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ESTIMATING THE EFFECT OF MULTIPLE IMPUTATION ON INCOMPLETE 

LONGITUDINAL DATA WITH APPLICATION TO A RANDOMIZED CLINICAL 

STUDY 

 

Abstract 

 For analyzing incomplete longitudinal data, there has been a recent interest in 

comparing estimates with and without the use of multiple imputation along with mixed 

effects model and generalized estimating equations. Empirically, the additional use of 

multiple imputation generally led to overestimated variances and may yield more heavily 

biased estimates than the use of last observation carried forward. Under ignorable or non-

ignorable missing, mixed effects model or generalized estimating equations alone yielded 

more unbiased estimates.  The different methods were also assessed in a randomized 

controlled clinical trial. 
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1. INTRODUCTION 

Missing values are a fact of life in experimental studies. They are frequently 

encountered in clinical trials with repeated measurements for many reasons, including 

subject dropouts, noncompliance, and adverse events. Missing values can be classified as 

missing completely at random (MCAR) when the probability of having a missing value 

does not depend on the observed values or on the missing values had they been observed, 

missing at random (MAR) when the probability depends only on the observed values, or 

missing not at random (MNAR) when the probability depends only on the missing values 

had they been observed (Rubin, 1976).  

In superiority trials, the clear consensus has been to require use of the intention-to-

treat (ITT) principle to analyze all randomized subjects, regardless of whether data for the 

subjects were measured at all follow-up visits. This practice reduces the risk of 

overestimating the efficacy of a treatment, especially when data are MAR or MNAR (ICH, 

1998).  Common methods of longitudinal data analysis consistent with the ITT principle 

are the mixed effects model (MEM) and generalized estimating equations (GEE) (Chan et 

al., 2005; Dahmen & Ziegler, 2004; Edwards, 2000; Goldstein, Browne, & Rasbash, 2002; 

Wagner et al., 2005). The MEM is a conditional or subject-specific model, whereas the 

GEE is a marginal or population-averaged model. The models differ in the way the effects 

are interpreted, and there has been controversy about their use in analyzing longitudinal 

data (Carriere & Bouyer, 2002; Heagerty, 2002; Lee & Nelder, 2004; Lindsey & Lambert, 

1998). Nevertheless, the two methods often produce similar estimates and standard errors 

when missing values are MCAR or MAR, despite their unpredictable results for 
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dichotomous outcomes (Twisk, 2004). Moreover, it was recently argued that the difference 

in interpreting conditional and marginal estimates is meaningless, and marginal predictions 

can often be made from conditional models (Heagerty, 2002; Lee & Nelder, 2004; Lindsey, 

2000). Therefore, the MEM and GEE appear comparable for the analysis of incomplete 

longitudinal data.  

Alternatively, missing values could be imputed so that methods such as the 

repeated measures analysis of variance (ANOVA), which accommodate only subjects with 

complete observations, can be used. Imputation methods can generally be classified as 

single imputation (e.g., the last observation carried forward [LOCF]), when imputation is 

performed once, or multiple imputation (MI) when imputation is performed more than 

once (Schafer, 1999). Single imputation methods do not take into account the uncertainty 

about the values imputed. In general, they may also vary widely in their assumptions and 

may be used without due consideration of their appropriateness (Wood, White, Hillsdon, & 

Carpenter, 2005). Moreover, the use of single imputation may often lead to larger bias than 

MI in longitudinal data analysis (Shieh, 2003).  

Although imputation methods were developed to facilitate methods that analyze 

only subjects with complete observations, there has been a recent interest in examining the 

use of imputation methods together with MEM or GEE (Kang, Kraft, Gauderman, & 

Thomas, 2003; Shieh, 2003; Twisk & de Vente, 2002). Kang et al. (2003) showed that MI 

with MEM may yield biased variance component estimates in real and simulated 

longitudinal datasets. Shieh (2003) conducted a simulation study examining various 

imputation methods with MEM in analyzing cohort studies with MCAR and MAR values 
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and concluded that the use of MEM alone on all available subjects was an effective and 

flexible way to deal with missing values. The same conclusion was also derived in a 

dataset on orthodontic growth (Beunckens, Molenberghs, & Kenward, 2005). However, 

they had not examined the situation when values are MNAR.  Twisk & de Vente (2002) 

evaluated the use of imputation methods with GEE. They considered a dataset from the 

Amsterdam Growth and Health study, an observational longitudinal study, with and 

without generating MCAR, MAR, and MNAR values to compare seven imputation 

methods with GEE. They found that using MI with GEE produced comparable estimates 

but generally larger standard errors than using GEE without imputation. Therefore, they 

concluded that the use of GEE alone was adequate.  However, they focused on the analysis 

on a real dataset and results may not be generalized to other situations. 

In summary, two issues have not been sufficiently examined in the literature. First, 

the use of MI with MEM or GEE has not been adequately tested in a clinical trial setting in 

which the objective was to determine the treatment effect in specific epochs, which is 

common in clinical trials. Examining this would provide a more complete picture of the 

performance of analysis strategies in clinical trials to facilitate the preparation of a 

statistical analysis plan. Second, to our knowledge, the performance of MI with MEM or 

GEE when values were MNAR and with GEE under all missing value scenarios had not 

been assessed by simulation. Therefore, we aimed to assess the performance of the MEM 

and GEE methods with and without MI in estimating treatment effects on a continuous 

outcome during different epochs by using simulation and a real dataset from a randomized 

clinical study.  
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2. THE SETTING 

We consider the setting of a typical clinical trial in which n  study subjects are 

randomly allocated to receive either a test or a control treatment and are followed up for T  

visits after the baseline visit. For subject i  ( i  = 1, 2, …, n ), let ity  be the observation at 

visit t  ( t  = 0, 1, …, T ) and ig  be an indicator for the allocated group (0 for the control 

group or 1 for the treatment group). Without a loss of generality, we assume ity  may be 

missing in any follow-up visits except for the baseline visit. The pattern of missing values 

is not restricted and may occur intermittently. That is, a subject with ity  missing in one 

visit may or may not have values missing in subsequent visits. 

