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Abstract: There is a growing interest in the discovery of important predictors from

many potential biomarkers for therapeutic use. In particular, a biomarker has

predictive value for treatment if the treatment is only effective for patients whose

biomarker values exceed a certain threshold. However, biomarker expressions are

often subject to measurement errors, which may blur the biomarker’s predictive

capability in patient classification and, as a consequence, may lead to inappropriate

treatment decisions. By taking into account the measurement errors, we propose

a new testing procedure for the overall and subpopulation treatment effects in the

multiple testing framework. The proposed method bypasses the permutation or

other resampling procedures that become computationally infeasible in the presence

of measurement errors. We conduct simulation studies to examine the performance

of the proposed method, and illustrate it with a data example.

Key words and phrases: Biomarker study, clinical trial, measurement error, multiple

testing, predictive marker, subgroup analysis, treatment effect.

1. Introduction

To a large extent, decisions on cancer treatment rely upon some specific

biomarkers of patients. Due to patient heterogeneity, even for those with the

same type of cancer and the same stage of disease, certain biomarkers may be

differentially expressed which, in turn, may cause patients to respond differently

to the same treatment. Most cancer treatments can be generally classified as

cytotoxic agents and cytostatic agents. Cytotoxic agents may benefit patients

by directly destroying cancer cells, while cytostatic agents function through in-

hibiting tumor growth instead of shrinking the tumor. Targeted therapies are

typically cytostatic, and they may work only on a subset of the patient pop-

ulation with specific biomarker expression (Korn et al. (2001); Simon (2009);

and Ratain and Sargent (2009)). Hence, it is critical to detect the treatment

effect not only for the entire population, but also for a subpopulation identi-

fied by specific biomarkers. This is especially important in the development of

personalized medicine where the treatment is expected to work only for certain

subpopulations.

http://dx.doi.org/10.5705/ss.2012.049
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We focus on biomarkers measured at the baseline that would provide in-

formation for better treatment decisions. According to their functionalities in

diagnosis and treatment selection for cancer patients, biomarkers are considered

therapeutically useful if they have prognostic or predictive values. Prognostic

markers reflect patients’ prognosis such as their health status or disease stages,

and they are associated with the disease outcome regardless of the presence of

treatment. Predictive markers can predict differential treatment effects for pa-

tients belonging to different biomarker groups. In particular, these biomarkers

have the capability of predicting which group of patients, say either marker pos-

itive or marker negative, is more likely to benefit from the treatment. Several

examples of prognostic and predictive biomarkers are described as follows. In

breast cancer, estrogen receptor (ER) overexpression may be used as a prognos-

tic marker because ER positive patients have longer survival in the absence of

systemic therapy. In addition, ER may also be used as a predictive marker be-

cause ER positive patients would benefit from anti-estrogens such as tamoxifen,

and ER negativity predicts benefits from some cytotoxic chemotherapies. Also

for breast cancer patients, the human epidermal growth factor receptor 2 (HER2)

amplification is a predictive marker for treatment benefits from trastuzumab. In

colorectal cancer, patients with KRAS mutations appear to be poor candidates

for treatment with epidermal growth factor receptor (EGFR) antibodies. For

example, cetuximab and panitumumab only benefit colorectal cancer patients

with the wild-type KRAS gene status, but not those with mutant KRAS.

In oncology, targeted therapies are often putative or tumor growth-inhibitory

agents. From the trial design perspective, the goal is to identify the subpopu-

lation of patients who would benefit from the treatment (Sargent et al. (2005)).

Freidlin and Simon (2005) proposed an adaptive signature design to identify sen-

sitive patients through an assay or a signature (the gene-expression classifier).

To enhance efficiency of the adaptive signature design, Freidlin, Jiang, and Si-

mon (2010) proposed a cross-validation approach to combining the prospectively

developed sensitive patient classifier and the properly powered test to maximize

the overall treatment effects. Suppose that we compare an experimental drug

with a control, and the experimental treatment only benefits patients with a

high level of certain biomarker expression. Nevertheless, we have a continuous

measurement for the biomarker expression but no binary classifier to categorize

patients into marker positive (the biomarker expression is higher than a thresh-

old), or marker negative (the biomarker expression is lower than a threshold)

groups. In this situation, Jiang, Freidlin, and Simon (2007) proposed two proce-

dures for hypothesis testing. Through subgroup analysis, they examined whether

the treatment effects are the same or greater in patients with a specific feature or

risk factor, so that subsequent marker-specific treatment decisions can be made.
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However, biomarker expressions are often measured with errors that prevent

us from classifying patients into marker positive or negative groups even if we

are given a specific threshold. As naive methods ignoring measurement errors

generally result in biased estimation, various methods have been developed to

correct such bias; see Carroll et al. (2006) for a comprehensive description. In

our case, the mismeasured biomarker value lies inside an indicator function, which

is used to identify the “sensitive” patients who would respond to the treatment.

Thus, it is in some sense related to measurement errors with change points, for

which the estimation and inference are known to be much more difficult than

the usual measurement error problems and, to our best knowledge, no approach

has been proposed beyond the linear regression context (Ma (2011)). In this

paper, we investigate the effects of measurement errors on the classification of

patients, propose consistent estimators to handle the measurement errors inside

the indicator function, and further develop hypothesis testing for both the entire

population and the subpopulations based on the mismeasured biomarker values.

The validity of our testing procedure does not require any resampling procedure

which may hamper the applicability of the test due to the high computational

cost.

The rest of the paper is organized as follows. In Section 2, we briefly review

the two methods proposed by Jiang, Freidlin, and Simon (2007) that lay out

the general framework for identifying predictive biomarkers. In Section 3, we

investigate the situation where the biomarker values are measured with errors.

In particular, we propose a new hypothesis testing procedure and an efficient way

to estimate the cutoff value for determining marker positive or marker negative

groups. In Section 4, we present a simulation study to evaluate the finite-sample

properties of the proposed method. We illustrate the new method using the

Framingham data in Section 5, and conclude with a brief discussion in Section

6. Technical details are delineated in the Appendix.

2. Identification of Predictive Biomarkers

From a statistical point of view, identification of predictive biomarkers or

similar studies along the line, can be formulated as a multiple testing problem.

For simplicity, we assume that the primary endpoint is binary; that is, Yi = 1

if patient i has responded to treatment, and Yi = 0 for a nonresponder. Let

Zi = 1 if patient i is treated with the experimental treatment, and Zi = 0 if the

subject is treated with the standard treatment; and let Xi denote the biomarker

expression. We model Yi with respect to both Zi and Xi via the generalized

linear model,

Pr(Yi = 1|Xi, Zi) = G(β1 + β2Xi + β3Zi), (2.1)
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where the link function may be logit G(u) = eu/(1 + eu), or probit Φ(u), with

Φ(u) denoting the cumulative distribution function of the standard normal dis-

tribution.

