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We propose to implement tunable interfaces for realizing universal quantum computation with topological
qubits. One interface is between the topological and superconducting qubits, which can realize an arbitrary
single-qubit gate on the topological qubit. When two qubits are involved, the interface between the topological
qubits and a microwave cavity can induce a nontrivial two-qubit gate, which cannot be constructed based on
braiding operations. The two interfaces, being tunable via an external magnetic flux, may serve as the building
blocks towards universal quantum computation with topological qubits.
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Topological qubits are largely insensitive to local noises [1]
and thus hold a promising future in quantum information
processing. For universal quantum computation, one needs
to encode a topological qubit with non-Abelian anyons
[2]. Therefore, Majorana fermions (MFs) with non-Abelian
statistics have recently attracted strong renewed interest [3].
MFs are a kind of self-conjugate quasiparticle proposed in
some systems theoretically, e.g., certain vortex excitations in
chiral p-wave superconductors [2]. However, an unambiguous
experimental verification of MFs is still awaited. Recently,
it is indicated theoretically that MFs can be created on the
interface between a strong topological insulator (TI) [4] and
an s-wave superconductor by the proximity effect [5]. Similar
schemes with spin-obit coupling and s-wave pairing have
also been proposed [6–12], which have greatly advanced the
field. Meanwhile, the interfaces between topological qubits
and quantum dots [13–16], as well as superconducting qubits
[17–23], have also been proposed. These hybrid systems may
allow us to consolidate the advantages of both types of qubits.

In this Brief Report, we propose tunable interfaces for real-
izing universal quantum computation with topological qubits.
Here, the hybrid system is constructed with a topological qubit,
a superconducting charge qubit, and a microwave cavity. In
addition to an external magnetic flux, we also introduce a
cavity-induced magnetic flux in the superconducting qubit
loop. In this way, an interface between the topological qubit
and the cavity, mediated by the superconducting qubit, may
be implemented. By modulating the external magnetic flux,
the interfaces between the topological qubit and the supercon-
ducting qubit or the cavity can be switched on alternatively.
For universal quantum computation, the interface between the
topological and the superconducting qubits is sufficient for
single-qubit control over and read out of the topological qubit,
noting that a topological qubit is usually hard to be read out.
Another difficulty of quantum computation with topological

*zyxue@scnu.edu.cn
†zwang@hku.hk

qubits lies in the fact that braiding cannot implement a
nontrivial two-qubit gate. However, in our proposal, when
two qubits are involved, the interface between the topological
qubits and a microwave cavity can induce a nontrivial two-
qubit gate. Therefore, the two interfaces may serve as the
building blocks towards universal quantum computation with
topological qubits.

We now proceed to introduce our considered setup. First,
the topological qubit is encoded by four MFs {γi}i=1,2,3,4,
which satisfy the fermionic anticommutation relation. A
Dirac fermion can be constructed from a pair of MFs
c̃
†
ij = (γi − iγj )/

√
2, defining a twofold degenerated Hilbert

space labeled by the fermion parity nij = c̃
†
ij c̃ij = 0,1. In the

even-parity subspace, a topological qubit is encoded with
the basis states |0〉t = |0〉12|0〉34 and |1〉t = |1〉12|1〉34, where
the subscript t denotes that the state is of the topological qubit.
The MFs can be created on the surface of a TI patterned
with s-wave superconductors [5], and thus the Cooper pairs
can tunnel into the TI due to the proximity effect. Then,
assuming that the chemical potential is in the vicinity of
the Dirac point, the Hamiltonian of the surface will obtain
an additional s-wave pairing term. As shown in Fig. 1,
each MF, indicated by a red circle, is localized at a point
where three separated superconducting islands meet, i.e., a
superconducting trijunction. The MFs can be created via a
superconductor-TI-superconductor (STIS) wire that separates
the islands with superconducting phases φd = ε and φu = −π .
A narrow STIS wire (width W � vF /�0) is described by [5]

HSTIS = −ivF τ̃x∂x + δετ̃z, (1)

where vF is the effective Fermi velocity, �0 is the
s-wave superconducting gap, δε = �0 cos [(φd − φu) /2] =
−�0 sin ε/2, and τ̃x,z are the Pauli matrices acting on the wire’s
zero modes. Figure 1 shows two pairs of MFs with distance
L, which encode our topological qubit. The two pairs of MFs
share the same type of coupling; e.g., for γ1 and γ2 the coupled
Hamiltonian is H̃ MF