In this setting, we consider the objective of estimating the treatment effect at a 

follow-up visit, which is often pursued after adjusting for the baseline value. Before we 

discuss the methods of analysis, we further define the dummy variables 1=k
itv  if kt =  and 

0=k
itv  if otherwise, for k  = 1, 2, …, 1−T . That is, k

itv  indicates the t th measurement 

from subject i taken at visit k .  

 

2.1. Analysis by MEM or GEE 

The following linear MEM with adjustment for baseline value is considered: 

 ijiiitiitiit eaggyy ++++++= νγγνγγµ TT
32100   (1) 

for i  = 1, 2, …, n ; t  = 1, 2, …, T , where 𝜈𝑖𝑡 = (𝜈𝑖𝑡1 , 𝜈𝑖𝑡2 , … , 𝜈𝑖𝑡𝑇−1, 0)⊺, 

T)...,,,( 112111 Tγγγγ = , T)...,,,( 332313 Tγγγγ = , and ),0(~ 2
ai Na σ  and ),0(~ 2σNeit  are 
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statistically independent. The incorporation of 𝜈𝑖𝑡 in (1) allows the estimation of treatment 

effect at each clinical visit..  The ia  is the random effect used to account for subject-to-

subject heterogeneity, which induces an exchangeable correlation structure for the 

responses from the follow-up visits. Note that (1) may also be written as 

iiii ebXY ++= βT ; ),0(~),11,0(~ 22
TiTTai INeNb σσ T  

where T),...,,( 21 iTiii yyyY = , ),...,,( 21 iTiii xxxX = , TTT ),,,,1( 0 iitiitiit ggyx νν= , 

TTT ),,,,( 3210 γγγγµβ i= , T1  is the 1×T  vector of 1, and TI  is the TT ×  identity matrix.  

Estimation of the unknown parameters is often pursuit by restricted maximum likelihood 

or maximum likelihood.   

For the analysis by GEE, we need to specify the first two moments of ity . Specifically, 

we consider 

 βT
ititit xxyE =)|( , 2)|( σ=itit xyVar   (2) 

for t  = 1, 2, …, T , and an exchangeable working covariance matrix W .  Estimate of β  is 

then obtained by solving the GEE 0)(1
1

1
2 =−∑

=

−
n

i
iii XYWX

n
β

σ
TT . 

In either (1) or (2), the treatment effect at visit t  ( t  = 1, 2, …, 1−T ) is given by 

t32 γγ +  and the effect at visit T  is 2γ . They are denoted by tθ , for t  = 1, 2, …, T . The 

code used in Statistical Analysis System (SAS) Version 9.2 for the analysis is provided in 

Appendix A. 
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2.2. Analysis by Using LOCF with MEM or GEE 

The analysis is performed by replacing the missing values using the LOCF 

approach (i.e., the last observed value before a missing value is used to impute the missing 

value) before the MEM in (1) or the GEE in (2). 

 

2.3. Analysis by using MI with MEM or GEE 

The MI proceeds by first imputing the missing values for m  (> 1) times, and 

thereby generates m  complete datasets. This is opposed to single imputation which does 

not account the uncertainty due to imputation. There are various imputation methods 

depending on the missing value pattern (Rubin, 1987; Yang, Li, & Shoptaw, 2008).  

Because any intermittent ity  for a subject may be missing, the Markov Chain Monte Carlo 

(MCMC) method is used for imputation.(Schafer, 1997) In each imputation, the MCMC 

method generates a chain of sequentially associated values until they stabilized and the 

converged values are used to impute the missing values (Schafer, 1997).  Then, each of the 

m  complete datasets is analyzed by the linear MEM in (1) or the GEE in (2); thereby, m  

sets of parameter estimates are obtained. The m  sets of estimates are combined for 

inference about tθ . Specifically, if b
tθ̂  and b

tω̂ ),,2,1( mb =  are respectively the 

estimate and estimated variance of tθ  from the b th dataset, the combined estimate and 

variance estimate of tθ  are ∑
=

=
m

b

b
tt m 1

ˆ1 θθ  and 






 −
−

+
+= ∑∑

==

m

b
t

b
t

m

b

b
tt mm

m
m 1

2

1

)(
1

11ˆ1 θθωω , 

respectively.(Schafer, 1997)  Note however the MCMC method is adequate only when 
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missing values are at most MAR.  This facilitates fair comparisons with the use of MEM 

and GEE alone, which are valid only up to MAR and MCAR respectively.  

In our applications, m  is taken as 5 and 500 to assess the effects of using small and 

moderate sizes of imputations.  The SAS code used for the analysis is provided in 

Appendix A. 

 

3. DATA GENERATION AND ASSESSMENTS 

The simulation study was programmed in SAS. Generation of the data was based 

on the setting of a clinical trial described in Section 2. The number of follow-up visits T  

was assumed to be 3. Then, 3,2,1,0}{ =tity  was generated from 

ititiiit egyay +++= θ0  

for t  = 1, 2, 3, where 0iy , ia  and ite  were identically and independently distributed as 

)1,0(N . That is, conditioned on 0iy , ),,( 321 iii yyy  followed a multivariate normal 

distribution with mean ig),,( 321 θθθ  and covariance matrix T
333 11+= IV .  

