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A key step towards dissipationless transport devices is the quantum anomalous Hall effect, which is
characterized by an integer quantized Hall conductance in a ferromagnetic insulator with strong spin-orbit
coupling. In this work, the anomalous Hall effect due to the impurity scattering, namely the extrinsic anomalous
Hall effect, is studied when the Fermi energy crosses with the topologically nontrivial conduction band of a
quantum anomalous Hall system. Two major extrinsic contributions, the side-jump and skew-scattering Hall
conductivities, are calculated using the diagrammatic techniques in which both nonmagnetic and magnetic
scattering are taken into account simultaneously. The side-jump Hall conductivity changes its sign at a critical
sheet carrier density for the nontrivial phase, while it remains sign unchanged for the trivial phase. The critical
sheet carrier densities estimated with realistic parameters lie in an experimentally accessible range. The results
imply that a quantum anomalous Hall system could be identified in the good-metal regime.
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Introduction. The anomalous Hall effect appears in fer-
romagnets as a transverse current induced by a longitudinal
electric field. Different from the ordinary Hall effect, it is
not driven by the Lorentz force acting on charge carriers in
a magnetic field. Instead, it stems from the interplay of the
spin-orbit coupling and time-reversal symmetry breaking.1

The anomalous Hall conductance has two distinct contri-
butions, from the extrinsic and intrinsic mechanisms. The
extrinsic mechanism originates from electrons near the Fermi
surface when they are scattered by impurities. The intrinsic
mechanism, on the contrary, is given by the Berry curvature
of electrons below the Fermi surface, as a consequence of the
spin-orbit coupling induced topological properties in Bloch
bands.2 In particular, the intrinsic anomalous Hall conductance
could be quantized in units of the conductance quantum when
the Fermi surface lies in the gap between energy bands. Known
as the quantum anomalous Hall effect,3,4 the phenomenon is a
key step towards dissipationless quantum transport without
magnetic field, and thus has attracted much effort for its
experimental realization.5,6 One promising proposal is to
magnetically dope a quantum spin Hall system,7,8 which
can be regarded as two time-reversed copies of the quantum
anomalous Hall system. The two copies have exactly opposite
Hall conductances that cancel with each other. The magnetic
doping,9–11 which breaks time-reversal symmetry, can lift the
cancellation and give rise to the quantum anomalous Hall
effect. However, the doping and inheriting defects always bring
extra carriers, which shift the Fermi energy out of the gap and
into an energy band where electron transport suffers from
impurity scattering. In this situation, the extrinsic mechanisms
also becomes relevant (see Fig. 1), but was never addressed.

In this work, we study the extrinsic anomalous Hall
effect of the conduction band of a quantum anomalous Hall
system. With the help of the Kubo formula and Feynman
diagrams, we calculate the side-jump and skew-scattering
contributions to the Hall conductivity, two major extrinsic
mechanisms. We find that the side-jump Hall conductivity
could change sign at an experimentally accessible sheet carrier
density in the topologically nontrivial phase, while its sign
remains unchanged in the trivial case. The skew-scattering

Hall conductivity show a similar behavior when nonmagnetic
scattering dominates. The sign-changing feature may serve as
a signature for the quantum anomalous Hall system in a dirty
device.

Model. The minimal model for the quantum anomalous
Hall system takes the form

H = γ (kxσx + kyσy) +
(

�

2
− Bk2

)
σz, (1)

where γ = vh̄, v is the effective velocity, (kx,ky) is the wave
vector, and k2 = k2

x + k2
y . σx/y are Pauli matrices. � = m0 ±

gM , where m0 is a gap opened at k = 0 for the hybridized
surface states of a three-dimensional topological insulator.12

gM describes the magnetic-doping-induced exchange field,
which may effectively modulate � between positive and
negative values for a given m0.3,4 The Bk2σz term is a
topological correction13,14 to the usual minimal model for
the anomalous Hall effect.15–20 H has one conduction band
|+,k〉 and one valence band |−,k〉, with the dispersion ε±k =
±

√
(�/2 − Bk2)2 + γ 2k2. We assume that the Fermi energy

EF always crosses with the conduction band, where EF is
measured from the Dirac point at ε±k = 0.