Model (2.1) characterizes the effectiveness of the overall treatment for all

the patients as reflected by testing whether β3 is zero. However, the treatment

may work only for a subpopulation with biomarker expression satisfying Xi > c,

where c is an unknown cutoff value, called a cutpoint of the biomarker. As a

result, we may fit a more flexible model,

Pr(Yi = 1|Xi, Zi) = G{β1 + β2Xi + β3ZiI(Xi > c)}. (2.2)

Even if the treatment is not effective for all patients, it may still be effective

for a subset of patients whose biomarker values are larger than c, as reflected

by β3 ̸= 0 in model (2.2). Without loss of generality, we assume that the range

of possible biomarker values is 0 ≤ c ≤ 1. When c = 0, model (2.2) reduces to

model (2.1). In the targeted therapy development, we need to determine whether

(i) β3 ̸= 0 in model (2.1),

(ii) β3 ̸= 0 in model (2.2) for at least one cutpoint c, and

(iii)β3 = 0 in both (2.1) and (2.2).

Toward these goals, Jiang, Freidlin, and Simon (2007) proposed procedures A

and B that we outline as follows.

Procedure A splits the problem into two separate hypothesis tests. The first

test concerns (2.1), with the null and alternative hypotheses given by

H0 : β3 = 0 versus H1 : β3 ̸= 0.

The second test concerns model (2.2), with the same null and alternative hy-

potheses. If the overall type I error rate is set at α, a typical choice is to split α

in a ratio of 4:1 between the two tests, α1 = 0.8α for the first test and α2 = 0.2α

for the second. If the first test rejects H0 at a significance level of α1, the proce-

dure terminates and the treatment is deemed to be effective for all the patients

as in case (i). If the first test fails to reject H0, the second test is subsequently

performed at a significance level of α2. If the second test rejects H0, then the

treatment is deemed to be effective only for a subset of patients whose biomarker

expression levels exceed a certain cutpoint as in case (ii). If the second test also

fails to reject H0, then the treatment is considered ineffective at all as in case

(iii). For the second hypothesis testing, we may construct a test statistic S(c)

for a given cutpoint c, and take the final test statistic as TA = max0<c≤1 S(c).

Procedure B is more sophisticated. It aims at testing H0 : β3 = 0 for all c

in model (2.2) versus H1 : β3 ̸= 0 for at least one value of c. The test statistic is
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constructed as TB = max{S(0) + R, max0<c≤1 S(c)}, where R is a prespecified

constant to upweigh the contribution of the overall treatment effect in order

to achieve a suitable balance. It is typically recommended that R = 2.2, the

difference between the 95th and 80th percentiles of the chi-squared distribution

with one degree of freedom. IfH0 is not rejected, then the treatment is considered

to be ineffective for any subgroup as in case (iii). If H0 is rejected, then the

treatment is considered to work for at least a subset of patients depending on

the value of c, while this subset of patients could also be the entire population if

c = 0.

In the second test of procedure A and in procedure B of Jiang, Freidlin, and

Simon (2007), the test statistics TA and TB take the maximum over a range of

values of c, and thus it is difficult to derive their asymptotic null distributions. As

outlined in the Appendix, a bootstrap-based procedure can be used to calculate

the p-value. If both cases (i) and (iii) are excluded in procedure A, or if case (iii)

is excluded in procedure B, the next step is to find an appropriate cutpoint c, in

order to identify which subset of patients would be suitable for the treatment.

The cutpoint c can be estimated by maximizing the profile likelihood

PL(c) =
n∏

i=1

G{β̂1(c) + β̂2(c)Xi + β̂3(c)ZiI(Xi > c)}Yi

×[1−G{β̂1(c) + β̂2(c)Xi + β̂3(c)ZiI(Xi > c)}]1−Yi ,

where β̂(c) = (β̂1(c), β̂2(c), β̂3(c))
T is the maximum likelihood estimator (MLE)

of β = (β1, β2, β3)
T for a fixed value of c.

3. Proposed Methods

3.1. Biomarkers with measurement errors

The procedures A and B in Jiang, Freidlin, and Simon (2007) are easy to

implement if the biomarker value can be measured precisely. However, it is known

that biomarker values are usually subject to measurement errors. Instead of

observing the true biomarker value Xi for subject i, we might observe a surrogate

value Wi = Xi + Ui, where Ui is the error incurred in the measurement of Xi.

Typically, Ui is assumed to follow a normal distribution with mean zero and

variance σ2
U . In practice, σU can be estimated using repeated measurements or

validation observations; for simplicity we take σU as known provisionally. Under

the assumption of normal measurement errors and a logit link function G(·), we
can derive a consistent estimator for β by applying the conditional score method

to model (2.1). Specifically, following Stefanski and Carroll (1987), for the first
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test in procedure A, we have

n∑
i=1

[Yi −G{β1 + β2(Wi + Yiσ
2
Uβ2) + β3Zi − β2

2

σ2
U

2
}]

 1

Wi + Yiσ
2
Uβ2

Zi

 = 0.

Consequently, we can construct a Wald test statistic, and conduct hypothesis
testing at the desired significance level α1 in a straightforward way. However, in
the presence of measurement errors, the second test of procedure A and the test in
procedure B are nontrivial because the covariate subject to measurement errors
lies inside an indicator function in model (2.2), and the traditional methods in
Carroll et al. (2006) are not directly applicable. Although regression calibration
(Carroll and Stefanski (1990) and Gleser (1990)) or SIMEX (Cook and Stefanski
(1995)) can still be used, these methods are approximate and typically do not
provide consistent estimation.

Following the semiparametric approach of Tsiatis and Ma (2004), we can
construct the estimating equation for β for a fixed value of c,

n∑
i=1

ϕ(Wi, Yi, Zi;β) = 0,

where
ϕ(Wi, Yi, Zi;β) = S∗

β(Wi, Yi, Zi;β)− E∗{a(Xi, Zi;β)|Wi, Yi, Zi}
S∗
β(Wi, Yi, Zi;β) = E∗{SF

β (Xi, Yi, Zi;β)|Wi, Yi, Zi},

SF
β (Xi, Yi, Zi;β) is the score function of the logistic model in (2.2), and a(Xi, Zi;β)

satisfies

E{S∗
β(Wi, Yi, Zi;β)|Xi, Zi} = E[E∗{a(Xi, Zi;β)|Wi, Yi, Zi}|Xi, Zi].

The evaluation of expectation E(·|Wi, Yi, Zi) requires the probability density
function of Xi, which is not available. Our procedure replaces E(·|Wi, Yi, Zi)
with E∗(·|Wi, Yi, Zi), calculated under a proposal density function of Xi. The
proposal model could be misspecified, yet the resulting estimator is still consis-
tent due to the fact that

E{ϕ(Wi, Yi, Zi;β)}
= E[S∗

β(Wi, Yi, Zi;β)−E∗{a(Xi, Zi;β)|Wi, Yi, Zi}]
= E

(
E{S∗

β(Wi, Yi, Zi;β)|Xi, Zi} − E[E∗{a(Xi, Zi;β)|Wi, Yi, Zi}|Xi, Zi]
)

= 0.