The ),,( 321 θθθ  represented the treatment effect at the three follow-up visits, which 

was taken as (1, 0.5, 0) and (1, 0, 0). The first corresponds to a steady decrease of 

treatment effect, which does not favor the use of LOCF to handle missing values at all 

visits. The second corresponds to a sharply diminished treatment effect at the second 

follow-up visit but no change between visits 2 and 3, which favors the use of LOCF to 

handle missing values at the third follow-up visit. The generated dataset had no missing 

values and was referred as the complete dataset.  
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Then, incomplete datasets under the three missing value scenarios were generated 

from the complete dataset. Without a loss of generality, only values at visits 1, 2, and 3 of 

the complete dataset could be made missing. By specifying %100×mp  of missing values 

to be generated, a dataset with MCAR values (MCAR dataset) was obtained by randomly 

deleting values from the complete dataset with probability mp . To generate a dataset with 

MAR values (MAR dataset), values in a visit were deleted if they corresponded to the 

upper %100×mp  observed values in the previous visit. For the dataset with MNAR values 

(MNAR dataset), the upper %100×mp  of values in each visit were deleted. The mp  was 

chosen as 0.30. 

The number of subjects, n , was assumed to be 200 with 100 subjects in each group. 

With this sample size, the powers of detecting treatment effects of 1 at visit 1 and 0.5 at 

visit 2 were 0.9988 and 0.7054, respectively, when either the GEE or the linear MEM was 

used. Thus, the sample size would enable us to examine the performance of various 

methods when the power was high or of moderate size. When 30% of the values were 

MCAR, the powers became 0.9869 and 0.5524, respectively, and thus exaggerated the 

difference in power. Details of the calculation are shown in Appendix B. Note: We did not 

calculate the power when values were MAR and MNAR, because those situations may 

result in biased estimates and the power would not really reflect the chance of detecting a 

discernible effect. 

The data generation procedure was repeated to generate 1000 sets of complete and 

missing datasets under various missing value scenarios. By denoting them as ( s1̂θ , s2̂θ , s3̂θ ) 
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( s  = 1, 2, …, 1000), the following summary statistics were computed for assessing each 

method of analysis.  

1. Mean estimate, i.e. 1000/ˆ1000

1 1∑ =s sθ , 1000/ˆ1000

1 2∑ =s sθ  and 1000/ˆ1000

1 3∑ =s sθ . 

2. SE, the square root of the mean estimated variances of the estimates. 

3. Bias, i.e. 1
1000

1 1 1000/ˆ θθ −∑ =s s , 2
1000

1 2 1000/ˆ θθ −∑ =s s  and 3
1000

1 3 1000/ˆ θθ −∑ =s s . 

4. Mean squared error (MSE), i.e. 1000/)ˆ( 2
1

1000

1 1 θθ −∑ =s s , 1000/)ˆ( 2
2

1000

1 2 θθ −∑ =s s  and 

1000/)ˆ( 2
3

1000

1 3 θθ −∑ =s s . The MSE measures the sampling variance of each estimator. 

5. Ratio, i.e., a mean estimated variance divided by the corresponding sampling variance. 

6. 95% coverage, i.e., the proportion of estimated 95% confidence intervals covering the 

corresponding true values. 

 

4. SIMULATION RESULTS 

Table 1 compares the bias of various methods of estimating treatment effects across 

visits under the three missing value scenarios when ),,( 321 θθθ  = (1, 0.5, 0) and the number 

of imputations was 5.  

Under MCAR, the MEM and GEE methods yielded unbiased estimates, but any 

combination of the LOCF or MI with either the MEM or the GEE method resulted in 

substantial biases in all visits. The bias was the largest when LOCF was used. At visit 1, 

when LOCF was used, a missing value from a subject was replaced by the observed value 

of the subject at visit 0. Hence, the imputed value was 0, on average, for both the control 

and treatment groups. Therefore, treatment effect at visit 1 was underestimated. By the 
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same token at visit 2, the use of LOCF led to overestimation of the treatment effect 

because missing values in the treatment group were imputed mostly by 1, which is larger 

than the true value of 0.5, whereas missing values in the control group were still mostly 

imputed by 0. Similarly, using LOCF also overestimated the treatment effect at visit 3. In 

contrast, MI for a missing value of a subject made use of all observed values from visits 

other than when the value was missing. Therefore, naïve expected values used to impute 

missing values at visits 1, 2, and 3 would be (0+0.5+0)/3 = 0.17, (0+1+0)/3 = 0.33, and 

(0+1+0.5)/3 = 0.50, respectively, for the treatment group, and all 0s for the control group. 

With the true treatment effects of ),,( 321 θθθ  = (1, 0.5, 0) and 30% missing values, the 

biases at the three follow-up visits should be approximately (0.17–1)(0.3) = –0.25, (0.33–

0.5)(0.3) = –0.05 and (0.50–0)(0.3) = 0.15, respectively. These values were consistent with 

those reported in Table 1. Subsequently, we envisaged that MI may yield a larger bias than 

LOCF when the last observation was closer to the true value of the missing value than the 

average of observations from all other visits was. Indeed, in the simulation study with 

),,( 321 θθθ  = (1, 0, 0), treatment effect at visit 3 was slightly more overly estimated by MI 

(bias = 0.0668) than by LOCF (bias = 0.0619). Regarding the precision of the estimates, 

SEs from all methods were only moderately higher than the corresponding values in the 

analysis of complete datasets. 

