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Abstract

Data depth provides a natural means to rank multivariate vectors with respect to

an underlying multivariate distribution. Most existing depth functions emphasize a

centre-outward ordering of data points, which may not provide a useful geometric

representation of certain distributional features, such as multimodality, of concern to

some statistical applications. Such inadequacy motivates us to develop a device for

ranking data points according to their “representativeness” rather than “centrality”

with respect to an underlying distribution of interest. Derived essentially from a

choice of goodness-of-fit test statistic, our device calls for a new interpretation of

“depth” more akin to the concept of density than location. It copes particularly

well with multivariate data exhibiting multimodality. In addition to providing depth

values for individual data points, depth functions derived from goodness-of-fit tests

also extend naturally to provide depth values for subsets of data points, a concept

new to the data-depth literature.

Keywords and phrases : centre-outward ordering; data depth; goodness-of-fit tests;

multimodality; representativeness.
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1 Introduction

In the past decades, a variety of definitions of data depth have been proposed to

provide a natural means to rank multivariate data. Such depth functions are formu-

lated primarily to measure the “centrality” of a single point relative to a specified

distribution function F or to a sample of observations X1, . . . , Xn drawn from F .

The deepest point found by a depth function is often referred to as the “centre”

of the distribution F . Much emphasis has been put on monotonicity of the depth

function relative to this deepest point, so much so that it has become one of the four

characterising properties of centre-outward ordering depth functions as introduced

by Liu (1990) and Zuo and Serfling (2000). Examples of data depths possessing

such properties include Mahalanobis’s depth (Mahalanobis, 1936), Tukey’s depth

(Tukey, 1975), simplicial depth (Liu, 1990) and majority depth (Singh, 1991). Iron-

ically, the requirement that a depth function provide a centre-outward ordering has

restricted the scope of depth-based inferences. Indeed, in many applications such

as cluster analysis, classification or tests for equality of populations, usefulness of a

depth function relies on the tacit assumption that a “deep” point of a distribution,

or sample, should also be a point which is “representative” of that distribution, or

sample. While this often holds true for unimodal distributions, such assumption is

less plausible when the underlying distribution or sample exhibits some degree of
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multimodality. More generally, if our objective is to rank data points in order of their

“representativeness” of the reference distribution, we are in need of an alternative

notion of depth which can genuinely measure representativeness and, in particular,

endow data points with an ordering sufficiently responsive to multimodal features

of the reference distribution. The problem has not received much attention so far.

Exceptions include Baggerly and Scott (1999), who argue for an interpretation of

multivariate median as the highest density “contour” encompassing a 50% probabil-

ity mass under F . Zuo and Serfling (2000) believe it important to choose between

“sensitivity to multimodality” and “centre-outward ordering” in the derivation of a

proper notion of data depth. The first constructive attempt at a shift of emphasis

from “centrality” to “representativeness” has been signalled by Fraiman and Me-

loche’s (1999) likelihood depth. More recently, Chen, Dang, Peng and Bart (2009)

propose a kernelized spatial depth function for detecting outliers in non-unimodal

data patterns. Hlubinka, Kot́ık and Vencálek (2010) modify the halfspace depth

by reweighting the probability contents of halfspaces. By controlling the volumes

of simplices or halfspaces, Agostinelli and Romanazzi (2011) generalise the classical

simplicial and halfspace depths to a local depth which can reveal local distribu-

tional features. Paindaveine and van Bever (2012) introduce a different notion of

local depth which can be viewed as a localised measure of centrality.
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We propose in this paper a general scheme of formulating data depths that can

measure representativeness of data points, or subsets of data points, with respect

to multivariate distributions. Our formulation hinges on a choice of goodness-of-fit

test applicable to data of any dimension, and provides a very general method for

constructing depth functions. In general, different choices of goodness-of-fit tests

give rise to different formulations, leading to a rich class of depth functions of which

many are new to the literature. In particular, goodness-of-fit tests based on inter-

point distances are shown to be especially effective in formulating depth functions

which provide satisfactory rankings of data points in order of representativeness.

The paper is organised as follows. Section 2 reviews three main classes of

goodness-of-fit tests, based on which new classes of depth functions are formulated.

Particularly promising as a tool for measuring “representativeness” is the class of

depth functions derived from interpoint distances, which are investigated in more

detail in Section 3. Section 4 illustrates an application of our new depth functions

to supervised classification problems based on simulated data. Section 5 provides a

real-life example which contrasts the ranking of a macroeconomic bivariate data set

made by simplicial depth with that made by one of our new depth functions derived

from within-triplet distances. Section 6 concludes our findings. Technical proofs are

given in the Appendix.
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2 Depth function based on goodness-of-fit test

Consider a random sample Xn = {X1, . . . , Xn} drawn from a distribution F on the

sample space S. A goodness-of-fit test typically refers to a test of the null hypothesis

that F = F0, for some specified distribution function F0.

Literature on goodness-of-fit tests is abundant. To fix ideas we consider for

our formulation of depth functions three main classes of goodness-of-fit tests: the

Kolmogorov-Smirnov-Cramér type, the Cressie-Read type and the interpoint-distance

type. The above choices provide a sufficiently broad selection of goodness-of-fit tests

for the generation of depth functions, although the list is by no means exhaustive.

Denote generically by T (Xn, F ) the goodness-of-fit test statistic, large values of

which indicate a lack of fit of the distribution F to the observed data Xn, or in

other words, a lack of “representativeness” of Xn with respect to the distribution

F . This motivates our new formulation of a depth function applicable to a pattern

of data points, under which “depth” acquires a new meaning as a measure of “rep-

resentativeness”. Specifically, for any collection of points {x1, . . . , xn} ⊂ S and any

distribution function F on S, the depth of the pattern {x1, . . . , xn} with respect to

F is defined to be

D(F, {x1, . . . , xn}) = η(T ({x1, . . . , xn}, F )|F ),

for some decreasing function η(·|F ) on R, which can be chosen arbitrarily. For exam-

4



ple, we may set η(t|F ) = (1+t)−1 for any non-negative test statistic T ({x1, . . . , xn}, F ).

As a canonical choice, we can set η(t|F ) = PF (T (Xn, F ) > t), in which case the

depth function admits at once an additional interpretation as a goodness-of-fit p-

value associated with the “sample” {x1, . . . , xn}. In many examples the distribution

of T (Xn, F ) under F either does not depend on F or can be estimated by Monte

Carlo simulation of random samples from F .