In addition, the estimator β̂ has a root-n rate and the asymptotic variance of√
n(β̂ − β0) has a typical sandwich form of V = A−1B(A−1)T, where

A = E

{
∂ϕ(Wi, Yi, Zi;β)

∂βT

}
and B = Cov{ϕ(Wi, Yi, Zi;β)}.
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For a more elaborate description of estimating equation approaches to measure-

ment error models and sandwich variance estimation, see Tsiatis and Ma (2004).

Based on β̂ and the estimated variance-covariance matrix V̂, a Wald test

statistic may be constructed as S(c) = nβ̂2
3(c)/V̂33(c), where V̂33(c) is the (3, 3)

entry of V̂. We can further define TA = max0<c≤1 S(c) for the second test in

procedure A or TB = max{S(0) + R, max0<c≤1 S(c)} in procedure B. The p-

value can be calculated following the same bootstrap procedure as described in

the Appendix.

Although the adaption of the testing procedure A or B from the error-free

case to the measurement-error case is conceptually achievable, the computation is

extremely intense. For each fixed cutpoint value c, we need to apply the Newton-

Raphson algorithm to estimate the parameter β. Within each iteration of the

Newton-Raphson procedure, we must evaluate the estimating equation and its

derivative, which requires solving an integral equation to obtain the function

a(X,Z;β). Since the lower and upper quantiles of the null distribution for the

test statistic are needed for hypothesis testing via the bootstrap, this in turn

increases the computational burden. In what follows, we develop a different

testing procedure based on the asymptotic distribution of a new test statistic

that alleviates the computational effort.

3.2. Hypothesis testing on subpopulations

In the implementation of procedure B of Jiang, Freidlin, and Simon (2007),

the test statistic is to be TK = max{S(0) +R, maxc2,...,cK S(c)} for a set of can-

didate values of c, c = {c1 ≡ 0, c2, . . . , cK}. The difference between the original

TB and the implemented TK is that TB is based on all values of c continuously

for 0 ≤ c ≤ 1, and thus it is used to test no treatment effect at any value of c in

the range of [0, 1], while TK is used to test no treatment effect at a set of specific

values of c, namely c = {c1 ≡ 0, c2, . . . , cK}. We observe that in model (2.2) if

(and only if) the treatment is effective for the true cutpoint c0, it is effective for

any other cutpoint c. We illustrate this point. First, we consider that H1 : β3 ̸= 0

is true in a two-arm study. Note that in model (2.2) β1 represents the treatment

effect of the standard arm. Figure 1 shows that the intercept is indeed shifted

by β3 in the subset {(Xi, Zi) : Xi > c0 and Zi = 1} from its complementary

region, and the intercept of the set {(Xi, Zi) : Xi > c (c ̸= c0), and Zi = 1} is

also shifted. As an illustration, suppose β3 > 0, and take c > c0. In this case, β1
calculated under c is larger than that obtained under c0, since it is inflated by

the set {(Xi, Zi) : c > Xi > c0 and Zi = 1}, while it is still smaller than β1 + β3
because the effect of Xi > c and Zi = 1 does not contribute to the calculation

of β1. This means that β3, calculated under c, is still positive, although it is

smaller than that obtained under c0 as shown in the second plot of Figure 1. On
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the other hand, if we take c < c0, then the value of β1 remains the same under c

or under c0, while β3, calculated under c, would be smaller than that under c0,

because some of the “irrelevant” Xi values would also be considered “relevant”,

and thus the treatment effect is diluted; see the third plot in Figure 1. Second, we

consider the case that H0 : β3 = 0 is true; so the treatment is not effective for any

cutpoint value of c, including those in the chosen set c = {c1 = 0, c2, . . . , cK}.
Thus, using the candidate cutpoint set to form the test statistic still yields a

consistent testing procedure. The difference between TB and TK is only reflected

in statistical power; power would be less if we take the value of c to be different

from the true cutpoint value c0.

If there is no treatment effect, then there is no treatment effect for any

cutpoint value; so β3(c) ≡ {β3(c1), . . . , β3(cK)}T = 0 for a chosen set of can-

didate cutpoint values {c1, . . . , cK}. Specifically, we can estimate β3(c) and

its variance-covariance matrix V3 using the method described in Section 3.

Based on the sample estimates β̂3(c) and V̂3, the test statistic is constructed

as T (c) = β̂3(c)
TV̂−1

3 β̂3(c), which is chi-squared with K degrees of freedom un-

der the null hypothesis. This new test becomes a standard hypothesis testing

problem that does not involve multiple comparisons. It allows us to compute the

p-value and conduct hypothesis testing without the need to resort to a bootstrap

procedure.

3.3. Estimation of biomarker cutpoint

If the test concludes that the treatment is effective for a subset of patients

with biomarker values satisfying X > c, the next step is to determine the cut-

point c. When the biomarker value is measured precisely, c can be estimated

by maximizing the profile likelihood. However, the same procedure cannot be

applied when X is measured with errors because the likelihood cannot be derived

without assuming a specific distribution for X. Instead, we can estimate c by

maximizing the Wald test statistic at a fixed cutpoint value c,

ĉ = argmax
c

β̂2
3(c)

V̂33(c)
.

In fact, it is more convenient to use the score test statistic. For ease of exposition,

we denote the first two components of ϕ as ϕa and the last component of ϕ as

ϕ3, and similarly βa = (β1, β2)
T. Let

Û(c) = n−1/2
n∑

i=1

ϕ3(Wi, Zi, Yi; β̃a, 0, c),
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Figure 1. Illustration on the changes of the regression lines when a candidate
cutpoint instead of the true cutpoint is used under the alternative H1. The
top panel is based on the true cutpoint c0, the middle panel uses a candidate
cutpoint c > c0, and the bottom panel uses a candidate cutpoint c < c0.
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where β̃a is the estimator of βa under the null hypothesis H0 : β3 = 0 in

model (2.2), so it does not depend on c. We denote the ith observation as

Oi = (Wi, Zi, Yi), and let

A1 = E

{
∂ϕa(Oi,βa, 0)

∂βT
a

} ∣∣∣∣
βa=βa0

,

A2(c) = E

{
∂ϕ3(Oi,βa, 0, c)

∂βT
a

} ∣∣∣∣
βa=βa0

,

v(c) = Var{ϕ3(Oi,βa0, 0, c)−A2(c)A
−1
1 ϕa(Oi,βa0, 0)},

where βa0 denotes the true value of βa. For a fixed value of c, these quantities

can be calculated by replacing expectations and covariance matrices with their

empirical counterparts and inserting the estimator β̃a. If we denote the estimate

of v(c) by v̂(c), we can estimate c by maximizing Û2(c)/v̂(c). In the Appendix,

we show that the variance of ĉ can be estimated by σ̂2
c = ξ̂−2V̂ar(ζi)/n, evaluated

at (β̃a, 0, ĉ), where ξ and ζi are given in (A.1) and (A.2), respectively. Both ξ

and ζi involve the first or second derivative of ϕ3 with respect to c. However, ϕ3

is not a continuous function of c, which makes the variance estimation for the

cutpoint very difficult. This is similar to the situation encountered in quantile

regression, yet here the issue of discontinuity is more severe and we resort to a

bootstrap procedure to estimate the variance of ĉ.