Under MAR, there was a very slightly higher general bias by the MEM and GEE 

methods, but the estimates remained essentially unbiased. The LOCF and MI again yielded 

substantially biased estimates. However, MI under MAR resulted in smaller bias as well as 

a smaller SE than under MCAR because the accuracy of imputation by other observed 
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values was expectedly higher when the probability of data missing is in fact related to the 

observed values.  

Under MNAR, there was a general reduction in SEs due to reduced variance 

resulted from deleting “large” values. However, there was considerable bias in all methods 

and a general underestimation of treatment effects when the treatment effect was positive 

(i.e., at visits 1 and 2). This happened because values in the treatment group were likely to 

be higher than those in the control group and thus more likely to be missing. Bias from the 

use of MEM or GEE alone remained the smallest when treatment effect was positive. At 

visit 3 when there was no hypothesized treatment effect, the bias was smaller because 

values in the two groups had equal probabilities of being missing.  

In general, the MEM and GEE methods behaved very similarly, regardless of 

whether LOCF or MI was used and regardless of missing value scenarios. SEs when LOCF 

was used were generally smaller than those resulting from the other methods due to the use 

of initial values for imputation that increased the estimation precision when the initial 

value was also adjusted in the analysis. 

Table 2 shows the performance of the methods of analysis on MSE, ratio and 95% 

coverage under the various missing value scenarios when ),,( 321 θθθ  = (1, 0.5, 0). Under 

MCAR or MAR, the use of LOCF resulted in the poorest MSE and 95% coverage. 

Although MI may yield a smaller MSE than the other methods, it had a more overly 

estimated variance. MEM and GEE used alone gave small MSEs, did not severely 

underestimate the variance compared with the sampling variance, and had good coverage. 
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Under MNAR when there were positive treatment effects at visits 1 and 2, the MSE 

was generally inflated due to the increase in bias. Particularly, both LOCF and MI resulted 

in inaccurate estimated variance compared with the sampling variance and thus yielded 

poor 95% coverage. In contrast, MEM and GEE used alone gave unbiased variance 

estimates, and the corresponding 95% coverage was the best compared with other methods, 

regardless of whether there was a positive treatment effect.  

When the number of imputations used in MI was 500, similar results were obtained. 

When ),,( 321 θθθ  = (1, 0, 0), similar phenomena were also observed except where 

indicated. 

 

5. AN EXAMPLE 

A randomized, controlled clinical trial was conducted to examine the effects of the 

Chinese exercise qigong vs. a control exercise in patients with type 2 diabetes mellitus 

(Lee et al., 2003; Lee et al., 2002). The study was conducted in the Queen Mary Hospital 

of Hong Kong with a study protocol and informed consent forms approved by the 

hospital’s Research Ethics Committee. 

There were several outcomes of interest, but we focused only on measurements 

taken by the 36-item Medical Outcome Study Short Form (Hong Kong version), a generic 

health-related quality of life questionnaire making up eight distinct constructs: physical 

function (PF), social function (SF), role physical (RP), role emotional (RE), vitality (VT), 

mental health (MH), general health (GH), and bodily pain (BP). The questionnaire was 

administered to 100 study patients (37 men and 63 women) before randomization, as well 
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as 6, 10, and 18 weeks afterward. Patients allocated to the qigong group learned qigong 

during the first four weeks and were advised to practice qigong daily. Effects of qigong on 

the eight scales have been examined elsewhere (Lee et al., 2002). In particular, there was 

no evidence that qigong improved PF. However, it is of interest to examine whether men 

or women, after practicing qigong, had more improvement in PF. Therefore, we focused on 

the analysis of how the patient’s sex affected PF over time in the 50 patients (27 men and 

23 women) who practiced qigong.  

Of the 50 patients, one dropped out after randomization and another withdrew after 

week 10. Therefore, there were only a few missing values in the raw dataset, and their 

effects were deemed negligible. About 15% of missing values were generated using the 

MCAR, MAR, and MNAR scenarios, and the MEM and GEE with and without LOCF and 

MI were applied.  

Table 3 summarizes the estimated effect of the patient’s sex on PF at each visit. 

Based on the analysis of the raw dataset, female patients had higher PF values than male 

patients at 10 weeks but not at other visits.  

Under the missing value scenarios used in our estimates, the use of MEM and GEE 

alone on the incomplete datasets generally provided the same conclusions as when they 

were applied on the raw dataset. In contrast, the additional use of LOCF or MI generally 

yielded substantially different p-values or estimates. In particular, LOCF gave a few false-

positive errors because it generally led to biased estimates. The MI generally led to 

insignificant results along with larger standard errors. MI yielded, at visit 3 in the MCAR 
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dataset, a biased estimate higher than that of LOCF. Therefore, the use of MEM or GEE 

alone appeared to be sufficient.  

 

6. DISCUSSIONS 

In response to the recent interest in examining the use of MI together with MEM or 

GEE, we performed the first simulation study to assess the use of MI with GEE for 

longitudinal analysis when there are missing values.  Moreover, we also assessed for the 

first time, the performance of using MI with MEM when values are MNAR.  When MEM 

or GEE are used for the analysis of incomplete longitudinal trials, the use of LOCF or MI 

appears to be unnecessary under all missing value scenarios. 