Intrinsic Hall conductance. When the Fermi energy lies
in the gap, the longitudinal conductance is zero; i.e., the
system is insulating as the valence band is fully filled.
However, there may exist an intrinsic quantum anomalous
Hall conductance12,32

σ i(−)
xy = − e2

2h
[sgn(�) + sgn(B)], (2)

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and
sgn(x) = 0 if x = 0. If �B > 0, the model is in the nontrivial
phase as σ i(−)

xy has an integer anomalous Hall conductance in
units of e2/h. The integer, which corresponds to the chiral
edge states in the gap, is the Chern number from the nontrivial
topological properties of the valence band. The conduction
band always has an opposite Chern number compared to the
valence band and thus also carries the nontrivial topological
properties. If �B < 0, the model is called topologically trivial
with a zero anomalous Hall conductance. The importance of
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FIG. 1. (Color online) |±,k〉 represent conduction and valence
bands of a quantum anomalous Hall system, respectively. When the
Fermi energy (dashed) lies between the two bands, the anomalous
Hall conductivity is governed dominantly by the intrinsic mechanism
(σ i

xy), which is due to the chiral edge states (red solid). When the
Fermi energy crosses with the conduction (or valence) band, the
extrinsic mechanisms (σ sj

xy for side jump and σ sk
xy for skew scattering)

also contribute to the anomalous Hall conductivity.

Bk2σz term deserves to be emphasized: With it, the solution
of the in-gap chiral edge states can be found explicitly at an
open edge.22 Without the term, Eq. (2) gives a half-integer
anomalous Hall conductance,15,16,21 and there is no edge-state
solution at an open edge although the Jackiw-Rebbi bound
state is allowed near a domain wall at which � changes sign.23

Side-jump Hall conductivity. Breaking time-reversal sym-
metry is indispensable for the anomalous Hall effect, so the
anomalous Hall conductivity must depend on the time-reversal
breaking terms in the model, such as (�/2 − Bk2)σz and
magnetic scattering. The side-jump mechanism is related to the
impurity scattering but not proportional to the total impurity
concentration and scattering strength.1 As we will see, the
side-jump extrinsic Hall conductivity is proportional to

cos θF = �/2 − Bk2
F

EF

, (3)

where kF is the Fermi wave vector. This means that the
side-jump Hall conductivity could change sign at a critical
Fermi wave vector kC = √

�/2B if �B > 0, that is, if
the system is in the nontrivial phase. In contrast, the Hall
conductivity is monotonic if �B < 0, i.e., if the system is
trivial. With the critical kC , we can find the critical sheet carrier
density nC = k2

C/(4π ) and Fermi energy EC = vh̄
√

�/2B.
We estimate kC , nC , and EC with the experimental fitting data
for topological insulator thin films and calculated parameters
for HgTe quantum well, which are proposed host materials
for the quantum anomalous Hall system.3,4 Table I shows
the critical values of kC and nC . In 10 nm n-type Bi2Se3

thin films,27 only the surface states are populated for sheet
carrier density below 5 ∼ 7.7 × 1012/cm2. Thus, most critical
nc in Table I lie inside an experimentally accessible regime.
The critical nC for HgTe is even much smaller. The above
discussion shows again that the Bk2σz term cannot be
underestimated in a quantitative analysis. The first-principles
calculations show that the bulk band minima will be pushed
to higher energies in Bi2Se3 thin films4 (e.g., about 0.3 eV for
5 QL and 0.4 eV for 3 QL), higher than corresponding EC

in Table I. The higher order terms other than those in H may
shift the critical points, but will not qualitatively affect the
sign-changing feature as long as they preserve time-reversal

TABLE I. Calculated critical Fermi wave vector kC , sheet carrier
density nC , and Fermi energy EC with �, B, and v from experimental
fitting data and k · p calculations. Entries 1–4 are by Zhang et al.
(Ref. 24), entry 5 is by Sakamoto et al. (Ref. 25), and entry 6 is by
Konig et al. (Ref. 26). QL for quintuple layer is about 1 nm. � in eV,
B in eV Å2, v in 10 5m/s, kC in Å−1, nC in 1012/cm2, and EC in eV.
The parameters in magnetically doped samples may be different. In
magnetically doped cases, the exchange field could reduce �, leading
to smaller nC .