After obtaining ĉ, we can proceed to estimate β using the semiparametric

estimation procedure described in Section 3. In addition to the original variance-

covariance matrix while assuming c fixed, an extra source of variation should be

considered due to estimating c, and thus the variance-covariance matrix of β̂(ĉ)

is estimated by

V̂ = Â−1B̂(Â−1)T + σ̂2
c

{
∂β̂(c)

∂c

}T
∂β̂(c)

∂c
,

where c is evaluated at ĉ. Note that estimation of a cutpoint is a very difficult

problem due to the discontinuity caused by the indicator function. This is true

when the covariates are measured precisely, for example, see Luo, Turnbull, and

Clark (1997), Pons (2003), and Kosorok and Song (2007) for estimation of a

changepoint in survival models. The problem becomes even more challenging

when the covariates are measured with errors.

4. Simulation Study

We conducted extensive simulation studies to evaluate the performance of

the proposed estimation and testing procedure. The true parameter values were
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β1 = −1.5 and β2 = 1.0 under the null model, and were β1 = −1.5, β2 = 1.5

and β3 = 1.0 with the true cutpoint c0 = 1.0 under the alternative model. The

covariate Xi was uniform on [0, 3], and the measurement error was normal with

a standard deviation of 0.1732, which corresponds to the noise-to-signal ratio of

20%. The sample size is typically large in these studies in order to identify a

responsive subset of subjects, as such a subset may be small, say, 20% or 30%

of the total population. We took sample sizes n = 500 and 1,000, and replicated

1,000 data sets.

In the implementation of the proposed estimation and testing procedure, we

posited the distribution of the true biomarker expression X to be either uniform,

normal, or exponential, corresponding to the true and two misspecified cases, re-

spectively. We took the set of candidate cutpoint values c = {0, 0.6, 1.2, 1.8, 2.4}
that does not include the true cutpoint c0 = 1.0. For comparison, we also present

simulation results using a naive approach, for which the measurement errors are

completely ignored. In the absence of measurement errors, the estimation pro-

cedure reduces to that of Jiang, Freidlin, and Simon (2007).

The upper panel of Table 1 summarizes the results for the type I error rate

and power. We can see that the proposed tests are generally consistent, as

reflected by the closeness between the sample proportions of rejecting the null

hypothesis and the corresponding nominal levels. Even when f∗(x), the assumed

distribution ofX, is misspecified as a normal or exponential distribution, the type

I error rates are still maintained at the nominal levels. By contrast, the naive

testing procedure is severely biased, leading to an inflation of the type I error

rate. Because the estimation variability is inevitably higher with measurement

errors, some power loss is incurred for the proposed method compared with its

naive counterpart. To gain more insight into the influence of selection of the

candidate cutpoint set on power, we further explored the case that the true

cutpoint c0 = 1.0 happened to be included in the candidate set by taking the

candidate set c = {0, 0.6, 1.0, 1.8, 2.4}. Comparing the lower and upper panels of

Table 1, we can see that there is indeed some power loss when the true cutpoint

is not included in the candidate cutpoint set. However, the power loss is not

substantial, in general within the 5% difference. This is certainly encouraging,

as the true cutpoint is never known in practice.

Tables 2 and 3 show the parameter estimates when the true cutpoint c0 is

not contained in the candidate set, with the sample size n = 500 and 1,000,

respectively. Clearly, the estimates using the naive method are biased which,

in turn, causes inconsistency of the naive testing procedure. The biases are

especially large for the intercept term under the null hypothesis, and for both

the intercept and slope terms under the alternative hypothesis. By contrast,

the proposed method provides consistent estimates of model parameters with
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Table 1. Levels of precision and power of the test with sample size n = 500
and 1, 000. The true cutpoint c0 is or is not included in the candidate set,
and the proposal distribution for the mismeasured covariate is uniform (the
true model), normal, and exponential, respectively.

Test size under H0 Power under H1

Nominal level 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15
n = 500, c0 is not in the candidate set
Uniform f∗(x) 0.023 0.057 0.100 0.153 0.289 0.509 0.640 0.718
Normal f∗(x) 0.022 0.055 0.096 0.143 0.272 0.477 0.590 0.673
Exponential f∗(x) 0.023 0.055 0.099 0.149 0.281 0.517 0.635 0.711
Naive method 0.016 0.073 0.134 0.177 0.336 0.579 0.704 0.780

n = 1000, c0 is not in the candidate set
Uniform f∗(x) 0.009 0.053 0.099 0.139 0.600 0.809 0.881 0.931
Normal f∗(x) 0.009 0.050 0.098 0.134 0.589 0.787 0.862 0.908
Exponential f∗(x) 0.009 0.053 0.104 0.142 0.628 0.820 0.882 0.920
Naive method 0.018 0.070 0.135 0.191 0.777 0.914 0.959 0.972

n = 500, c0 is in the candidate set
Uniform f∗(x) 0.022 0.067 0.110 0.154 0.309 0.533 0.643 0.717
Normal f∗(x) 0.023 0.066 0.112 0.144 0.323 0.518 0.648 0.731
Exponential f∗(x) 0.020 0.067 0.117 0.170 0.311 0.533 0.648 0.731
Naive method 0.018 0.074 0.123 0.178 0.389 0.640 0.770 0.827

n = 1000, c0 is in the candidate set
Uniform f∗(x) 0.011 0.059 0.105 0.147 0.637 0.818 0.900 0.933
Normal f∗(x) 0.013 0.058 0.106 0.152 0.628 0.828 0.899 0.937
Exponential f∗(x) 0.014 0.064 0.109 0.155 0.662 0.859 0.913 0.942
Naive method 0.019 0.071 0.122 0.174 0.836 0.939 0.967 0.980

negligible biases. In addition, the standard errors for the estimates of β are

quite close to the standard deviations, and the coverage probabilities of the 95%

confidence intervals are reasonably close to the nominal level. As the sample size

increases, the estimation, particularly that for β3, is much improved. For the

cutpoint c, the point estimate is consistent with small bias, while the variance is

often over-estimated because the estimation of c is extremely difficult due to the

discontinuity caused by the indicator function.

We further experimented the situations where the true cutpoint happened to

be included in the candidate set by considering the candidate set c = {0, 0.6, 1.0,
1.8, 2.4}, and repeated the simulations as before. Tables 4 and 5 correspond to

the results with sample sizes n = 500 and 1,000, respectively. The parameter

and variance estimates, as well as the coverage probabilities, are similar to those

when the candidate set does not contain the true cutpoint.
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Table 2. Parameter estimation with sample size n = 500 when the true
cutpoint c0 is not contained in the candidate set. The median of the pa-
rameter estimates is β̂, the empirical standard deviation is SD, the median
of the estimated standard errors is SE, and the coverage probability of 95%
confidence intervals is CP, in percentage.