In general, using LOCF with either MEM or GEE may lead to substantial bias 

compared with other methods. The bias resulting from using LOCF in longitudinal studies 

has been well documented in the literature (Cook, Zeng, & Yi, 2004; Liu & Gould, 2002; 

Siddiqui & Ali, 1998). Despite this, LOCF has been very commonly used in the analysis of 

clinical trials. MI emerged as an attractive alternative imputation method, taking into 

account the uncertainty about the imputed values. However, in our simulation study, the 

use of MI with MEM or GEE also resulted in biased effect estimates. The bias may even 

be worse than that of LOCF in certain scenarios under the MCAR, a missing value 

scenario often considered negligible. Moreover, MI often yields overestimated variances, 

possibly due to imputation uncertainty. Nielsen (2003) showed that multiple imputation 

methods can sometimes be improper and that even a proper multiple imputation method 

can be inefficient. Moreover, the use of different methods of handling missing values may 



18 
 

influence sample size requirements (Auleley et al., 2004). Therefore, the use of MEM or 

GEE without MI or LOCF is generally sufficient.  

When values are MNAR, the use of MEM or GEE alone may result in considerable 

bias. Because MNAR and MAR are, unfortunately, indistinguishable unless external 

information about the missing value scenario is available, sensitivity analysis is often 

advisable to guard against having overly optimistic treatment effect estimates 

(Molenberghs et al., 2004). The sensitivity analysis can be performed on different sets of 

subjects according to their compliance, or imputation methods that have a predictable 

direction of bias (e.g., the worst-case method, in which missing values in the treatment and 

control groups are replaced by the respective worst- and best-case values) can be used.  

Nevertheless, the use of MI by MCMC would generally result in larger bias and poorer 

95% coverage.  Although the contrary was observed when treatment effect is nil, the bias 

was small and the coverage was reasonable when only MEM or GEE was used.  Therefore, 

the use of MI by MCMC does not remarkably improve the estimation of treatment effects.  

Note however we have not assessed the use of MI by algorithms based on MNAR as this 

does not enable a fair comparison with the use of MEM or GEE alone which is only valid 

up to MAR or MCAR respectively (Yang et al., 2008).   

There were no notable differences in the results between the use of 5 and 500 

imputations.  Generally, the number of imputations should be guided by the relative 

efficiency.  However, there is often no practical benefit to using more than 5 to 10 

imputations unless missing values are unusually many (Schafer, 1999).  Indeed, with 50% 
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missing values, the relative efficiency for using 5 imputations is 1.049 which is not 

remarkable. 

Although it was not our intention to compare MEM and GEE in our simulation 

study, we did find that the two methods performed quite similarly in all missing value 

scenarios. However, we examined only situations in which correlations among the repeated 

measurements were exchangeable. GEE has the well-known flexibility and robustness to 

be the choice of the covariance matrix for repeated measurements, but it assumes the 

MCAR scenario. On the other hand, MEM may also accommodate a wide range of 

covariance structures by using random effects (Fong, Lam, Lawless, & Lee, 2001; Lawless 

& Fong, 1999). Moreover, MEM uses likelihood-based inference and thus produces 

consistent estimates under both MCAR and MAR. In general, MEM appears to have more 

advantages for the analysis of explicative studies. 
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APPENDIX A: SAS CODE FOR THE ESTIMATION METHODS USED 

ID is the subject identification number, VISIT is the number of the visit (0, 1, 2, 3), 

GROUP is the number of the treatment group (0 = control; 1 = treatment), SCORE0 is the 

baseline measurement, and SCOREn is the measurement at visit number n. 

1. The SAS code for the analysis by the linear MEM given in (1) is: 

proc mixed; 

   class ID VISIT GROUP; 

   model SCORE = SCORE0 VISIT GROUP VISIT*GROUP ; 

   estimate 'Group at Visit 1'   GROUP –1 1 VISIT*GROUP –1 1 0 0 0 0; 

   estimate 'Group at Visit 2'   GROUP –1 1 VISIT*GROUP 0 0 –1 1 0 0; 

   estimate 'Group at Visit 3'   GROUP –1 1 VISIT*GROUP 0 0 0 0 –1 1; 

   random  intercept /subject=ID; 

run;  

 

2. The SAS code for the analysis by the GEE given in (2) is: 

proc genmod; 

   class ID VISIT GROUP; 

   model SCORE = SCORE0 VISIT GROUP VISIT*GROUP; 

      estimate 'Group at Visit 1'   GROUP –1 1 VISIT*GROUP –1 1 0 0 0 0; 

      estimate 'Group at Visit 2'   GROUP –1 1 VISIT*GROUP 0 0 –1 1 0 0; 

      estimate 'Group at Visit 3'   GROUP –1 1 VISIT*GROUP 0 0 0 0 –1 1; 

   repeated subject=ID /type=exch; 
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run; 

 