Under our new formulation, a “deep” point pattern {x1, . . . , xn} relative to a

distribution F can be viewed as a “sample” in no essential conflict with F , or one

which is reasonably “representative” of F . This formulation can easily be specialised,

by considering the case n = 1, to provide a depth measure for a single point, in

which sense a depth function has traditionally been understood. Without confusion

we write D(F, x) = D(F, {x}) for the depth function of the point x with respect to

the distribution F .

2.1 Kolmogorov-Smirnov-Cramér type

Goodness-of-fit tests of the Kolmogorov-Smirnov-Cramér type are further divided

into two subclasses, one of the Kolmogorov-Smirnov type and the other of the

Cramér-von Mises type.
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Test statistics of the Kolmogorov-Smirnov type have the form

T (Xn, F ) = sup

{∣∣∣∣∣ 1n
n∑

i=1

f(Xi)−
∫

f dF

∣∣∣∣∣ : f ∈ Fn

}
, (1)

for some pre-specified collection Fn of measurable functions. A two-sample version

of (1) has been considered by Præstgaard (1995), who establishes conditions for

consistency of its permutation and bootstrap distributions. The formulation (1)

encompasses a variety of Kolmogorov-Smirnov tests found in the literature. In

the case S = Rd, Wolfowitz (1954) defines the Kolmogorov-Smirnov distance by

setting Fn = {1H : H ∈ H}, the class of indicator functions for the collection H

of all closed halfspaces in Rd. Cabaña and Cabaña (1997) construct classes of

goodness-of-fit tests by setting Fn = {T (a1A) : A ∈ A}, where T is an isometry on

L2(Rd,PF ) with range equal to the orthogonal complement of the constant function

1, a ∈ L2(Rd,PF ) depends on the sequence of alternatives of interest and A is a

class of subsets in Rd sufficiently rich to generate Borel sets. For a separable Hilbert

space S endowed with scalar product ⟨·, ·⟩, Cuesta-Albertos, Fraiman and Ransford

(2006) suggest taking Fn = {1{⟨·, h⟩ ≤ t} : t ∈ R}, where h is a random direction

generated according to a non-degenerate Gaussian law on S.

Test statistics of the Cramér-von Mises type have the form

T (Xn, F ) = nα/2

∫
Θ

∣∣∣∣∣ 1n
n∑

i=1

fθ(Xi)−
∫

fθ dF

∣∣∣∣∣
α

dλF (θ), (2)
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for some fixed α > 0, some collection of measurable functions {fθ : θ ∈ Θ} and

some positive measure λF on the index space Θ. For S = R, it is common to

set α = 2, Θ = R, fθ = 1(−∞,θ] and dλF (·) = h(F (·)) dF (·), for some positive

function h on R. A recent study of the power function of the test based on the

choice h(θ) = θ2β, for β > −1, can be found in Makhoukhi (2008). For S = Rd, we

may take α = 2, Θ = Sd−1 × R and f(θ1,θ2)(x) = 1{θT1 x ≤ θ2}, where Sd−1 denotes

the unit sphere in Rd centred at the origin. Zhu, Fang and Bhatti (1997) consider

this setup with dλF (θ1, θ2) = dµ(θ1) dPF (θ
T
1 X ≤ θ2), where µ denotes the uniform

probability measure on Sd−1, whereas Baringhaus and Franz (2004) take λF to be

the product of µ and the Lebesgue measure on R. Alba-Fernández, Jiménez-Gamero

and Muñoz-Garćıa (2008) consider a two-sample version of (2) with α = 2, Θ = Rd,

fθ = eiθ
T(·) and λF an arbitrary probability measure on Rd.

It follows easily from (1) and (2) that, for a singleton {x},

D(F, x) = η

(
sup

{∣∣∣∣ f(x)− ∫ f dF

∣∣∣∣ : f ∈ Fn

} ∣∣∣∣F) (3)

based on the Kolmogorov-Smirnov test, and

D(F, x) = η

(∫
Θ

∣∣∣∣ fθ(x)− ∫ fθ dF

∣∣∣∣α dλF (θ)

∣∣∣∣F) (4)

based on the Cramér-von Mises test.

On taking Fn to be the collection of indicators of closed halfspaces in Rd and

η(t|F ) = 1 − t, (3) reduces to Tukey’s depth on Rd. Furthermore, in the special
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case where d = 1, setting η(t|F ) = 3/2 − t reduces (3) to the majority depth.

More generally, the random functional depth introduced by Cuesta-Albertos and

Nieto-Reyes (2008) can be derived from (3) using the random projection approach

of Cuesta-Albertos, Fraiman and Ransford (2006).

Following Baringhaus and Franz’s (2004) formulation, (4) reduces to

D(F, x) = η

(∫
Sd−1

∫
Rd

|θT1 (x− y)| dF (y) dµ(θ1)

− 1

2

∫
Sd−1

∫
Rd×Rd

|θT1 (y − z)| d(F ⊗ F )(y, z) dµ(θ1)

∣∣∣∣F)
= η

(∫
Rd

∥x− y∥ dF (y)− 1

2

∫
Rd×Rd

∥y − z∥ d(F ⊗ F )(y, z)

∣∣∣∣F) , (5)

where ∥ · ∥ denotes the Euclidean norm. On the other hand, if d = 1 and we set

α = 2, Θ = R, fθ = 1(−∞,θ] and dλF (·) = h(F (·)) dF (·), then (4) becomes

D(F, x) = η
(
F (x)3 + (1− F (x))3

∣∣F)
if h is a constant function, and

D(F, x) = η
(
F (x)−1(1− F (x))−1

∣∣F)
if h(u) = u−1(1− u)−1. The latter leads to the simplicial depth as a special case.
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2.2 Cressie-Read type

Let {Cj : j = 1, . . . , k} be a partition of S. Cressie and Read (1984) introduce a

family of power-divergence statistics of the form

T (Xn, F ) =
2

λ(λ+ 1)

k∑
j=1

(
n∑

i=1

1{Xi ∈ Cj}

)
(∑n

i=1 1{Xi ∈ Cj}
n
∫
Cj

dF

)λ

− 1

 ,

(6)

which is suitable for testing the fit of the null distribution F , for any real constant

λ. Special cases include the Pearson’s chi-squared test statistic (λ = 1), the log-

likelihood ratio statistic (λ → 0), the Freeman-Tukey statistic (λ = −1/2) and the

Neyman modified chi-squared test statistic (λ = −2). It can be shown that the

Cressie-Read statistics are asymptotically chi-square on k − 1 degrees of freedom

under the null distribution.

