both the curing status and the
heterogeneity among the uncured individuals with a single frailty term. The frailty is assumed to follow
a compound-Poisson distribution. The model has sound biological interpretation that the heterogeneity
comes from differences in the underlying health conditions among the individuals, and is quantified by
the frailty. The cured individuals are supposed to be extremely healthy and have zero frailty while a
large frailty is associated with bad health condition that the subject is at a higher risk of the event. As a
quantification of the underlying health status, though not being directly observable, it is reasonable that
the frailty may depend on some covariates. Therefore, in the proposed model, the mean of the Poisson
distribution in the compound-Poisson distributed frailty is determined by a vector of covariates. One
advantage of the proposed model is that the covariates can affect the time to event in two ways, namely
affecting the incidence and the latency. A particular covariate can deteriorate the health of the individuals
and in turn shorten the time to event, which is usually the case for some individual characteristics such as
age and gender. On the other hand, a covariate can directly decrease the hazard rate of an individual, which
is usually the case for some experimentally related covariates such as treatment indicator. The proposed
model shares some similarities with the promotion time model of Chen et al. (1999), but the proposed
model is more flexible as it allows the covariates to have different effects on the incidence and latency
variables.

The calculation of the maximum likelihood estimates of the regression parameters by evaluating the
marginal survival function (3) is very complicated as it involves the nonparametric baseline hazard func-
tion. Fortunately, the multiple imputation method provides a conceptually straightforward alternative
which is easy to implement. It takes advantage of the simple partial likelihood function when the unob-
served data K and U are available in the right-censored case. Moreover, an extra step can be incorporated
in the estimation algorithm to accommodate interval-censored data. From the simulations, we observe
that, through careful selection of the imputation size, the performance of the ANDA estimation is very
satisfactory in terms of its nearly unbiased property, accurate standard error estimation and reasonable
coverages based on the asymptotic approximation. Besides the ANDA algorithm, we have also conducted
simulations using the Poor Man’s Data Augmentation (PMDA) algorithm (Tanner and Wong, 1987), but
the results are not reported in this paper because of its poor performance. The PMDA algorithm is very
similar to the ANDA algorithm but is computationally simpler in the data augmentation step. Similar to
the ANDA algorithm, the PMDA algorithm also gives nearly unbiased estimates, but the standard error of
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the estimates are seriously underestimated, probably because the amount of missing information is huge
in this case. This underestimation cannot be remedied by increasing the imputation size. This failure to
correctly estimate the true variability if the degree of missingness is severe is consistent with the findings
of previous authors (Wei and Tanner, 1991; Pan, 2000). Therefore, in spite of its computational burden,
the ANDA algorithm is recommended instead of the PMDA algorithm.

As commented by Li and Ma (2010), a satisfactory extension of a univariate semiparametric Cox-type
cure model to a multivariate setup to explain various types of associations is not yet available for interval-
censored data. The current model and approach may shed some lights to this problem. The proposed model
can be extended naturally to a multivariate setup to accommodate clustered and longitudinal survival data
with cured proportions. It can be done by incorporating some cluster-specific random effects for clustered
survival data, and structured random effects, like dynamic random effects that progress with time (Fong et
al., 2001) for longitudinal survival data with a cured proportion. The multiple imputation method can be
extended to accommodate both right-censored and interval-censored data in general multivariate situations.
Work on the multivariate case is in progress, and will be reported in another manuscript.
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Figure 1 Kaplan Meier estimates for the melanoma data
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Figure 2 Estimated survival functions for the breast cosmesis data
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Table 1 Simulation results for right-censored data

Sample Size n = 200

θ0 θ1 θ2 β1 β2

True Value -1.0000 1.0000 0.0000 0.0000 0.5000
M = 10 Estimate -1.1236 1.0065 0.0251 0.1496 0.5596

Empirical SD 0.2660 0.3074 0.1423 0.7813 0.3626
Average SE 0.2683 0.3260 0.1484 0.6820 0.3389
Empirical Coverage (95%) 0.960 0.970 0.958 0.914 0.940
Empirical Coverage (99%) 0.996 0.998 0.992 0.988 0.982

M = 50 Estimate -1.1134 1.0014 0.0308 0.1381 0.5426
Empirical SD 0.2819 0.3260 0.1364 0.6814 0.3305
Average SE 0.2663 0.3212 0.1454 0.6505 0.3151
Empirical Coverage (95%) 0.948 0.946 0.966 0.956 0.962
Empirical Coverage (99%) 0.996 0.994 0.994 0.994 0.992

M = 100 Estimate -1.1093 1.0070 0.0395 0.0714 0.5020
Empirical SD 0.2500 0.2949 0.1364 0.6693 0.3087
Average SE 0.2476 0.2988 0.1355 0.5928 0.2877
Empirical Coverage (95%) 0.950 0.964 0.946 0.942 0.944
Empirical Coverage (99%) 0.988 0.988 0.990 0.984 0.988

Sample Size n = 500

θ0 θ1 θ2 β1 β2

True Value -1.0000 1.0000 0.0000 0.0000 0.5000
M = 10 Estimate -1.0732 1.0016 0.0247 0.0570 0.4928