Estimation under H0 Estimation under H1

True values β1 = −1.5 β2 = 1.0 β1 = −1.5 β2 = 1.0 β3 = 1.0 c = 1.0
Uniform f∗(x)

β̂ −1.5057 1.0049 −1.5062 0.9746 1.2494 1.0237
SD 0.1945 0.1454 0.2469 0.2708 0.4671 0.1766
SE 0.1871 0.1382 0.2529 0.2823 0.5353 0.2695
CP(%) 94.7 94.5 96.7 96.0 98.0 97.4

Normal f∗(x)

β̂ −1.5057 1.0047 −1.5105 0.9857 1.2125 1.0187
SD 0.1935 0.1452 0.2360 0.2668 0.4538 0.1746
SE 0.1871 0.1382 0.2541 0.2827 0.5339 0.2791
CP(%) 94.9 94.4 96.9 96.7 97.8 97.3

Exponential f∗(x)

β̂ −1.5052 1.0045 −1.4974 0.9736 1.2228 0.9879
SD 0.1935 0.1456 0.2412 0.2711 0.4486 0.1786
SE 0.1862 0.1373 0.2527 0.2799 0.5341 0.2783
CP(%) 94.9 94.2 95.9 96.4 97.6 98.4

Naive method

β̂ −1.4523 0.9566 −1.4116 0.8657 1.2862 1.0319
SD 0.1866 0.1372 0.2095 0.2214 0.3606 0.1292
SE 0.1808 0.1309 0.2235 0.2323 0.3879 0.2091
CP(%) 92.7 93.1 94.3 91.0 93.3 98.6

5. Example

We applied the proposed method to the data from the Framingham study.

This study contains 1,615 subjects, and the response of interest Y is the occur-

rence of coronary heart disease, a value of 1 or 0 indicating whether a subject

has the disease or is free of it. One of the study objectives is to characterize

how coronary heart disease is affected by the long-term average of systolic blood

pressure (covariate X). Based on the literature, it is known that X is subject to

an additive measurement error that is normally distributed with mean zero and

standard deviation 0.08 (Carroll et al. (2006)). Previous studies have established

that coronary heart disease is also related to smoking status (denoted as Z), in

that smokers are more likely to develop heart disease. We are interested in deter-

mining whether there is a “safe” zone for the blood pressure region in which, as

long as a subject’s average blood pressure is below a certain threshold, smoking
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Table 3. Parameter estimation with sample size n = 1, 000 when the true
cutpoint c0 is not contained in the candidate set. The median of the pa-
rameter estimates is β̂, the empirical standard deviation is SD, the median
of the estimated standard errors is SE, and the coverage probability of 95%
confidence intervals is CP, in percentage.

Estimation under H0 Estimation under H1

True values β1 = −1.5 β2 = 1.0 β1 = −1.5 β2 = 1.0 β3 = 1.0 c = 1.0
Uniform f∗(x)

β̂ −1.5053 1.0032 −1.5074 0.9919 1.0881 0.9816
SD 0.1288 0.0955 0.1662 0.1844 0.2817 0.1529
SE 0.1316 0.0969 0.1759 0.1933 0.3035 0.2015
CP(%) 96.4 96.6 96.4 96.1 97.9 96.1

Normal f∗(x)

β̂ −1.5048 1.0027 −1.5098 0.9910 1.0871 0.9861
SD 0.1293 0.0958 0.1738 0.1908 0.2893 0.1596
SE 0.1316 0.0968 0.1759 0.1938 0.3038 0.2046
CP(%) 96.3 96.5 94.8 94.9 97.8 96.3

Exponential f∗(x)

β̂ −1.5051 1.0029 −1.5095 0.9938 1.0920 0.9594
SD 0.1287 0.0954 0.1678 0.1863 0.2851 0.1650
SE 0.1316 0.0968 0.1761 0.1945 0.3046 0.2037
CP(%) 96.4 96.7 96.5 97.0 97.8 96.5

Naive method

β̂ −1.4524 0.9556 −1.4208 0.8886 1.1520 1.0075
SD 0.1244 0.0905 0.1551 0.1570 0.2300 0.1198
SE 0.1273 0.0918 0.1569 0.1601 0.2500 0.1737
CP(%) 93.6 92.5 91.6 89.3 94.2 98.2

does not elevate the chance of developing heart disease. In other words, we aim

to identify a subpopulation based on the measurement of the blood pressure such

that the risk of developing heart disease for those subjects is not elevated even if

they smoke. This is particularly relevant for smokers trying to find an “excuse”

for their smoking behavior. For the purposes of modeling, we can view smoking

behavior as a “treatment” indicator and blood pressure as a biomarker. If there

is such a subpopulation, we would be interested in finding the cutpoint on blood

pressure below which smoking does not make any difference in the risk of heart

disease.

To implement our proposed procedure, we used five (K = 5) candidate cut-

point values equally spaced along the supporting range of the observed blood

pressure values, 3.5528 ≤ W ≤ 5.2426, with the true blood pressure X unob-

served. Based on model (2.2), we obtained the test statistic T5 = 12.02, which



MULTIPLE TESTING WITH MEASUREMENT ERRORS 1033

Table 4. Parameter estimation with sample size n = 500 when the true
cutpoint c0 is contained in the candidate set. The median of the param-
eter estimates is β̂, the empirical standard deviation is SD, the median of
the estimated standard errors is SE, and the coverage probability of 95%
confidence intervals is CP, in percentage.

Estimation under H0 Estimation under H1

True values β1 = −1.5 β2 = 1.0 β1 = −1.5 β2 = 1.0 β3 = 1.0 c = 1.0
Uniform f∗(x)

β̂ −1.5052 1.0043 −1.5146 0.9931 1.2155 1.0200
SD 0.1957 0.1467 0.2462 0.2707 0.4748 0.1763
SE 0.1863 0.1373 0.2527 0.2825 0.5535 0.2763
CP(%) 94.5 94.3 95.6 96.3 97.6 97.4

Normal f∗(x)

β̂ −1.5052 1.0040 −1.5012 0.9746 1.2420 1.0217
SD 0.1941 0.1463 0.2283 0.2565 0.4580 0.1794
SE 0.1861 0.1373 0.2516 0.2796 0.5284 0.2624
CP(%) 94.8 94.6 97.2 97.6 98.0 98.1

Exponential f∗(x)

β̂ −1.5063 1.0054 −1.4974 0.9736 1.2228 0.9879
SD 0.1938 0.1454 0.2412 0.2711 0.4486 0.1786
SE 0.1863 0.1374 0.2527 0.2799 0.5341 0.2783
CP(%) 94.8 94.3 95.9 96.4 97.6 98.4