Setting n = 1 in (6), we obtain, for a singleton {x}, the depth function

D(F, x) = η

 2

λ(λ+ 1)


[∫

Cj(x)

dF (y)

]−λ

− 1


∣∣∣∣∣∣F
 , (7)

where j(x) ∈ {1, . . . , k} identifies the subset Cj(x) that contains x.

2.3 Interpoint-distance type

Let δ(·, ·) be an arbitrary distance measure on S. Tests of the interpoint-distance

type require calculations of δ-distances between points in the sample. They are often
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introduced in the form of a multivariate two-sample test. Examples include those

based on minimum spanning trees (Friedman and Rafsky, 1979), nearest neighbours

(Schilling, 1986; Henze, 1988), interpoint distances within a triplet (Bartoszyński,

Pearl and Lawrence, 1997), optimal cross-matches (Rosenbaum, 2005) and a notion

of minimum energy (Aslan and Zech, 2005). The above tests are designed primar-

ily to test for equality of two populations, from which two independent random

samples, say Xn = {X1, . . . , Xn} and Ym = {Y1, . . . , Ym}, are available. They can

nevertheless be converted into one-sample goodness-of-fit tests by considering, under

the assumption Yi ∼ F , either the limiting case m → ∞ or the expected value of

the test statistic with respect to the drawing of finite samples {Y1, . . . , Ym} from F

for a fixed m.

As no single unifying formulation exists of the test statistics of the interpoint-

distance type, we describe below three important examples which are distinct enough

to reflect the diversity of this class of goodness-of-fit tests. In each example a closed-

form expression can be obtained of the test statistic T (Xn, F ) .

(i) Tests based on nearest neighbours —

Tests of this type, as discussed by Schilling (1986) and Henze (1988), are designed

to handle general multivariate two-sample problems. The test statistic is derived

from the proportion of all k nearest neighbour comparisons in which observations
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and their neighbours belong to the same sample.

Let Nr(Z) be the rth nearest δ-neighbour in the combined sample Xn ∪ Ym of

the sample point Z ∈ Xn ∪ Ym. Then an unweighted version of the two-sample test

statistic can be written as

k−1(m+ n)−1

(
n∑

i=1

k∑
r=1

1 {Nr(Xi) ∈ Xn}+
m∑
j=1

k∑
r=1

1 {Nr(Yj) ∈ Ym}

)
. (8)

We derive below an adaptation of (8) to the one-sample problem by considering the

limiting case where m → ∞, k/m → γ ∈ (0, 1) and Y1, Y2, . . . are independently

distributed under F .

Define, for any fixed x ∈ S and any distribution F on S,

Fx(t) = PF (δ(x,X) ≤ t | X ∼ F ), t ∈ R.

For m, k ≫ n, the combined sample Xn ∪Ym is so dominated by Ym that Nk(Xi) is

essentially the observation in Ym which is the kth nearest to Xi. Thus Nk(Xi) lies

at a distance D from Xi that satisfies approximately FXi
(D) = k/m ≈ γ, suggesting

that D ≈ F−1
Xi

(γ). In the limiting case, we have, for each i = 1, . . . , n,

k∑
r=1

1 {Nr(Xi) ∈ Xn} =
n∑

j=1

k∑
r=1

1 {Nr(Xi) = Xj}

≈
n∑

j=1

1
{
δ(Xi, Xj) ≤ F−1

Xi
(γ)
}
.

The second term in (8) is essentially non-informative in the limiting case, since

k−1(m+ n)−1
∑m

j=1

∑k
r=1 1 {Nr(Yj) ∈ Ym} ≈ 1 for m, k large. It thus follows that a
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one-sample version of the statistic (8) can be taken as

T (Xn, F ) =
n∑

i=1

n∑
j=1

1
{
δ(Xi, Xj) ≤ F−1

Xi
(γ)
}
. (9)

Consider first the case n = 2 in which x1, x2 differ by an infinitesimally small distance

ϵ > 0. Then it follows from (9) that

D(F, {x1, x2}) = η
(
2 + 1{F−1

x1
(γ) ≥ ϵ}+ 1{F−1

x2
(γ) ≥ ϵ}

∣∣F) ,
which, for fixed ϵ, decreases as F−1

xi
(γ) increases, for i = 1, 2. The result suggests

that, on setting ϵ → 0, we may define the depth of a single point x to be

D(F, x) = η
(
F−1
x (γ)

∣∣F) . (10)

(ii) Energy tests —

Aslan and Zech (2005) propose a two-sample energy test statistic of the form

1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

R(δ(Xi, Xj)) +
1

m(m− 1)

m−1∑
i=1

m∑
j=i+1

R(δ(Yi, Yj))

− 1

mn

n∑
i=1

m∑
j=1

R(δ(Xi, Yj)),

(11)

where R, known as the energy function, is monotonically decreasing on [0,∞). In

the case S = Rd, we can take, for example, δ to be the Euclidean distance and

define R(r) = (r−κ − 1)/κ for some fixed κ ∈ [0, d/2). Note that the case κ = 0

corresponds, by considering the limiting case κ → 0, to the choice R(r) = − ln(r).
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Taking R(r) = −r, on the other hand, reduces the energy test to Baringhaus and

Franz’s (2004) multivariate two-sample test.

By taking expectation with respect to sampling of Ym under F or considering

the stochastic limit as m → ∞, it is easily seen that (11) can be converted into a

one-sample energy test statistic of the form

T (Xn, F ) =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

R(δ(Xi, Xj))−
1

n

n∑
i=1

∫
S
R(δ(Xi, y)) dF (y)

+
1

2

∫
S2

R(δ(y1, y2)) d(F ⊗ F )(y1, y2). (12)

Thus, for a single x ∈ S, (12) leads to the depth function

D(F, x) = η

(
1

2

∫
S2

R(δ(y, z)) d(F ⊗ F )(y, z)−
∫
S
R(δ(x, y)) dF (y)

∣∣∣∣F) . (13)

Note in the case S = Rd that if we set δ to be the Euclidean distance and R(r) = −r,

(13) reduces to the depth function given by (5). Fraiman and Meloche (1999) propose

an affine invariant version of likelihood depth, which can be regarded as a special

case of (13) if we set η(t|F ) = 1
2

∫
S2 R(δ(y, z)) d(F ⊗F )(y, z)− t, R(t) = K(t/h)/hd

for some kernel function K and bandwidth h, and, with slight abuse of notation,

δ(y, z) = (y − z)TΣ−1
F (y − z), where ΣF denotes the dispersion matrix of F .