12 = iE (ε) γ1γ2/2 with an energy splitting
E (ε) depending on the superconducting phase φd = ε. An
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FIG. 1. (Color online) On the surface of TI, patterned super-
conducting islands can form hybrid system of topological and
superconducting qubits. Two pairs of MFs (red circles) are local-
ized at superconducting trijunctions, connected by STIS quantum
wires (dashed blue line). The coupling between a pair of MFs is
controlled by the superconducting phases φd = ε and φu = −π . The
superconducting charge qubit consists of three JJs, enclosing external
magnetic fluxes from a dc magnetic field and a microwave cavity field
(not shown). The superconducting phase φc is fixed relative to φu by
a phase controller (not shown). Then, φd will depend on the state of
the superconducting qubit and is related to the cavity field.

effective Hamiltonian for the topological qubit is

HT = −E (ε)

2
τz, (2)

where τz = (|0〉 〈0| − |1〉 〈1|)t is the Pauli matrix acting on the
topological qubit and

E (ε) = vF

L

√

2

ε + f 2
0 (
ε), (3)

with the dimensionless parameter 
ε = �0L

vF
sin ε

2 and fn (y)
(with n = 0,1,2, . . .) being the inverse function of y =
x/ tan (x) associated with the nth invertible domain. For

ε � 1 and 0 < ε < π/2, the topological qubit splitting E (ε)
is negligibly small [5]. While for 
ε � 1, E (ε) becomes
sensitive to ε. To couple the topological and superconducting
qubits, it is natural to make ε dependent on the superconducting
qubit state. As shown in Fig. 1, this can be achieved by
making the superconductor labeled “d” be a part of the
superconducting qubit, and thus ε is related to the magnetic
flux pierced in the qubit loop. Meanwhile, the superconducting
qubit is placed in a cavity, and thus the magnetic flux contains
the external magnetic flux and the magnetic flux coming from
the cavity. In this way, coupling among the three elements can
be implemented.

We now detail the coupling of the elements. As also shown
in Fig. 1, the superconducting charge qubit [24–26] consists
of a small superconducting box with n excess Cooper-pair
charges, formed by a symmetric superconducting quantum
interference device including two small identical Josephson
junctions (JJs) with capacitance CJ and Josephson coupling
energy EJ and pierced by an external magnetic flux �e.
Meanwhile, a control gate voltage V is applied via a gate
capacitor Cg . To slightly modulate the superconducting phase
φd , a large JJ is also introduced, which has a Josephson
coupling energy of EJ0 � EJ and a capacitance of CJ0. In
order to eliminate the influence of the charging energy of
the large JJ to the superconducting charge qubit Hamiltonian,

a large capacitance C0 is placed in parallel with the large
JJ [24]. Assuming that the inductance of the qubit circuit is
much smaller than that of the large JJ, the Hamiltonian of the
superconducting qubit can be written as [26]

HS = Ec(n − ng)2 − EJ (cos φ1 + cos φ2) − EJ0 cos φJ ,

(4)

where Ec = 2e2/(Cg + 2CJ ) is the charging energy of the
superconducting island, ng = CgV/(2e) is the induced charge
of the gate voltage, and φJ , φ1, and φ2 are the phase drops
across JJs 0, 1, and 2, respectively.

Meanwhile, the superconducting charge qubit is placed at
a magnetic antinode of the cavity in a circuit QED scenario
[27]. For simplicity, we assume that the cavity has only a
single mode to play a role, the free Hamiltonian of which
is Hc = ωra

†a (assuming h̄ = 1 hereafter) with ωr , a, and
a† being the frequency, annihilation, and creation operators
of the cavity mode, respectively. Flux quantization around
the qubit loop leads to φ1 = φ − β and φ2 = φ + β, where
2β = φe − φJ + 2g(a + a†) with φe = 2π�e/�0 and g is
the magnetic coupling strength between the cavity and the
superconducting qubit; the average phase drop φ = (φ1 +
φ2)/2 is canonically conjugate to n as [φ,n] = i. Conse-
quently, the qubit Hamiltonian in Eq. (4) can be rewritten
as [26]

HCS = Ec(n − ng)2 − 2EJ cos β cos φ − EJ0 cos φJ . (5)