Naive method

β̂ −1.4519 0.9562 −1.3984 0.8524 1.2952 1.0302
SD 0.1887 0.1387 0.2117 0.2211 0.3398 0.1224
SE 0.1800 0.1300 0.2203 0.2297 0.3824 0.2043
CP(%) 92.5 92.7 93.1 90.6 94.2 98.7

exceeds the critical constant 11.07, the 95th percentile of the chi-squared distri-

bution with five degrees of freedom. As a result, we reject the null hypothesis and

conclude that there exists a cutpoint on the blood pressure, above which smoking

has an effect on the development of heart disease. We further performed esti-

mation under the alternative model in (2.2) and obtained the estimates of the

regression coefficients β1 = −14.69, β2 = 2.68, and β3 = 0.53, with the corre-

sponding estimated variances 3.49, 0.170, and 0.0636. The cutpoint is estimated

as ĉ = 3.1, which is to the left of the entire region of the observed blood pressure

[3.5528, 5.2426]. We emphasize here that whether ĉ is also to the left of the region

of the true blood pressure is unknown because X is not observed. Nevertheless,

our finding indicates that although smoking status has an effect only in the re-

gion above the cutpoint ĉ = 3.1, this region contains all the observed values of

blood pressure. Hence there is indeed no “safe” zone in terms of the observed
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Table 5. Parameter estimation with sample size n = 1, 000 when the true
cutpoint c0 is contained in the candidate set. The median of the param-
eter estimates is β̂, the empirical standard deviation is SD, the median of
the estimated standard errors is SE, and the coverage probability of 95%
confidence intervals is CP, in percentage.

Estimation under H0 Estimation under H1

True values β1 = −1.5 β2 = 1.0 β1 = −1.5 β2 = 1.0 β3 = 1.0 c = 1.0
Uniform f∗(x)

β̂ −1.5048 1.0027 −1.5125 0.9986 1.0837 0.9919
SD 0.1292 0.0957 0.1698 0.1899 0.2978 0.1524
SE 0.1316 0.0968 0.1759 0.1944 0.3054 0.2001
CP(%) 96.3 96.5 96.1 95.6 96.8 95.7

Normal f∗(x)

β̂ −1.5045 1.0021 −1.5081 0.9892 1.0955 0.9926
SD 0.1291 0.0957 0.1756 0.1925 0.2851 0.1577
SE 0.1316 0.0968 0.1761 0.1942 0.3067 0.2066
CP(%) 96.3 96.5 94.8 95.5 98.6 96.3

Exponential f∗(x)

β̂ −1.5050 1.0030 −1.5095 0.9938 1.0920 0.9594
SD 0.1280 0.0951 0.1678 0.1863 0.2851 0.1650
SE 0.1317 0.0968 0.1761 0.1945 0.3046 0.2037
CP(%) 96.4 96.8 96.5 97.0 97.8 96.5

Naive method

β̂ −1.4517 0.9546 −1.4192 0.8865 1.1600 1.0126
SD 0.1246 0.0908 0.1566 0.1597 0.2247 0.1175
SE 0.1273 0.0918 0.1562 0.1601 0.2509 0.1710
CP(%) 93.6 92.3 91.2 89.0 94.0 97.8

blood pressure levels for smoking. This is important information to motivate all

smokers to quit smoking.

6. Discussion

We have developed a new testing procedure for treatment effects in either

an overall population or a subpopulation identified by some biomarker that may

be measured with errors. The proposed method differs from that of Jiang, Frei-

dlin, and Simon (2007) in three important aspects. First, our testing procedure

does not require the estimation of the true cutpoint c0. Instead, it requires one

to prespecify a set of candidate cutpoints and to construct a Wald test statistic.

Second, the p-value can be calculated based on the asymptotic distribution of the

test statistic, in contrast to using a bootstrap procedure that is computationally

infeasible in the presence of measurement errors. Third, due to the difficulty
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in constructing a likelihood in measurement error models, we propose to maxi-

mize the score-type statistic to estimate the cutpoint instead of using the profile

likelihood approach.

One of the most interesting discoveries is that whether the set of candidate

cutpoints contains the true cutpoint or not, the test remains consistent, and the

power of detecting the treatment effect tends to one as the sample size increases.

This is a direct consequence of the root-n rate of the estimation procedure in

Section 3. However, in practice the selection of the candidate cutpoints has an

impact on power. This means that if the alternative model holds, a properly

chosen set can increase the power. In the ideal case, the best candidate set is

the one that contains only the true cutpoint c0. Of course the true cutpoint

is unknown, hence we suggest including several reasonable cutpoints in the set

based on scientific knowledge. When no such scientific information is available,

a natural choice is to include a series of equally spaced candidate cutpoints. Al-

though choosing more candidate cutpoints can increase the chance of capturing

the true one and thus improve power, it also results in a larger number of degrees

of freedom for the chi-squared test and thus diminishes power. Hence there is a

delicate balance in choosing the number of cutpoints. In order to capture the po-

tential global treatment effect, we suggest always including the lower limit of the

range of W in the set of cutpoints. But we generally do not recommend including

the upper limit of the range of W , because it can cause degeneration of model

(2.2) if the upper limit point happens to lie out of the range of X. Based on

our experience, choosing between two to five candidate cutpoints generally works

well. However, establishing a theoretically justifiable method for the choice of

candidate cutpoints requires more research involving higher order asymptotic

properties. Finally, although the procedure is motivated from handling measure-

ment errors, the proposed method is certainly applicable when biomarkers are

measured precisely.
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Appendix

A.1. Bootstrap approximation of the p-value

Because the test statistic in Jiang, Freidlin, and Simon (2007) is constructed

as TA=max0<c≤1 S(c) in procedure A and as TB=max{S(0)+R,max0<c≤1 S(c)}
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in procedure B, the asymptotic distributions of TA and TB under H0 cannot be

obtained easily. A bootstrap procedure can be used to determine the p-value in

this case. Specifically, we randomly permute the Z1, . . . , Zn values to the pairs

(X1, Y1), . . . , (Xn, Yn) to form a new data set {(X1, Y1, Z
∗
b,1), . . . , (Xn, Yn, Z

∗
b,n)},

and then construct the same test statistic T ∗
b . Repeating the procedure a large

number of times, say B times, the p-value can be calculated as
∑B

b=1 I(T
∗
b >

T )/B. Because the procedure to generate the data under the null hypothesis is

permutation-based, the resulting bootstrap test is also called the permutation

test.

A.2. Variance estimation of the cutpoint

Maximizing Û(c)2/v̂(c) to estimate c is equivalent to solving

2Û ′(c)v̂(c)− Û(c)v̂′(c) = 0,

where Û ′(c) and v̂′(c) correspond to the derivatives of Û(c) and v̂(c) with re-

spect to c. Denote the maximizer of Û(c)2/v̂(c) as ĉ, and let ϕ′
3c(Oi;βa, 0, c) =

∂ϕ3(Oi;βa, 0, c)/∂c. We assume that c0 satisfies

E
{
ϕ3(Oi;βa0, 0, c0)v

′(c0)− 2ϕ′
3c(Oi;βa0, 0, c0)v(c0)

}
= 0.