(iii) Tests based on within-triplet distances —

Bartoszyński, Pearl and Lawrence (1997) introduce a multidimensional goodness-
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of-fit test based on within-triplet distances by appealing to the fact that

U∗
1 =

1

n

n∑
i=1

PF (δ(Y1, Y2) < min{δ(Xi, Y1), δ(Xi, Y2)} | Xi)− 1/3

and

U∗
3 =

1

n

n∑
i=1

PF (δ(Y1, Y2) > max{δ(Xi, Y1), δ(Xi, Y2)} | Xi)− 1/3

have zero means under the null distribution, a result which forms the basis of their

proposed goodness-of-fit test statistic

T (Xn, F ) = [ U∗
1 , −U∗

1 − U∗
3 , U

∗
3 ]A [ U∗

1 , −U∗
1 − U∗

3 , U
∗
3 ]T ,

for some positive semidefinite matrix A designed to give good power properties

against specific alternatives. Setting n = 1 in the above, we may define the depth

of a point x to be

D(F, x) = η
(
ν(F, x)TA ν(F, x)

∣∣F) ,
where ν(F, x) = [ν1(F, x), ν2(F, x), ν3(F, x)]

T,

ν1(F, x) = PF (δ(Y1, Y2) < min{δ(x, Y1), δ(x, Y2)})− 1/3,

ν3(F, x) = PF (δ(Y1, Y2) > max{δ(x, Y1), δ(x, Y2)})− 1/3

and ν2(F, x) = −ν1(F, x) − ν3(F, x). We shall henceforth focus, for simplicity, on

the special case where A is diagonal such that

D(F, x) = η

(
3∑

j=1

wjνj(F, x)
2

∣∣∣∣∣F
)
, (14)

for some weights w1, w2, w3 ≥ 0.
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2.4 Numerical illustration with multidimensional data

To investigate their effectiveness in “representing” a reference distribution, we study

empirically a number of depth functions derived from the three classes of goodness-

of-fit tests. Special attention is paid to the question of whether the shapes of the

depth functions preserve the multimodal feature of the underlying distribution F .

The underlying distributions chosen for analysis are bimodal mixtures of multivari-

ate normal distributions, namely 0.5N(−21d, Id) + 0.5N(21d, Id), for d = 2 and

10 respectively, where 1d denotes the d-vector of one’s and Id the d × d identity

matrix. Only depth values of singletons x ∈ Rd are calculated for comparison. In

the ten-dimensional case, the direction crossing the two modes of F is considered.

Throughout the study δ is taken to be the Euclidean distance and η(t|F ) = −t.

Depth functions under investigation consist of the following examples drawn from

the three classes of goodness-of-fit tests:

1. Kolmogorov-Smirnov-Cramér type —

Tukey’s depth, obtained by taking Fn in (3) to be the collection of indicators

of closed halfspaces in Rd; and the depth function (5);

2. Cressie-Read type —

depth function (7) based on the Pearson’s chi-squared test (λ = 1);
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3. interpoint-distance type based on

(i) nearest neighbours — depth function (10) with γ = 0.05;

(ii) energy tests — depth function (13) with R(r) = − ln(r);

(ii) within-triplet distances — depth function (14) with w1 = w2 = 0.5 and

w3 = 0.

Depth values based on within-triplet distances for cases d = 2 and 10 are approxi-

mated by Monte Carlo simulation of 1,000 and 3,000 observations from F , respec-

tively, whereas depth values based on nearest neighbours for the case d = 10 are

obtained by Monte Carlo simulation of 5,000 observations. In the remaining cases we

compute the depth values with respect to F directly from closed-form expressions.

Depth functions of the Kolmogorov-Smirnov-Cramér type are found to be centre-

outward ordering and fail to capture the bimodal shape of the underlying distribu-

tion. Results for the other two types are displayed in Figure 1, which shows that

depth functions constructed by Pearson’s chi-squared tests or by tests based on in-

terpoint distances are effective in capturing bimodality in their depth graphs, except

for the ten-dimensional case where depth values based on energy tests are unimodal

along the direction crossing the two modes of F . Depth plots based on within-triplet

distances reveal a multimodal shape with two conspicuous modes standing at the

two modes of the underlying F . Our empirical evidence suggests that depth func-
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tions derived from tests of the interpoint-distance type are preferable as a measure

of representativeness to those based on the chi-squared test, as the latter suffers

considerably from a lack of smoothness over the sample space. In the remaining

sections we turn our attention to the properties and applications of depth functions

based on interpoint distances.

3 Depth functions based on interpoint distances

3.1 Theoretical properties

Many practical applications require that a depth function be evaluated with respect

to a random sample Ym = (Y1, . . . , Ym) drawn from F rather than to F directly,

for the latter is often unavailable. We thus define the sample depth function of

the point pattern {x1, . . . , xn} to be D(FYm , {x1, . . . , xn}), where FYm denotes the

empirical distribution of Ym. We comment below briefly on the conditions sufficient

for consistency of sample depth functions of the interpoint-distance type, in the

sense that D(FYm , {x1, . . . , xn}) converges in probability to D(F, {x1, . . . , xn}) as

m → ∞. In each case we assume η to be a continuous function.

Consistency of sample depth functions based on nearest neighbours follows from

strong consistency of the sample γth quantile of them distances δ(x, Y1), . . . , δ(x, Ym),
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which converges in probability to F−1
x (γ) for any x ∈ S: see, for example, Serfling

(1980, Section 2.3.1).

For consistency of sample depth functions based on energy tests, we may invoke

the weak law of large numbers for U-statistics to show that, for any x ∈ S,

m−1

m∑
j=1

R(δ(x, Yj)) →
∫
S
R(δ(x, y)) dF (y) in probability

and

m−2

m∑
i=1

m∑
j=1

R(δ(Yi, Yj)) →
∫
S2

R(δ(y, z)) d(F ⊗ F )(y, z) in probability,

provided that the limits exist. Similarly we can show that

m−2

m∑
i=1

m∑
j=1

1 {δ(Yi, Yj) < min{δ(x, Yi), δ(x, Yj)}} − 1/3 → ν1(F, x) in probability

and so does m−2
∑m

i=1

∑m
j=1 1 {δ(Yi, Yj) > max{δ(x, Yi), δ(x, Yj)}}−1/3 to ν3(F, x),

leading to consistency of the sample depth function based on within-triplet distances.