3. The SAS code for the analysis by MI and MEM is: 

proc mi out=sim.mi nimpute=5 seed=18039; 

   var SCORE0–SCORE3; run; 

data sim.ana;  set sim.mi; 

   array dum [3] SCORE1 SCORE2 SCORE3; 

   do i = 2 to 4;      score = dum[i–1]; VISIT=i–1; output;       end; 

   drop SCORE1–SCORE3 i;  run; 

proc sort data=sim.ana;  by _imputation_ ID descending VISIT ; run; 

proc mixed data=sim.ana covtest noitprint noprofile noinfo noclprint; 

   by _imputation_; 

   class id VISIT GROUP; 

   model score = SCORE0 VISIT GROUP VISIT*GROUP /s covb; 

   random  intercept /subject=ID; 

   ods output solutionF=sim.sol covb=sim.covb; 

run;  

data sim.sol(type=EST); set sim.sol;   

   if effect='visit' and visit=1 then effect='visit1'; 

   if effect='visit' and visit=2 then effect='visit2'; 

   if effect='visit' and visit=3 then delete; 

   if effect='group' and group=0 then effect='group0'; 
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   if effect='group' and group=1 then delete; 

   if effect='visit*group' then do; 

      if visit=1 and group=0 then effect='v1_g0'; else 

      if visit=2 and group=0 then effect='v2_g0'; else delete; 

      end;  run; 

data sim.covb(type=covb); set sim.covb;   

   if effect='visit' and visit=1 then effect='visit1'; 

   if effect='visit' and visit=2 then effect='visit2'; 

   if effect='visit' and visit=3 then delete; 

   if effect='group' and group=0 then effect='group0'; 

   if effect='group' and group=1 then delete; 

   if effect='visit*group' then do; 

      if visit=1 and group=0 then effect='v1_g0'; else 

      if visit=2 and group=0 then effect='v2_g0'; else delete; 

      end;   

   drop col5 col7 col9 col11–col13; 

   rename col6=Col5 col8=Col6 col10=Col7; 

   if row=6 then row=5;  if row=8 then row=6; if row=10 then row=7; 

run; 

 

proc mianalyze parms=sim.sol covb(effectvar=rowcol)=sim.covb; 

   modeleffects intercept score0 visit1 visit2 group0 v1_g0 v2_g0; 
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   Group: test –group0–v1_g0, –group0–v2_g0, –group0; 

run; 

 

4. The SAS code for the analysis by MI and GEE is: 

proc genmod data=sim.ana ; by _imputation_; 

   class ID VISIT GROUP; 

   model score = SCORE0 VISIT GROUP VISIT*GROUP /covb; 

   repeated subject=ID /type=exch; 

   ods output ParameterEstimates=sim.sol Covb=sim.covb ParmInfo=sim.info; 

run; 

data sim.sol;  set sim.sol; 

   if parameter='visit' and level1=1 then parameter='visit1'; 

   if parameter='visit' and level1=2 then parameter='visit2'; 

   if parameter='visit' and level1=3 then delete; 

   if parameter='group' and level1=0 then parameter='group0'; 

   if parameter='group' and level1=1 then delete; 

   if parameter='visit*group' then do; 

      if level1=1 and level2=0 then parameter='v1_g0'; else 

      if level1=2 and level2=0 then parameter='v2_g0'; else delete; 

      end;  run; 

data sim.covb(type=covb); set sim.covb; 

   rename Prm6=Prm5 Prm8=Prm6 Prm10=Prm7; 
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   if RowName='Prm6' then RowName='Prm5';  

   if RowName='Prm8'  then RowName='Prm6';  

   if RowName='Prm10' then RowName='Prm7'; run; 

data sim.info;  set sim.info; 

   if effect='visit' and visit=1 then effect='visit1'; 

   if effect='visit' and visit=2 then effect='visit2'; 

   if effect='visit' and visit=3 then delete; 

   if effect='group' and group=0 then effect='group0'; 

   if effect='group' and group=1 then delete; 

   if effect='visit*group' then do; 

      if visit=1 and group=0 then effect='v1_g0'; else 

      if visit=2 and group=0 then effect='v2_g0'; else delete; 

      end;  

   if Parameter='Prm6' then Parameter='Prm5';  

   if Parameter='Prm8' then Parameter='Prm6';  

   if Parameter='Prm10' then Parameter='Prm7'; run; 

 

proc mianalyze parms=sim.sol covb=sim.covb parminfo=sim.info; 

   modeleffects intercept SCORE0 VISIT1 VISIT2 GROUP0 v1_g0 v2_g0; 

   Group: test –group0–v1_g0, –group0–v2_g0, –group0; 

run; 
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APPENDIX B: POWER ANALYSES 

We aim to determine the power of detecting a treatment effect of size 0
tθ  at visit t  

with a sample size of n  and a maximum false positive error rate of α  under Model (3). In 

the sequel, we concern the testing of  

0:0 =βtKH  against 0: ttA KH θβ =  

where tK  is the t th row of the matrix 

















0010000
1010000
0110000

. 

Estimate of β  may be obtained by using GEE, denoted by GEEβ̂ , and linear MEM, 

denoted by MEMβ̂ . 

When there are no missing values, GEEβ̂  asymptotically follows ),( 1
ββ Σ−nN  

where  

)( 1
1

1
1 TXVXE −−=Σβ  

(Tu et al., 2007). )( 1
1

1
TXVXE −  can be easily evaluated with V  known, )1,0(~10 Ny  and 

)2/1,1(~1 Bing . Then, the power can be calculated as 

 )1(1 1)(2
1

αχ −−− pF c
 (4) 

where ααχ
−=− 1)( 1)0(2

1
pF ,

)(2 ca
F
χ

 represents the cumulative distribution function of a 2χ  

distribution with a  degrees of freedom and noncentrality parameter c , and 

120 )()( −Σ= T
ttt KKnc βθ . With 200=n  and 10

1 =θ , we have 8=Σ T
tt KK β , 25=c  and 



26 
 

power = 0.9988. With 200=n  and 5.00
2 =θ , we have 8=Σ T

tt KK β , 25.6=c  and power = 

0.7054. On the other hand, MEMβ̂  asymptotically follows ),( 1
ββ Σ−nN  again. Therefore, 

the power of using linear MEM is identical to that of using GEE. 