The induced circulating supercurrent in the qubit circuit
is I = 2Ic sin β cos φ, with Ic = πEJ /�0 being the critical
current of the two small JJs. Meanwhile, this supercurrent
also flows through the large JJ, and thus I = I0 sin φJ , with
I0 = 2πEJ0/�0 being the critical current of the large JJ.
Therefore,

I0 sin φJ = 2Ic sin β cos φ. (6)

As EJ � EJ0, φJ will be small. Up to the second order of the
small parameter of η = Ic/I0, we have

φJ = 2η sin
φe

2
cos φ − η2 sin φe cos2 φ

+ 2gη cos
φe

2
cos φ × (a + a†). (7)

At low temperatures (kBT � Ec) and within the charging
regime (EJ � Ec � �0), only the lowest two charge states
{|0〉s ,|1〉s} are relevant for the superconducting qubit operating
at its degeneracy point (ng = 1/2), where the subscript s

denotes that the state is of the superconducting qubit hereafter.
As a result, the Hamiltonian in Eq. (5) reduces to

HCSC = −EJ

2
σx + ξ (a + a†)σx, (8)

where EJ = 2EJ cos φe

2 (1 − 3
8η2 sin2 φe

2 ), ξ = gEJ sin φe

2 ,
and σx,z are Pauli matrices acting on the superconducting
qubit state. Meanwhile, in the superconducting qubit repre-
sentation, φJ = f1 + (f2 + f3)σx , where f1 = − 1

4η2 sin φe,
f2 = η sin φe

2 , and f3 = ηg(a + a†) cos φe

2 , which depends on
the states of the superconducting charge qubit and the cavity.
If we fix φc with respect to φu with a phase controller, up
to the second order of η, φd will be ε+ = φc + f1 + f2 + f3

024303-2



BRIEF REPORTS PHYSICAL REVIEW A 88, 024303 (2013)

and ε− = φc + f1 − f2 − f3, depending on the state of the
superconducting charge qubit in the states |+〉s and |−〉s ,
respectively. As η is small, the separation of φd , �ε =
2(f2 + f3) ∝ η, will be small, as we expected.

Finally, the combined hybrid system can be described by
Htotal = ωra

†a − 1
2ωtτz + HCSC + Hint, with the interaction

between the topological qubit and others being

Hint = −λ1

2
σxτz − λ2σxτz(a + a†), (9)

where ωt = E (φc + f1), λ1 = η sin φe

2
dE(φ)

dφ
|φ=φc+f1 , and λ2 =

ηg cos φe

2
dE(φ)

dφ
|φ=φc+f1 . It is obvious that λ1,2 can be tuned

via the external magnetic flux �e. In particular, when |λ1|
(|λ2|) reaches its maximum value, λ2 (λ1) will be 0. That
is to say, we can selectively implement the topological and
superconducting qubits interface or the topological qubit and
cavity interface. This is distinctly different from the proposed
interface in Ref. [21], where the only implemented interface
is between the topological and superconducting flux qubits.

We now consider the interface between the topological
and superconducting charge qubits which can be switched on
by modulating the external magnetic flux to fulfill sin φe

2 = 1
(cos φe

2 = 0). With λ1t1 = −π/2, up to local rotations on the
superconducting qubit and Hadamard gates on the topological
qubit, we can implement arbitrary unitary transformations for
the two-qubit hybrid system [28–30]. For universal quantum
computation, this interface is sufficient for single-qubit control
over and read out of the topological qubit.

We now estimate the coupling strength of the interface
with typical experimental parameters. For the superconducting
qubit, we may choose the following parameters [25]: EJ =
16 GHz and EJ0 = 10EJ , which means η = 0.1. For the
topological qubit, reasonable parameters are the following
[21,24]: �0 = 2π × 32 GHz, vF = 105 m/s, L = 5 μm, and
T = 20 mK. Therefore, the maximum coupling strength of
this interface is λmax

1 ≈ η�0 = 2π × 3.2 GHz.
The relevant imperfections of this interface are estimated

as the following. First, as λ1/(2EJ ) = 0.1, the undesired
tunneling probability between the qubit states is suppressed to
Pt ∼ 0.01. Second, to suppress the quantum fluctuations of the
large JJ, C0 = 100(Cg + 2CJ ) is chosen to make its effective
charging energy negligible small [25], and thus it works in
the classical regime [31]. Finally, excitation of the quantum
wire modes with energy E ≈ vF /L can be exponentially
suppressed to Pe ∼ exp[−E/(KBT )] < 10−3 [21].