For more insight into the relationship between D(F, ·) and F , we consider a

univariate setting where F has a bounded, positive and continuously differentiable

density f = F ′, and where the point pattern consists of a singleton x ∈ R. Given the

resemblance between Fraiman and Meloche’s (1999) likelihood depth and the depth

function based on energy tests, we refer to the aforesaid paper for general properties

of the latter depth function. We hereby restrict attention to depth functions derived

from nearest neighbours and within-triplet distances.
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The following proposition, which we prove in the Appendix, provide conditions

that characterise local maxima or minima of depth functions based on nearest neigh-

bours.

Proposition 1 The depth function (10) based on nearest neighbours has a local

maximum or local minimum at x0 which satisfies, for some r0 > 0, F (x0 + r0) −

F (x0−r0) = γ and f(x0+r0) = f(x0−r0), according as f
′(x0+r0)−f ′(x0−r0) < 0

or > 0 respectively.

Proposition 1 asserts that (10) has a local maximum or minimum at the midpoint

x0 of an interval which has probability mass γ and the same densities at its two

endpoints. The gradients of f at the two endpoints characterise the depth nature

of x0. Typically, the depth function is locally maximised at x0 if the density over

the interval is relatively higher than the density outside it, and vice versa. We note,

however, that a sharp peak of f at x0 may be interpreted by the depth function

as an outlier and assigned a small depth value. Similarly, a local minimum x0 of f

may be deemed representative of f , and assigned a large depth, if it lies between

two close peaks of f . Decreasing γ increases the sensitivity of the depth function to

local features of f .

It is clear that the depth function based on nearest neighbours can be made affine

invariant and vanishing at ±∞ if we choose, for example, δ to be the Euclidean
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distance and η(t|F ) =
{
1 + t/Λ−1

F (q)
}−1

for any fixed q ∈ (0, 1), where ΛF (t) =

PF (δ(Y1, Y2) ≤ t). The next proposition shows that the depth function based on

nearest neighbours possesses the same properties as those typically required of a

conventional depth function under appropriate unimodality conditions on f . The

proof is given in the Appendix.

Proposition 2 Suppose that f has a unique mode at x0, strictly decreases on (x0,∞)

and strictly increases on (−∞, x0). Then the depth function (10) based on nearest

neighbours has a unique deep centre and decreases strictly as x moves away from the

centre in either direction.

We consider next the depth function (14) based on within-triplet distances. Note

that if we set δ to be the Euclidean distance, then the depth function is invariant

under rotations, as well as under location and scale changes. The properties of (14)

depend primarily on the constituent functions νj(F, x). It is easy to show in the

univariate setting that

ν3(F, x) = 2F (x)(1− F (x))− 1/3

and

ν2(F, x) = 2

∫ ∞

0

{1− F (2w + x)} f(w+x) dw+2

∫ 0

−∞
F (2w+x)f(w+x) dw−1/3.
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Elementary calculus shows that the function ν3(F, x)
2 has a W-shape with one local

maximum at x = F−1(1/2) and two local minima at x = F−1(1/2± 1/
√
12). That

its shape is determined essentially by only three quantiles of F does not render the

function ν3(F, x)
2 very effective in representing F . We see, on the other hand, that

∂ν2(F, x)

∂x
= 2f(x)(2F (x)− 1) + 2

∫ ∞

0

sgn(w)f(2w + x)f(w + x) dw

and

∂2ν2(F, x)

∂x2
= 2f ′(x)(2F (x)− 1)− 2

∫ ∞

0

sgn(w)f ′(2w + x)f(w + x) dw,

where sgn(w) = 1(0,∞)(w) − 1(−∞,0)(w). Dependence of the function ν2(F, x)
2 on

F is too intricate to be described in interpretive terms under a general F . If we

specialise to the case of a symmetric unimodal density f centred at x0, then we see

that ν2(F, x)
2 has a local minimum or maximum at x = x0 according as∫ ∞

0

{1− F (2w + x0)} f(w + x0) dw − 1/12 (15)

is positive or negative. For example, if f(x) ∝ (1 + x2)−κ, then (15) is positive

whenever κ < 3/2, in which case ν2(F, x)
2 has a local minimum at x = 0. Thus, if

we set w1 = w3 = 0 in the definition of (14), the depth function will return a local

maximum at 0 if κ < 3/2 and a local minimum there if κ > 3/2.

In general the depth function (14) is a decreasing function of a weighted sum of

the νj(F, x)
2, and has its maxima and minima governed by corresponding weighted
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sums of the conditions applicable to each of the constituents νj(F, x)
2. Given its

rather insensitivity to the shape of F , it seems preferable to give ν3(F, x)
2 a small

weight w3.

3.2 Numerical illustration

For more concrete illustration, we calculate explicit expressions for various depth

functions under a bimodal distribution F which consists of a mixture of two uni-

variate normal distributions, 0.85N(3, 1) + 0.15N(−3, 1). We set η(t|F ) = −t in

all cases. For the depth function (13) based on energy tests, we take R(r) to be the

N(0, h2) density function so that it resembles Fraiman and Meloche’s (1999) likeli-

hood depth based on a normal kernel with bandwidth h. For comparison we include

also the local simplicial depth proposed by Agostinelli and Romanazzi (2011), which

is defined to be the probability that the point x is contained in a random simplex,

generated under F , of volume less than some threshold τ . They show that by

choosing a small τ , the local simplicial depth reflects to some extent the shape of

the underlying density function, thus sharing similar properties as the likelihood

depth. We note that setting τ = ∞ reduces the local simplicial depth to the clas-

sical simplicial depth, which is necessarily unimodal. Unlike the local simplicial or

likelihood depths, the depth functions based on nearest neighbours or within-triplet
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distances do not purport to recover the shape of the underlying density function, as

has been discussed in Section 3.1.

Figure 2 plots the depth functions under different parameter settings, with ref-

erence to the underlying bimodal density function. We see that the local simplicial

depth, the likelihood depth and the depth based on nearest neighbours all exhibit a

bimodal shape when their respective control parameters are set at relatively small

values, and gradually become unimodal as the parameter values increase. Depth

functions based on within-triplet distances are in general responsive to the changing

shape of the underlying density, although no clear trend can be deciphered across

different combinations of the weights (w1, w2, w3). It appears from the figures that

the choice (w1, w2, w3) = (0.5, 0.5, 0) yields the most satisfactory results.