 When missing values are MCAR, let itr  be 1 if ity  is observed and 0 if otherwise. 

Then, with iR  = )( itrdiag  and 32IAi = , GEEβ̂  asymptotically follows ),( 1
ββ Σ−nN  but 

now  

11 −− Σ=Σ BB Uβ  

where )( 1
1

111
TXARXEB −=  and )( 1

1
111

1
11

TXAVRRAXEU
−−=Σ  (Tu et al., 2007). Again, 

with V  known, )1,0(~10 Ny , )2/1,1(~1 Bing  and )1,1(~11 mpBinr − , both B  and UΣ  

can be computed. Then, the power can be calculated as in (4). With 200=n , 3.0=mp  and 

10
1 =θ , we have 43.11=Σ T

tt KK β , 5.17=c  and power = 0.9869. With 200=n , and 

5.00
2 =θ , we have 43.11=Σ T

tt KK β , 375.4=c  and power = 0.5524. On the other hand, as 

in the case with no missing values, MEMβ̂  asymptotically follows ),( 1
ββ Σ−nN  again and 

thus use of linear MEM results in the same power as in the use of GEE. 
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Table 1. Comparisons of the bias of using last observation carried forward (LOCF) and multiple imputation (MI) on mixed effects model 
(MEM) and generalized estimating equations (GEE) under various missing value scenarios 

 

Treatment effect at Visit 1 
( 11 =θ )  

Treatment effect at Visit 2 
( 5.02 =θ )  

Treatment effect at Visit 3 
( 03 =θ ) 

 Mean estimate SE** Bias  Mean estimate SE** Bias  Mean estimate SE** Bias 

Complete Dataset            
MEM 1.0044 0.2003 0.0044  0.5033 0.2003 0.0033  –0.0011 0.2003 –0.0011 
GEE 1.0044 0.1992 0.0044  0.5033 0.1989 0.0033  –0.0011 0.1989 –0.0011 

MCAR Dataset*            
MEM 1.0008 0.2297 0.0008  0.4979 0.2297 –0.0021  –0.0007 0.2297 –0.0007 
GEE 1.0007 0.2279 0.0007  0.4978 0.2277 –0.0022  –0.0008 0.2275 –0.0008 
LOCF + MEM 0.7032 0.1970 –0.2968  0.5762 0.1970 0.0762  0.1705 0.1970 0.1705 
LOCF + GEE 0.7032 0.1730 –0.2968  0.5762 0.2088 0.0762  0.1705 0.2035 0.1705 
MI + MEM 0.7482 0.2310 –0.2518  0.4317 0.2292 –0.0683  0.1054 0.2295 0.1054 
MI + GEE 0.7482 0.2297 –0.2518  0.4317 0.2278 –0.0683  0.1054 0.2282 0.1054 

MAR Dataset*            
MEM 1.0013 0.2289 0.0013  0.5063 0.2111 0.0063  0.0012 0.2219 0.0012 
GEE 1.0019 0.2277 0.0019  0.5021 0.2090 0.0021  0.0031 0.2200 0.0031 
LOCF + MEM 0.7005 0.2010 –0.2995  0.6674 0.2010 0.1674  0.1280 0.2010 0.1280 
LOCF + GEE 0.7005 0.1728 –0.2995  0.6674 0.2142 0.1674  0.1280 0.2094 0.1280 
MI + MEM 0.7714 0.2296 –0.2286  0.4871 0.2165 –0.0129  0.0723 0.2246 0.0723 
MI + GEE 0.7714 0.2282 –0.2286  0.4871 0.2151 –0.0129  0.0723 0.2232 0.0723 

MNAR Dataset*            
MEM 0.6431 0.1839 –0.3569  0.3024 0.1827 –0.1976  –0.0346 0.1822 –0.0346 
GEE 0.6464 0.1814 –0.3536  0.3023 0.1796 –0.1977  –0.0380 0.1793 –0.0380 
LOCF + MEM 0.4864 0.1563 –0.5136  0.1744 0.1564 –0.3256  –0.0382 0.1564 –0.0382 
LOCF + GEE 0.4864 0.1391 –0.5136  0.1744 0.1655 –0.3256  –0.0382 0.1604 –0.0382 
MI + MEM 0.4528 0.1831 –0.5472  0.2325 0.1811 –0.2675  0.0072 0.1797 0.0072 
MI + GEE 0.4528 0.1822 –0.5472  0.2325 0.1801 –0.2675  0.0072 0.1788 0.0072 

*MCAR, missing completely at random; MAR, missing at random; MNAR, missing not at random. 
**SE, square root of the mean estimated variance over all generations of data.  
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Table 2. Comparisons of the mean squared error (MSE) and the 95% coverage of using last observation carried forward (LOCF) and 
multiple imputation (MI) on mixed effects model (MEM) and generalized estimating equations (GEE) under various missing value 
scenarios 

 

Treatment effect at Visit 1 
( 11 =θ )  

Treatment effect at Visit 2 
( 5.02 =θ )  

Treatment effect at Visit 3 
( 03 =θ ) 

 MSE (*100) Ratio** 95% coverage  MSE (*100) Ratio** 95% coverage  MSE (*100) Ratio** 95% coverage 

Complete Dataset            

MEM 3.6191 1.11 95.80%  3.8061 1.05 94.90%  3.9488 1.02 95.40% 
GEE 3.6191 1.10 95.60%  3.8061 1.04 94.70%  3.9488 1.00 95.00% 