We move to the topological qubit and microwave cavity
interface by modulating cos φe

2 = 1. The coupling between
these two subsystems is mediated by the superconducting
charge qubit. Without loss of generality, we assume that the
superconducting qubit is initially prepared in its ground state.
We further tune the energy splitting of the superconducting
charge qubit far away from the cavity frequency so that the
superconducting qubit will always stay in its ground state.
When two identical qubits are involved, the hybrid system is
described by the interaction

HCT = ωra
†a − 1

2
(h̄ωt + λ1)

(
τ z

1 + τ z
2

)
− λ2

(
τ z

1 + τ z
2

)
(a + a†). (10)

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0.92

0.925

0.93

0.935

0.94

0.945

0.95

λ
2
 t/π

F

FIG. 2. (Color online) The fidelity of entangling the two topo-
logical qubits as a function of λ2t/π . The parameters are k = 1,
κ = γ = 1 MHz, and λ2 = 2π × 32 MHz.

Setting φ′
e = 2ωt + φe, the interaction Hamiltonian in the

interaction picture reads [32]

HI = −λ2(ae−iνt + a†eiνt )Jz, (11)

where ν = ωr − ω > 0 and Jz = ∑
j τ z

j /2. The time-
evolution operator for the Hamiltonian in Eq. (11) can be
expressed as [33,34]

U (t) = exp
[−iA(t)J 2

z

]
× exp [−iB(t)aJz] exp[−iB∗(t)a†Jz], (12)

where

A(t) = −λ2
2

ν

[
t − 1

iν

(
eiνt − 1

)]
, (13)

B(t) = −i
λ2

ν
(e−iνt − 1). (14)

It is obvious that B(t) is a periodic function of time and
vanishes at ντ = 2kπ , where k = 1,2,3, . . .. At this time, the
operator in Eq. (12) reduces to

U (τ ) = exp
[ − iA(τ )J 2

z

]
, (15)

with A(τ ) = −λ2
2τ/ν. The maximum coupling strength of this

interface is λmax
2 ≈ ηg�0 = 2π × 32 MHz for g = 0.01. In

this way, we achieve the coupling between the topological
qubits mediated by the microwave cavity and the operator in
Eq. (15) serves as a nontrivial two-qubit gate.

For example, choosing A(τ ) = −π/2 and the initial state
of the two topological qubits being |ψ〉i = | + +〉t , the final
state is

|ψ〉f = 1√
2

(| + +〉t + i| − −〉t ), (16)

where |±〉t = (|0〉t + |1〉t )/
√

2. Note that A(τ ) = −π/2 can
be achieved by choosing ν = 2λ2

√
k, and thus the gate time is

τ = √
kπ/λ2. It is noted that the gate time will be increased

for larger k, which leads to more severe decoherence effect.
Therefore, k = 1 is usually adopted.
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We next consider the influence of dissipation to the
entangling gate by integrating the quantum master equation,

ρ̇ = −i[HI ,ρ] + κ(2aρa† − a†aρ − ρa†a)

+ γ

2∑
j=1

(2τ−
j ρτ+

j − τ+
j τ−

j ρ − ρτ+
j τ−

j ), (17)

where ρ is the density matrix of the combined system of the
topological qubit and cavity photon and κ and γ are the decay
rate of the cavity and the lifetime of the topological qubit,
respectively. We characterize the entanglement generation
process by the conditional fidelity of the quantum state defined
by F = 〈ψf |ρa|ψf 〉, with ρa being the reduced density matrix
of the topological qubits. In Fig. 2, we plot the fidelity F

with k = 1 as a function of dimensionless time λ2t/π , where
we have obtained high fidelity F � 95% for the generation.
In the plot, we have chosen the conservative parameters
of κ = γ = 1 MHz. Although the coherence time of the
topological qubit may be longer, we still choose γ = 1 MHz

as Hamiltonian (11) is mediated by the superconducting qubit
and 1 μs is much shorter than its coherence time [24].

In summary, we have proposed to implement tunable
interfaces between the topological qubit and the supercon-
ducting charge qubit or the microwave cavity. Combining
the two interfaces, we are able to have control over and
read out a topological qubit as well as implement nontrivial
entangling gates between two different qubits. Therefore, the
two interfaces constitute the building blocks towards universal
quantum computation with topological qubits.
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