3.3 Choice of control parameters

We have seen that properties of depth functions based on interpoint distances depend

sensitively on control parameters, that is the threshold γ for the nearest neighbour

depth, the bandwidth h for the likelihood depth, and the weights (w1, w2, w3) for

the depth based on within-triplet distances. It is therefore desirable to have some

practical guidance on the choice of such parameters. If our main object is to define

a depth function D(F, x) to best “represent” the underlying distribution F , it is
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reasonable then to select parameters which provide the strongest “correlation” be-

tween the shapes of the depth function and the distribution. One possible measure of

“correlation” can be evaluated, by analogy with the Pearson correlation coefficient,

using the formula

∫
S D(F, x)ϖ(x) dF (x)−

∫
S ϖ(x) dF (x)

∫
S D(F, x)ϖ(x) dx√∫

S D(F, x)2ϖ(x) dx−
(∫

S D(F, x)ϖ(x) dx
)2 , (16)

where ϖ(·) denotes a weight function which can be taken conveniently to be a proper

density function on S such that the integrals in (16) are finite. In practical situations

where a random sample Ym = (Y1, . . . , Ym) from F , rather than F itself, is available,

(16) can be approximated by its sample version

m−1
∑m

i=1 D(FYm , Yi)ϖ(Yi)−m−1
∑m

i=1ϖ(Yi)
∫
S D(FYm , x)ϖ(x) dx√∫

S D(FYm , x)
2ϖ(x) dx−

(∫
S D(FYm , x)ϖ(x) dx

)2 , (17)

maximisation of which leads to an empirical choice of the control parameters neces-

sary for fixing D(FYm , ·).

For illustration we maximise (16) for the four depth functions considered in the

example of Section 3.2, with ϖ(·) set to be the uniform density function over the

interval [−10, 10]. The maximising parameters are found to be γ = 0.14, h = 0.055

and (w1, w2, w3) = (0, 0.6, 0.4) for depth functions based on nearest neighbours,

energy tests and within-triplet distances, respectively, and τ = 3.5 for the local

simplicial depth. We may refer to Figure 2 for a rough estimate of the shapes of the
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depth functions given by the above maximising parameter values.

4 Application to supervised classification

4.1 Maximum depth classifier

Our new notion of data depth that emphasizes “representativeness” is most relevant

to statistical problems which demand a high level of sensitivity towards features

of F not restricted to location and scale. Such applications include, for example,

cluster analysis, support estimation, classification and nonparametric multi-sample

tests.

We consider in this section a statistical application of our depth functions to the

problem of supervised classification. Suppose that we have available two labelled

training samples, Y [1] = (Y
[1]
1 , . . . , Y

[1]
n1 ) and Y [2] = (Y

[2]
1 , . . . , Y

[2]
n2 ), drawn respec-

tively from two distinct distributions F1 and F2. We are interested in classifying a

new set of data points {x1, . . . , xn}, which are known to come from the same dis-

tribution, to one of the two distributions. Our extended notion of depth function

D(F, {x1, . . . , xn}) provides a natural procedure for classification, which we describe

below.

Denote by FY [j] the empirical distribution of Y [j], j = 1, 2. For each j = 1, 2 and

25



i = (i1, . . . , in) ∈ {1, . . . , nj}n, calculate the depth values

d
[j]
i = D(FY [j] , {Y [j]

i1
, . . . , Y

[j]
in
}).

Then, under the assumption of a uniform prior, we classify {x1, . . . , xn} as coming

from F1 if

n−n
1 card

({
i : d

[1]
i ≤ D(FY [1] , {x1, . . . , xn})

})
> n−n

2 card
({

i : d
[2]
i ≤ D(FY [2] , {x1, . . . , xn})

})
, (18)

and from F2 if the above inequality is reversed. The classification is inconclusive if

the two sides of (18) are equal. We note that in the special case where n = 1, the

above classifier has the form of a maximum depth classifier as discussed by Ghosh

and Chaudhuri (2005), with the depth function D(F, x) rescaled by its cumulative

distribution function PF (D(F,X) ≤ ·) under X ∼ F . Making use of the DD-plot,

Li, Cuesta-Albertos and Liu (2012) propose a more general depth-based approach

to classification; see also Lange, Mosler and Mozharovskyi (2012).

Instead of maximising (17), we consider it more natural in the present context

to set the control parameters for the depth functions by minimising some estimate

of the misclassification rate. Define a classifier C
(
Y [1],Y [2], {x1, . . . , xn}

)
= 1 if (18)

holds, 2 if the reverse of (18) holds, and 0 otherwise. For j = 1, 2, define Nj to be

the set of all (i1, . . . , in) ∈ {1, . . . , nj}n with i1 < · · · < in, Y [j]
i = {Y [j]

i1
, . . . , Y

[j]
in
}
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and Y [j]
−i = Y [j] \ Y [j]

i , where i = (i1, . . . , in) ∈ Nj. The misclassification rate of the

classifier C can be estimated by leave-n-out cross validation to be[(
n1

n

)
+

(
n2

n

)]−1

×

{∑
i∈N1

[
1
{
C
(
Y [1]

−i,Y [2],Y [1]
i

)
= 2
}
+ 0.51

{
C
(
Y [1]

−i,Y [2],Y [1]
i

)
= 0
}]

+
∑
i∈N2

[
1
{
C
(
Y [1],Y [2]

−i,Y
[2]
i

)
= 1
}
+ 0.51

{
C
(
Y [1],Y [2]

−i,Y
[2]
i

)
= 0
}]}

,

(19)

in which any inconclusive case is given a count of 0.5. Minimisation of (19) then

leads to an empirical choice of the control parameters.

4.2 Numerical examples

In the following numerical examples we set n1 = n2 = 50 and consider the two cases

n = 1 and n = 2. For n = 1, we take F1 to be a mixture of bivariate normal distribu-

tions, 0.2N([−4, 0]T, 4I2) + 0.8N([4, 0]T, I2), and F2 to be the bivariate normal dis-

tribution with mean zero and dispersion matrix

(
2 −2.2

−2.2 9.64

)
. For n = 2, we take

F1 to be the univariate normal mixture 0.2N(−2.5, 4) + 0.8N(2.5, 1) and F2 to be

N(0, 3.24). Under the above settings the Bayes misclassification rates based on the

uniform prior are found to be 0.0560 for the case n = 1 and 0.1814 for the case n = 2,

which can be obtained by evaluating the integrals 2−1
∫
R2 min {f1(x), f2(x)} dx and
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2−1
∫∞
−∞

∫∞
−∞ min {f1(x)f1(y), f2(x)f2(y)} dx dy, respectively, where fj denotes the

density of Fj, j = 1, 2.