Then we have

0 = Û(ĉ)v̂′(ĉ)− 2Û ′(ĉ)v̂(ĉ)

=
1√
n

n∑
i=1

ϕ3(Oi; β̃a, 0, ĉ)v̂
′(ĉ)− 2√

n

n∑
i=1

ϕ′
3c(Oi; β̃a, 0, ĉ)v̂(ĉ)

=
1√
n

n∑
i=1

ϕ3(Oi;βa0, 0, c0)v
′(c0)−

2√
n

n∑
i=1

ϕ′
3c(Oi;βa0, 0, c0)v(c0)

+
v̂′(ĉ)√

n

n∑
i=1

{
ϕ3(Oi; β̃a, 0, ĉ)− ϕ3(Oi;βa0, 0, c0)

}
+
v̂′(ĉ)− v′(c0)√

n

n∑
i=1

ϕ3(Oi;βa0, 0, c0)−
2{v̂(ĉ)− v(c0)}√

n

n∑
i=1

ϕ′
3c(Oi; β̃a, 0, ĉ)

−2v(c0)√
n

n∑
i=1

{
ϕ′
3c(Oi; β̃a, 0, ĉ)− ϕ′

3c(Oi;βa0, 0, c0)
}
.

We now consider each term of the above equation separately. First, take

ϕb(Oi,βa, 0, c) = ϕ3(Oi,βa, 0, c)−A2(c)A
−1
1 ϕa(Oi,βa, 0),
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and ϕ′
bc(Oi,βa0, 0, c) = ∂ϕb(Oi,βa0, 0, c)/∂c. The third term is then

v̂′(ĉ)√
n

n∑
i=1

{
ϕ3(Oi; β̃a, 0, ĉ)− ϕ3(Oi;βa0, 0, c0)

}
= v̂′(ĉ) {A2(c0) + op(1)}

√
n(β̃a − βa0)

+v̂′(ĉ)
[
E
{
ϕ′
3c(Oi;βa0, 0, c0)

}
+ op(1)

]√
n(ĉ− c0)

= v′(c0)A2(c0)
√
n(β̃a − βa0) + v′(c0)E

{
ϕ′
3c(Oi;βa0, 0, c0)

}√
n(ĉ− c0) + op(1)

= −v′(c0)A2(c0)A
−1
1

1√
n

n∑
i=1

ϕa(Oi;βa0, 0)

+v′(c0)E
{
ϕ′
3c(Oi;βa0, 0, c0)

}√
n(ĉ− c0) + op(1).

The fourth term is

v̂′(ĉ)− v′(c0)√
n

n∑
i=1

ϕ3(Oi;βa0, 0, c0)

=[E {ϕ3(Oi;βa0, 0, c0)}+ op(1)]
√
n
{
v̂′(ĉ)− v̂′(c0) + v̂′(c0)− v′(c0)

}
=[E{ϕ3(Oi;βa0, 0, c0)}+op(1)][{v′′(c0)+op(1)}

√
n(ĉ−c0)+

√
n{v̂′(c0)−v′(c0)}]

=E {ϕ3(Oi;βa0, 0, c0)} v′′(c0)
√
n(ĉ− c0) + E {ϕ3(Oi;βa0, 0, c0)}

×
√
n
{
v̂′(c0)− v′(c0)

}
+ op(1).

Since

√
n
{
v̂′(c0)− v′(c0)

}
=

2√
n

n∑
i=1

[
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

−E
{
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

}]
−2

√
n
{ 1

n

n∑
i=1

ϕ3(Oi,βa0, 0, c0)
}{ 1

n

n∑
i=1

ϕ′
3c(Oi,βa0, 0, c0)

}
+2

√
nE {ϕ3(Oi,βa0, 0, c0)}E

{
ϕ′
3c(Oi,βa0, 0, c0)

}
=

2√
n

n∑
i=1

[
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

−E
{
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

}]
− 2√

n

n∑
i=1

[ϕ3(Oi,βa0, 0, c0)−E {ϕ3(Oi,βa0, 0, c0)}]
{ 1

n

n∑
i=1

ϕ′
3c(Oi,βa0, 0, c0)

}
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−2
√
nE {ϕ3(Oi,βa0, 0, c0)}

1

n

n∑
i=1

[
ϕ′
3c(Oi,βa0, 0, c0)−E

{
ϕ′
3c(Oi,βa0, 0, c0)

}]
=

2√
n

n∑
i=1

[
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

−E
{
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

} ]
−2E {ϕ′

3c(Oi,βa0, 0, c0)}√
n

n∑
i=1

[ϕ3(Oi,βa0, 0, c0)−E {ϕ3(Oi,βa0, 0, c0)}]

−2E {ϕ3(Oi,βa0, 0, c0)}√
n

n∑
i=1

[
ϕ′
3c(Oi,βa0, 0, c0)−E

{
ϕ′
3c(Oi,βa0, 0, c0)

}]
+op(1),

the fourth term can be written as

v̂′(ĉ)− v′(c0)√
n

n∑
i=1

ϕ3(Oi;βa0, 0, c0)

= E {ϕ3(Oi;βa0, 0, c0)} v′′(c0)
√
n(ĉ− c0) +

2E {ϕ3(Oi;βa0, 0, c0)}√
n

×
n∑

i=1

[
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

−E
{
ϕb(Oi,βa0, 0, c0)ϕ

′
bc(Oi,βa0, 0, c0)

} ]
−2E {ϕ3(Oi;βa0, 0, c0)}E {ϕ′

3c(Oi,βa0, 0, c0)}√
n

×
n∑

i=1

[ϕ3(Oi,βa0, 0, c0)− E {ϕ3(Oi,βa0, 0, c0)}]

−2 [E {ϕ3(Oi;βa0, 0, c0)}]2√
n

n∑
i=1

[
ϕ′
3c(Oi,βa0, 0, c0)−E

{
ϕ′
3c(Oi,βa0, 0, c0)

} ]
+op(1).

The fifth term is

2{v̂(ĉ)− v(c0)}√
n

n∑
i=1

ϕ′
3c(Oi; β̃a, 0, ĉ)

= 2
√
n{v̂(ĉ)− v̂(c0) + v̂(c0)− v(c0)}

[
E
{
ϕ′
3c(Oi;βa0, 0, c0)

}
+ op(1)

]
= [2{v′(c0) + op(1)}

√
n(ĉ− c0) + 2

√
n{v̂(c0)−v(c0)}][E{ϕ′

3c(Oi;βa0, 0, c0)}
+op(1)]
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= 2E
{
ϕ′
3c(Oi;βa0, 0, c0)

}
v′(c0)

√
n(ĉ− c0)

+2E
{
ϕ′
3c(Oi;βa0, 0, c0)

}√
n{v̂(c0)− v(c0)}+ op(1).