Sample � B v kC nC EC

2QL Bi2Se3 0.252 21.8 4.71 0.076 4.6 0.24
3QL Bi2Se3 0.138 18 4.81 0.062 3.1 0.20
4QL Bi2Se3 0.07 10 4.48 0.059 2.8 0.17
5QL Bi2Se3 0.041 5.0 4.53 0.064 3.3 0.19
3QL Bi2Se3 0.34 18 4.4 0.1 7.5 0.28
7 nm HgTe − 0.01 − 68.6 5.54 0.009 0.058 0.03

symmetry. Also, the Berry phase is related to Eq. (3) by
π (1 ± cos θF ). It is known that the π Berry phase leads to weak
antilocalization in the longitudinal transport.28 The vanishing
of cos θF at the critical carrier density was predicted to give
weak antilocalization if �B > 0.29

The extrinsic Hall conductivity can be calculated by the
Kubo formula in terms of the Feynman diagrams, where
the impurity scattering is treated as the perturbation to the
states |±,k〉. The diagrams for the extrinsic anomalous Hall
conductivity (see Fig. 2) have been systematically developed17

FIG. 2. (Color online) The diagrams for the extrinsic Hall
conductivity can be summarized to only 5 of them. Top four:
Side-jump contribution. Bottom: Skew-scattering contribution. ±
are band indices. k,k′,k′′ are wave vectors. The left-bound and
right-bound arrowed lines stand for retarded (GR) and advanced (GA)
Green’s functions, respectively. Uk,k′ is the scattering matrix element.
The dashed lines represent the correlation between scattering. vx/y

are the bare velocities. The shadow area and tilde represent the vortex
correction to the bare velocities.
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and applied to the model without the Bk2σz term.17,18 Here we
generalize the diagrammatic calculation by including the extra
Bk2σ term, and considering the nonmagnetic and magnetic
impurities simultaneously. Despite lengthy calculation, we
arrive at a compact form for the side-jump Hall conductivity32

σ sj
xy = −e2

h
cos θF

[
2α

1 − α
+ 3α2ηB

2(1 − α)2

]
, (4)

where cos θ ≡ (�/2 − Bk2
F )/EF ,

α =
1
2 (1 − Vm/V0) sin2 θF

2 − sin2 θF + (Vm/V0)(2 + sin2 θF )
, (5)

and ηB = 1 − 2BkF /(γ tan θF ). V0 ≡ n0u
2
0 and Vm ≡ nmu2

m

here are of physical meanings.30,31 n0 and nm are the concen-
trations of nonmagnetic and magnetic impurities, respectively.
u0 and um are spatially averaged strengths for the nonmagnetic
and each component of the magnetic scattering, respectively.
We have assumed isotropic magnetic scattering.

Figure 3 shows σ
sj
xy in Eq. (4) for the quantum anomalous

Hall and trivial cases. The horizontal axis is the sheet carrier
density, which can be determined by the ordinary Hall
measurement. As expected, σ

sj
xy changes sign at the critical

value of nC for the quantum anomalous Hall case [Fig. 3(a)
�B > 0], while its sign remains unchanged for the trivial
[Fig. 3(b) �B < 0] case. Besides, Fig. 3 also shows an
impurity-related sign change in σ

sj
xy as the ratio Vm/V0 changes.

V0 and Vm measure the nonmagnetic and each component of
the magnetic scattering, respectively. Although the side-jump
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FIG. 3. (Color online) The side-jump Hall conductivity as a
function of sheet carrier density. For all cases � = 0.1 eV and
v = 4 × 105 m/s. B = 10 eV Å2 for the nontrivial (quantum
anomalous Hall) case (a) and B = −10 eV Å2 for the trivial case. For
better comparison, the parameters are not adopted directly from those
in the experiments but of the same orders. nC is about 4 × 1012/cm2

in this case.

Hall conductivity does not depends on the total scattering
strength and impurity concentration, it may depend on the
relative weight of different types of scattering. Varying Vm/V0

gives rise to a sign change in σ
sj
xy in both trivial and nontrivial

cases in Fig. 3. This impurity-dependent sign change happens
exactly at Vm = V0, at which both α in Eq. (5) and σ

sj
xy vanish.