Example (i) n = 1 —

Figure 3 shows the classification of x ∈ R2 using four different depth functions

for the case n = 1. Points lying in the light grey region are classified as F1 and those

in the dark grey region as F2. The white area indicates those points which cannot

be conclusively classified. We see that the local simplicial depth and the likelihood

depth based on a small bandwidth suffer from serious overfitting, leaving behind

a large inconclusive area. Varying the threshold τ for the local simplicial depth

does not make much difference, as points outside the convex hull of each training

sample are given a depth of zero with respect to that training sample, rendering

them indistinguishable between the two samples. Depth functions based on nearest

neighbours with γ = 0.05 and on within-triplet distances appear to provide more

satisfactory classification. We note also that larger choices of γ (for nearest neigh-

bours) and bandwidth h (for likelihood depth) tend to suppress bimodality of the

depth function, leading to a bigger chance of misclassification.

For a more detailed study, we consider for each depth function seven differ-

ent control parameter settings, under each of which the misclassification rate is

estimated by leave-one-out cross validation (19) and marked by the letter “V” in
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Figure 4. Minimising over the seven parameter settings for each depth function,

the cross-validated choices of the parameters are found to be γ = 0.05, h = 1,

(w1, w2, w3) = (0, 1, 0) and τ = 10 for classifiers based on nearest neighbour depth,

likelihood depth, within-triplet distances and local simplicial depth, respectively.

Next we generate from each distribution Fj a test sample of 50 observations,

which are to be classified based on the training data shown in Figure 3. The mis-

classification rates are summarised in Figure 4. We see that with the exception

of local simplicial depth, all the other three depth functions succeed in returning

misclassification rates very close to the Bayes rate 0.0560 under at least one of the

control parameter settings being considered. The local simplicial depth has a mis-

classification rate considerably bigger than 0.1 for all choices of the threshold value

τ including the case τ = 10000 which corresponds to the classical centre-outward

ordering simplicial depth. We also see that cross validation based on (19) is very ef-

fective in identifying the optimal, or nearly optimal, choice of the control parameter

for each depth function.

Example (ii) n = 2 —

For the case n = 2, only the energy test and the within-triplet distance test

provide useful expressions for calculating the depth D(FY [j] , {x1, x2}) of a point-pair

(x1, x2), which is displayed in Figure 5 for j = 1 (left panel) and j = 2 (right
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panel). The corresponding classification is shown in Figure 6. We see again that the

likelihood depth based on a large bandwidth h = 10 does not capture bimodality of

the first sample, leading to a classification quite different from the other cases.

For a study of misclassification rates, we consider for each depth function the

same seven control parameter settings as those given in example (i). As shown in

Figure 7, leave-two-out cross validation based on (19) suggests setting h = 0.5 for

the likelihood depth and (w1, w2, w3) = (0.5, 0.5, 0) for the depth based on within-

triplet distances. As in example (i), we generate a test sample of 50 random point-

pairs from each of the two distributions in order to evaluate the performance of

the classifiers. Figure 7 reports the rates of misclassifying the test samples using

classifiers trained on the supervised data shown in Figure 5. The results are similar

to the n = 1 case. For both depth functions, at least one of the control parameter

settings yields misclassification rates close to, or even lower than, the Bayes rate

0.1814. Cross validation is again very effective in identifying the best settings of the

control parameters.

5 Application to economic data

To illustrate the practical relevance of a shift in emphasis from “centrality” to “rep-

resentativeness”, we compare the depth function based on within-triplet distances
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with the classical simplicial depth, calculated with respect to a set of bivariate eco-

nomic data available from the World Bank. The dataset consists of observations on

twoWorld Development Indicators, namely the life expectancy at birth and the gross

national income (GNI) per capita, covering 162 countries for the year 2008. The

GNI has been converted to international dollars using purchasing power parity rates.

Data depths are useful for ranking the 162 countries in order of the extent to which

each country’s development typifies a general world trend. For the case of within-

triplet distances, we set (w1, w2, w3) = (0.09, 0.66, 0.25), which maximises (17) over

the simplex {(w1, w2, 1− w1 − w2) : w1, w2 ≥ 0, w1 + w2 ≤ 1}, with ϖ taken to be

the uniform density function over the rectangle [0, 65] × [40, 90]. Figures 8 and 9

display, using both 2D contours and 3D plots, the two depth functions calculated

with respect to the data. The data points observed for the 162 countries, shown

also on the contour plots, cluster in a crescent and do not exhibit clear unimodality.

As shown in Figure 8, the centre-outward ordering simplicial depth identifies a

unique deep centre, near which can be located the three most “central” countries,

namely Thailand, Ukraine and Belarus. Yet a closer look at their positions, which

are somewhat peripheral relative to the main data crescent, casts doubt on the rep-

resentativeness of these three countries, despite their apparent centrality as revealed

by the simplicial depth. Indeed, Thailand and Ukraine are rather atypical of the
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world trend in view of their relatively short life expectancies compared to countries

having similar levels of GNI per capita.

On the other hand, we see in Figure 9 that the central region identified above

by simplicial depth turns now into a conspicuous dip in the depth surface calculated

using within-triplet distances, and is surrounded by deep areas more representative

of the entire dataset. The three deepest, or for that matter most representative,

countries are Estonia, Croatia and Hungary, all of which lie on one side of the central

dip. The three most “central” countries previously found by simplicial depth are

ranked 131 (Thailand), 124 (Ukraine) and 111 (Belarus) respectively by within-

triplet distances, and can hardly be deemed representative of the world trend, a

result in agreement with our actual observations.

We highlight on both Figures 8 and 9 the two extreme cases, namely Thailand

and Liberia, where the most positive and negative differences between the two ranks

are found. Thailand is ranked the deepest (Figure 8) by simplicial depth but only

131st (Figure 9) by within-triplet distances. Liberia, on the contrary, is ranked 29th

(Figure 9) by within-triplet distances. The simplicial depth, however, finds Liberia

among the four least deep, or most outlying, countries in the dataset, a somewhat

counter-intuitive result (Figure 8).