Since the variance can be expanded as

√
n {v̂(c0)− v(c0)}

=
1√
n

n∑
i=1

[
ϕ2
b(Oi,βa0, 0, c0)−E

{
ϕ2
b(Oi,βa0, 0, c0)

}]
−
√
n
{ 1

n

n∑
i=1

ϕ3(Oi,βa0, 0, c0)
}2

+
√
n [E {ϕ3(Oi,βa0, 0, c0)}]2

=
1√
n

n∑
i=1

[
ϕ2
b(Oi,βa0, 0, c0)−E

{
ϕ2
b(Oi,βa0, 0, c0)

}]
−2E {ϕ3(Oi,βa0, 0, c0)}√

n

n∑
i=1

[ϕ3(Oi,βa0, 0, c0)−E{ϕ3(Oi,βa0, 0, c0)}]+op(1),

the fifth term can be further written as

2{v̂(ĉ)− v(c0)}√
n

n∑
i=1

ϕ′
3c(Oi; β̃a, 0, ĉ)

= 2E
{
ϕ′
3c(Oi;βa0, 0, c0)

}
v′(c0)

√
n(ĉ− c0)

+2E
{
ϕ′
3c(Oi;βa0, 0, c0)

} 1√
n

n∑
i=1

[
ϕ2
b(Oi,βa0, 0, c0)− E

{
ϕ2
b(Oi,βa0, 0, c0)

}]
−4E {ϕ′

3c(Oi;βa0, 0, c0)}E {ϕ3(Oi,βa0, 0, c0)}√
n

×
n∑

i=1

{ϕ3(Oi,βa0, 0, c0)−Eϕ3(Oi,βa0, 0, c0)}+ op(1).

Finally, the last term is

2v(c0)√
n

n∑
i=1

{
ϕ′
3c(Oi; β̃a, 0, ĉ)− ϕ′

3c(Oi;βa0, 0, c0)
}

= 2v(c0)E

{
∂ϕ′

3c(Oi;βa0, 0, c0)

∂βT
a

}√
n(β̃a−βa0)

+2v(c0)E

{
∂ϕ′

3c(Oi;βa0, 0, c0)

∂c

}√
n(ĉ− c0) + op(1)

= −2v(c0)A
′
2(c0)A

−1
1

1√
n

n∑
i=1

ϕa(Oi;βa0, 0)
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+2v(c0)E
{
ϕ′′
3cc(Oi;βa0, 0, c0)

}√
n(ĉ− c0) + op(1),

where ϕ′′
3cc(Oi;βa, 0, c) = ∂ϕ′

3c(Oi;βa, 0, c)/∂c.

Combining these terms, we obtain

0 =
1√
n

n∑
i=1

ϕ3(Oi;βa0, 0, c0)v
′(c0)−

2√
n

n∑
i=1

ϕ′
3c(Oi;βa0, 0, c0)v(c0)

−v′(c0)A2(c0)A
−1
1

1√
n

n∑
i=1

ϕa(Oi;βa0, 0)

+v′(c0)E
{
ϕ′
3c(Oi;βa0, 0, c0)

}√
n(ĉ− c0)

+E {ϕ3(Oi;βa0, 0, c0)} v′′(c0)
√
n(ĉ− c0) +

2E {ϕ3(Oi;βa0, 0, c0)}√
n

×
n∑

i=1

[ϕb(Oi,βa0, 0, c0)ϕ
′
bc(Oi,βa0, 0, c0)

−E{ϕb(Oi,βa0, 0, c0)ϕ
′
bc(Oi,βa0, 0, c0)}]

−2E {ϕ3(Oi;βa0, 0, c0)}E {ϕ′
3c(Oi,βa0, 0, c0)}√

n
n∑

i=1

[ϕ3(Oi,βa0, 0, c0)− E {ϕ3(Oi,βa0, 0, c0)}]

−2 [E {ϕ3(Oi;βa0, 0, c0)}]2√
n

n∑
i=1

[
ϕ′
3c(Oi,βa0, 0, c0)− E

{
ϕ′
3c(Oi,βa0, 0, c0)

}]
−2E

{
ϕ′
3c(Oi;βa0, 0, c0)

}
v′(c0)

√
n(ĉ− c0)

−2E
{
ϕ′
3c(Oi;βa0, 0, c0)

} 1√
n

n∑
i=1

[
ϕ2
b(Oi,βa0, 0, c0)−E

{
ϕ2
3(Oi,βa0, 0, c0)

}]
+
4E {ϕ′

3c(Oi;βa0, 0, c0)}E {ϕ3(Oi,βa0, 0, c0)}√
n

×
n∑

i=1

{ϕ3(Oi,βa0, 0, c0)− Eϕ3(Oi,βa0, 0, c0)}

+2v(c0)A
′
2(c0)A

−1
1

1√
n

n∑
i=1

ϕa(Oi;βa0, 0)

−2v(c0)E
{
ϕ′′
3cc(Oi;βa0, 0, c0)

}√
n(ĉ− c0) + op(1).

Let

ξ = E {ϕ3(Oi;βa0, 0, c0)} v′′(c0)− v′(c0)E
{
ϕ′
3c(Oi;βa0, 0, c0)

}
−2v(c0)E

{
ϕ′′
3cc(Oi;βa0, 0, c0)

}
, (A.1)
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ζi = ϕ3(Oi;βa0, 0, c0)v
′(c0)− 2ϕ′

3c(Oi;βa0, 0, c0)v(c0)

−v′(c0)A2(c0)A
−1
1 ϕa(Oi;βa0, 0)

+2E {ϕ3(Oi;βa0, 0, c0)} [ϕb(Oi,βa0, 0, c0)ϕ
′
bc(Oi,βa0, 0, c0)

−E{ϕb(Oi,βa0, 0, c0)ϕ
′
bc(Oi,βa0, 0, c0)}]

−2E {ϕ3(Oi;βa0, 0, c0)}E
{
ϕ′
3c(Oi,βa0, 0, c0)

}
[ϕ3(Oi,βa0, 0, c0)

−E{ϕ3(Oi,βa0, 0, c0)}]
−2 [E {ϕ3(Oi;βa0, 0, c0)}]2

[
ϕ′
3c(Oi,βa0, 0, c0)−E

{
ϕ′
3c(Oi,βa0, 0, c0)

}]
−2E

{
ϕ′
3c(Oi;βa0, 0, c0)

} [
ϕ2
b(Oi,βa0, 0, c0)− E

{
ϕ2
b(Oi,βa0, 0, c0)

}]
+4E{ϕ′

3c(Oi;βa0, 0, c0)}E{ϕ3(Oi,βa0, 0, c0)}{ϕ3(Oi,βa0, 0, c0)

−Eϕ3(Oi,βa0, 0, c0)}+ 2v(c0)A
′
2(c0)A

−1
1 ϕa(Oi;βa0, 0). (A.2)

This yields

−ξ
√
n(ĉ− c0) =

1√
n

n∑
i=1

ζi + op(1).

Hence, the variance of ĉ can be estimated by the sample version σ̂2
c = ξ̂−2V̂ar(ζi)/n

evaluated at (β̃a, 0, ĉ).
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