Empirical SD 0.1695 0.2007 0.0929 0.3913 0.1865
Average SE 0.1663 0.2016 0.0924 0.3816 0.1836
Empirical Coverage (95%) 0.930 0.948 0.938 0.936 0.948
Empirical Coverage (99%) 0.990 0.990 0.980 0.986 0.980

M = 50 Estimate -1.0754 1.0078 0.0360 0.0077 0.4775
Empirical SD 0.1683 0.1984 0.0874 0.3506 0.1678
Average SE 0.1652 0.1999 0.0911 0.3685 0.1767
Empirical Coverage (95%) 0.928 0.956 0.944 0.962 0.956
Empirical Coverage (99%) 0.992 0.994 0.988 0.992 0.998

M = 100 Estimate -1.0792 1.0061 0.0351 0.0253 0.4912
Empirical SD 0.1760 0.2053 0.0846 0.3617 0.1775
Average SE 0.1653 0.2002 0.0909 0.3681 0.1775
Empirical Coverage (95%) 0.920 0.946 0.950 0.948 0.956
Empirical Coverage (99%) 0.986 0.990 0.986 0.988 0.984
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Table 2 Simulation results for interval-censored data

Sample Size n = 200

θ0 θ1 θ2 β1 β2

True Value -1.0000 1.0000 0.0000 0.0000 0.5000
M = 10 Estimate -1.0601 1.0085 0.0052 0.1078 0.5595

Empirical SD 0.2833 0.3261 0.1418 0.7051 0.3450
Average SE 0.2663 0.3275 0.1499 0.6648 0.3201
Empirical Coverage (95%) 0.954 0.948 0.968 0.938 0.930
Empirical Coverage (99%) 0.990 0.996 0.992 0.978 0.978

M = 50 Estimate -1.0750 1.0279 0.0033 0.0490 0.5828
Empirical SD 0.2700 0.3177 0.1521 0.6436 0.3343
Average SE 0.2669 0.3239 0.1481 0.6304 0.3064
Empirical Coverage (95%) 0.958 0.954 0.954 0.952 0.940
Empirical Coverage (99%) 0.994 0.986 0.990 0.988 0.984

M = 100 Estimate -1.0794 1.0211 0.0067 0.0081 0.5629
Empirical SD 0.2816 0.3161 0.1479 0.6651 0.3013
Average SE 0.2670 0.3242 0.1473 0.6251 0.3067
Empirical Coverage (95%) 0.950 0.974 0.954 0.954 0.960
Empirical Coverage (99%) 0.994 0.998 0.990 0.982 0.992

Sample Size n = 500

θ0 θ1 θ2 β1 β2

True Value -1.0000 1.0000 0.0000 0.0000 0.5000
M = 10 Estimate -1.0434 0.9967 0.0126 0.0510 0.5321

Empirical SD 0.1883 0.2180 0.0969 0.4355 0.1980
Average SE 0.1661 0.2050 0.0947 0.3915 0.1951
Empirical Coverage (95%) 0.932 0.938 0.934 0.902 0.928
Empirical Coverage (99%) 0.970 0.984 0.988 0.970 0.980

M = 50 Estimate -1.0503 1.0184 0.0107 0.0368 0.5142
Empirical SD 0.1672 0.1996 0.0958 0.3739 0.1862
Average SE 0.1657 0.2015 0.0926 0.3790 0.1820
Empirical Coverage (95%) 0.960 0.966 0.950 0.954 0.952
Empirical Coverage (99%) 0.994 0.996 0.990 0.990 0.988

M = 100 Estimate -1.0643 1.0309 0.0152 0.0138 0.4975
Empirical SD 0.1812 0.2081 0.0918 0.3924 0.1793
Average SE 0.1664 0.2023 0.0916 0.3740 0.1783
Empirical Coverage (95%) 0.924 0.950 0.950 0.932 0.962
Empirical Coverage (99%) 0.978 0.986 0.994 0.996 0.988
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Table 3 Estimation results for melanoma data (e1690)

Model SPT Model (2) Model A Model B
α̂ SE(α̂) α̂ SE(α̂) α̂ SE(α̂) α̂ SE(α̂)

x(0) Incidence variable
Intercept 0.016 0.097 0.2343 0.7280 0.2340 0.2723 0.3397 0.2758

Treatment -0.244* 0.116 -0.2017 0.2639 -0.1585 0.1353 -0.2080 0.1323
Age 0.097 0.058 0.0222 0.0115 0.0096 0.0053 0.0087 0.0050
Sex -0.115 0.120 -0.2758 0.2719 -0.1641 0.1403 -0.1375 0.1379
x(1) Latency variable

Intercept 0.3546 0.5932
Treatment -0.1498 0.2304 -0.0329 0.2319

Age -0.0069 0.0091 -0.0082 0.0092
Sex 0.0091 0.2314 0.0221 0.2594
ω 3.5869 2.9959

*the regression parameter estimate is significantly different from zero at the 5% level of significance

Table 4 Estimation results for the breast cosmesis data

θ β
Estimate (SE) Estimate (SE)

Method 1
Intercept 0.4620 (0.2210) /
Treatment 1.4502 (0.4228)* -1.4153 (0.6133)*

Method 2
Intercept 0.4945 (0.2180) /
Treatment 1.4782 (0.4489)* -1.2760 (0.6365)*

*the regression parameter estimate is significantly different from zero at the 5% level of significance
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