This example reiterates again the importance and practical relevance of develop-
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ing a new notion of data depth which can more satisfactorily “represent” observed

data patterns, especially in the absence of clear unimodality.

6 Conclusion

We have proposed an alternative interpretation of data depth as a measure of “rep-

resentativeness”, which is arguably more relevant to many important applications

of depth in statistical problems. In this new perspective, goodness-of-fit tests come

naturally to the fore with their provision of test statistics which can at once be

identified with an appropriate measure of representativeness. Such connection gives

rise to a new method of defining data depth, which now applies not only to a single

point of interest but also to any pattern of points. Our procedure thus provides an

alternative motivation for some existing depth functions such as Tukey’s depth and

the likelihood depth, and introduces new classes of depth functions which broaden

the scope of practical applications of data depth in general.

Although it is not our objective in this paper to recommend a definitive choice of

data depth, which is without doubt specific to the problem in hand, our numerical

examples suggest that depth functions derived from a consideration of interpoint

distances, especially those based on within-triplet distances, possess nice properties

so far as representativeness is concerned under multimodal situations. Based as they
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are on calculation of interpoint distances alone, these depth functions also enjoy the

advantage of being computationally more efficient than the local simplicial depth

which involves the handling of simplices, especially in high-dimensional settings. For

the setting of control parameters of depth functions based on interpoint distances,

we have proposed to maximise a correlation measure between the depth function and

the underlying distribution or, in the special context of depth-based classification,

to minimise a cross-validated estimate of the misclassification rate. Both approaches

have found satisfactory empirical support in our numerical examples.

Appendix

Proof of Proposition 1

For any x ∈ R, let r(x) satisfy F (x + r(x)) − F (x − r(x)) = γ. Differentiation of

the latter condition twice with respect to x gives {f(x− r(x))+ f(x+ r(x))}r′(x) =

f(x− r(x))− f(x+ r(x)) and {f(x− r(x))+ f(x+ r(x))}r′′(x) = (1− r′(x))2f ′(x−

r(x))− (1 + r′(x))2f ′(x+ r(x)). Thus r(x) has a local minimum or local maximum

at x = x0 satisfying r′(x0) = 0, that is f(x0 − r(x0)) = f(x0 + r(x0)), according

as r′′(x0) > 0 or < 0 respectively. The proposition then follows by noting that

r′′(x0) = {2f(x0 − r(x0))}−1{f ′(x0 − r(x0))− f ′(x0 + r(x0))} and that D(F, x) is a

decreasing function of r(x).

34



Proof of Proposition 2

The unimodality condition ensures that there exists some w ∈ R and R > 0 such

that F (w+R)−F (w−R) = γ and f(w+R) = f(w−R) = k, say. Then necessarily

f increases at w − R, decreases at w + R and f(x) > k for all x ∈ (w − R,w + R).

Clearly the depth function (10) is locally maximised at w by Proposition 1. Fix any

x1 > x2 > w and let R1, R2 > 0 satisfy F (xi +Ri)− F (xi −Ri) = γ, i = 1, 2. Note

that x2 − R2 > w − R and x2 + R2 > w + R, or otherwise [x2 −R2, x2 + R2] either

contains or is contained in [w−R,w+R] strictly, contrary to the definition of R2. It

follows that f(x) > f(x2 +R2) for all x ∈ [w−R, x2 +R2). Consider two cases: (i)

x1−R2 > x2+R2, (ii) x1−R2 ≤ x2+R2. Under (i), we have f(x1−R2) < f(x) for

all x ∈ [x2−R2, x2+R2], so that
∫ x1+R2

x1−R2
f(u) du <

∫ x2+R2

x2−R2
f(u) du = γ, which implies

that R1 > R2. Under (ii), we have f(x2 +R2) < f(x) for all x ∈ [x2 −R2, x1 −R2),

so that

∫ x1+R2

x1−R2

f(u) du−
∫ x2+R2

x2−R2

f(u) du =

∫ x1+R2

x2+R2

f(u) du−
∫ x1−R2

x2−R2

f(u) du < 0.

It follows that F (x1 + R2) − F (x1 − R2) < γ and hence R1 > R2. Thus we have,

under either (i) or (ii), that the depth function at x1 is strictly smaller than that at

x2, so that it decreases strictly on (w,∞). Similar arguments show that it increases

strictly on (−∞, w).
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Figure 1: Depth of a single point [x, . . . , x]T ∈ R10 (left panel) and x ∈ R2 (right

panel), under a normal mixture with two equal modes.
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Figure 2: Depth of a single point x ∈ R under a normal mixture with two unequal

modes. The grey dashed curves indicate the normal mixture density plotted on the

same x scale.
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Figure 3: Classification of x = [x1, x2]
T ∈ R2 to a bivariate normal mixture with

two modes (light grey region) and a bivariate zero-mean normal distribution (dark

grey region). Training samples, each of size 50, are indicated by “×” and “•” for

the two distributions respectively.
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Figure 4: Rates of misclassification: (i) Bayes rate (dotted vertical line); (ii) leave-

one-out cross-validated estimates based on training data (“V”); (iii) F1 misclassified
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Figure 5: Depth of point-pair (x1, x2) with reference to random sampleX1, . . . , X50 ∈

R. Circles in triangular patterns indicate positions of {(Xi, Xj) : Xi ≥ Xj, i, j =

1, . . . , 50}. Samples 1 and 2 are drawn from a normal mixture with 2 modes and a

zero-mean normal distribution, respectively.
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Figure 6: Classification of point-pair (x1, x2) to a normal mixture with two modes

(light grey region) and a zero-mean normal distribution (dark grey region).
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Figure 7: Rates of misclassification: (i) Bayes rate (dotted vertical line); (ii) leave-

two-out cross-validated estimates based on training data (“V”); (iii) F1 misclassified

as F2 (“◦”) based on test sample of 50 point-pairs from F1; (iv) F2 misclassified as

F1 (“×”) based on test sample of 50 point-pairs from F2; (v) average of (iii) and

(iv) (“•”).
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Figure 8: World Bank data — simplicial depth plots with respect to life expectancy

and GNI indicators of 162 countries in 2008.
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Figure 9: World Bank data — depth function plots, based on within-triplet dis-

tances with (w1, w2, w3) = (0.09, 0.66, 0.25), with respect to life expectancy and

GNI indicators of 162 countries in 2008.