MCAR Dataset*            

MEM 4.9359 1.07 95.30%  5.1385 1.03 94.50%  5.0962 1.03 94.90% 
GEE 4.9453 1.05 95.00%  5.1340 1.01 94.50%  5.1000 1.01 94.70% 
LOCF + MEM 11.6432 1.37 70.30%  5.2797 0.83 91.00%  7.1774 0.91 85.10% 
LOCF + GEE 11.6432 1.06 58.60%  5.2797 0.93 92.60%  7.1774 0.97 86.30% 
MI + MEM 9.4530 1.71 87.20%  3.8647 1.54 97.20%  4.4604 1.57 96.90% 
MI + GEE 9.4530 1.69 86.60%  3.8647 1.53 97.20%  4.4604 1.55 96.80% 

MAR Dataset*            

MEM 4.6790 1.12 96.00%  4.3223 1.03 94.90%  4.8731 1.01 95.10% 
GEE 4.6944 1.10 95.60%  4.3023 1.01 94.60%  4.8848 0.99 94.60% 
LOCF + MEM 11.6051 1.53 71.80%  7.2085 0.92 85.20%  6.0139 0.92 89.10% 
LOCF + GEE 11.6051 1.13 58.60%  7.2085 1.04 87.80%  6.0139 1.00 90.70% 
MI + MEM 8.3919 1.66 89.30%  3.9587 1.19 96.80%  3.9990 1.45 97.60% 
MI + GEE 8.3919 1.64 89.10%  3.9587 1.17 96.70%  3.9990 1.43 97.60% 

MNAR Dataset*            

MEM 15.8586 1.08 49.10%  7.1624 1.02 80.70%  3.3981 1.01 94.40% 
GEE 15.6176 1.06 48.80%  7.1599 0.99 79.80%  3.4135 0.98 93.40% 
LOCF + MEM 28.0895 1.43 6.50%  13.5904 0.82 46.50%  3.3133 0.77 91.10% 
LOCF + GEE 28.0895 1.13 3.40%  13.5904 0.92 50.10%  3.3133 0.81 91.40% 
MI + MEM 31.6730 1.93 9.40%  9.0015 1.77 72.10%  1.9354 1.67 98.50% 
MI + GEE 31.6730 1.91 9.30%  9.0015 1.75 71.50%  1.9354 1.65 98.50% 

*MCAR, missing completely at random; MAR, missing at random; MNAR, missing not at random. 
**Ratio of the mean estimated variance by each method to the corresponding sampling variance. 



34 
 

Table 3. Estimating gender effects on physical function in patients with type 2 diabetes mellitus who practiced qigong 
 Female effect at Visit 1  Female effect at Visit 2  Female effect at Visit 3 

 Estimate** 
Standard 

error p-value  Estimate** 
Standard 

error p-value  Estimate** 
Standard 

error p-value 

Raw Dataset            

MEM 3.0628 1.7868 0.090  4.3170 1.7868 0.018  3.2048 1.7975 0.078 
GEE 3.0626 1.6966 0.071  4.3168 1.7914 0.016  3.2024 1.8043 0.076 

MCAR Dataset*            

MEM 3.4870 1.9215 0.074  4.3178 1.8785 0.025  3.6058 1.9063 0.063 
GEE 3.4411 1.7276 0.046  4.3347 1.8447 0.019  3.5857 1.8418 0.052 
LOCF + MEM 4.1251 1.6658 0.015  4.0526 1.6658 0.017  4.0204 1.6658 0.018 
LOCF + GEE 4.1251 1.4786 0.005  4.0526 1.7760 0.022  4.0204 1.7189 0.019 
MI + MEM 2.7812 1.9229 0.150  3.6419 1.8846 0.055  2.8869 2.0863 0.173 
MI + GEE 2.7812 1.8737 0.140  3.6419 1.8344 0.048  2.8869 2.0411 0.164 

MAR Dataset*            

MEM 2.3189 2.0224 0.256  5.0998 2.1203 0.019  2.6264 2.2248 0.243 
GEE 2.3155 1.9786 0.242  5.1311 2.0550 0.013  2.4232 2.1134 0.252 
LOCF + MEM 1.4898 2.0222 0.463  1.9871 2.0451 0.334  1.4905 2.0451 0.468 
LOCF + GEE 1.4899 1.8861 0.430  1.9890 1.9037 0.296  1.4924 2.0128 0.458 
MI + MEM 0.9268 2.0234 0.648  3.0100 2.1645 0.170  2.4564 2.1740 0.264 
MI + GEE 0.9268 1.9731 0.639  3.0100 2.1175 0.161  2.4564 2.1272 0.254 

MNAR Dataset*            

MEM 2.3996 1.4315 0.098  2.8895 1.4515 0.051  0.8918 1.4567 0.543 
GEE 2.4161 1.3889 0.082  2.8953 1.3860 0.037  0.8893 1.4136 0.529 
LOCF + MEM 3.1927 1.3997 0.025  1.5261 1.3997 0.278  0.4391 1.3997 0.754 
LOCF + GEE 3.1927 1.4243 0.025  1.5261 1.3386 0.254  0.4391 1.3544 0.746 
MI + MEM 2.3577 1.5284 0.129  2.9356 1.3302 0.027  1.3167 1.5105 0.387 
MI + GEE 2.3577 1.4949 0.121  2.9356 1.2914 0.023  1.3167 1.4766 0.376 

*MCAR, missing completely at random; MAR, missing at random; MNAR, missing not at random. 
**Females over males. 
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