Skew-scattering Hall conductivity. The skew-scattering
Hall mechanism originates from the asymmetric scattering
induced by the spin-orbit coupling. The leading order of the
skew-scattering Hall conductivity can be calculated from the
diagram in Fig. 2, and found as32

σ sk
xy = −e2

h

EF (ηB sin2 θF )2(V 0
3 cos θF − V z

3 )

(1 − α)2[V0(2 − sin2 θF ) + Vm(2 + sin2 θF )]2
,

where the third-order impurity scattering correlations are de-
fined as V 0

3 ≡ 〈U 0
kk′U

0
k′k′′U

0
k′′k〉, V z

3 ≡ 〈Uz
kk′U

z
k′k′′U

z
k′′k〉, with 0

and z corresponding to the nonmagnetic elastic scattering and z

component of the magnetic scattering. x and y components are
abandoned in the presence of the in-plane rotational symmetry.
The above equation shows that only the nonmagnetic scattering
part with V 0

3 is proportional to cos θF , so the skew-scattering
shows the similar sign-changing feature only in absence of the
magnetic scattering. V 0/z

3 correspond to the correlation of three
scattering events by one single impurity, so V

0/z

3 are linearly
proportional to the impurity concentration n0/m. Meanwhile
the second-order scattering V0/m are also linearly proportional
to n0/m, so roughly speaking σ sk

xy is inversely proportional to
the impurity concentration. For this reason, the skew-scattering
Hall conductivity σ sk

xy is suppressed in a dirty metal.
Experimental implication. Because only the side-jump

Hall conductivity always shows the sign change in the
nontrivial phase, it is necessary to extract it among the
three major contributions to the anomalous Hall conductivity.
In principle, the intrinsic, side-jump, and skew-scattering
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FIG. 4. (Color online) The sum of intrinsic and side-jump Hall
conductivities as functions of sheet carrier density for different
Vm/V0. A square device is assumed so conductivity is equivalent
to conductance. Parameters: vF = 4 × 105 m/s, (a) � = 0.1 eV,
B = 10 eV Å2; (b) � = −0.1 eV, B = −10 eV Å2; (c) � = −0.1
eV, B = 10 eV Å2; (d) � = 0.1 eV, B = −10 eV Å2.
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mechanisms can be distinguished in experiments.1 Em-
pirically, the skew-scattering mechanism dominates in the
high-conductivity regime where the longitudinal conductiv-
ity σxx > 106 (
 cm)−1 and the anomalous Hall resistivity
is proportional to the longitudinal resistivity.1 Considering
the low conductivity in all the samples of Bi2Se3 family,
the skew-scattering mechanism looks quite irrelevant for the
recent experiments.5 In the good-metal regime where the Hall
conductivity is independent of the longitudinal conductivity
and 104 < σxx < 106 (
 cm)−1, both the intrinsic and side-
jump mechanisms could contribute. When the Fermi surface
intersects the conduction band, the intrinsic mechanism also
contribute a Hall conductivity12,32

σ i
xy = σ i(−)

xy + σ i(+)
xy

∣∣
EF

= − e2

2h
[sgn(B) + cos θF ]. (6)

Figure 4 shows the sum of σ i
xy and σ

sj
xy as functions of the

sheet carrier density of the conduction band. For the nontrivial
phase, the curves of different Vm/V0 cross at the critical sheet
carrier density where σ

sj
xy changes sign and the value of the

Hall conductivity is shifted to σ i
xy |nC

+ σ
sj
xy |nC

= − e2

2h
sgn(B).

This shifting can be canceled if the time-reversed partner of
H is also considered, which gives sgn(−B). In contrast, those

for the trivial case do not cross [Figs. 4(c) and 4(d)]. This
crossing could provide an extra signature of the nontrivial
phase, if the relative strength of the nonmagnetic and magnetic
doping fluctuates accidentally or can be tuned in a controlled
way from sample to sample. Also, the intrinsic and side-
jump contributions can be separated by defining the intrinsic
contribution as the extrapolation of the ac Hall conductivity to
zero frequency in the limit of τtr → ∞, with 1/τtr → 0 faster
than ω → 01. τtr is the transport time, which can be extracted
from the longitudinal conductivity.

Summary. We show that extrinsic anomalous Hall conduc-
tivity in a topologically nontrivial conduction band (i.e., in the
quantum anomalous Hall phase) exhibits different behaviors
from those in a trivial band. More specifically, the side-jump
extrinsic Hall conductivity changes sign at a critical sheet car-
rier density only in the nontrivial phase. When varying the ratio
between nonmagnetic and magnetic scattering, the side-jump
Hall conductivities cross at the critical sheet carrier density.
The skew-scattering Hall conductivity shows similar behaviors
when the nonmagnetic scattering overwhelms the magnetic
scattering. These features may help future experiments that
explore the quantum anomalous Hall systems.
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