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Control Design of Uncertain Quantum Systems
With Fuzzy Estimators

Chunlin Chen, Member, IEEE, Daoyi Dong, Senior Member, IEEE, James Lam, Fellow, IEEE,
Jian Chu, and Tzyh-Jong Tarn, Life Fellow, IEEE

Abstract—An approach of control design using fuzzy estimators
(FEs) is proposed for quantum systems with uncertainties. Two
types of quantum control problems are considered: 1) control of
a pure-state quantum system in the presence of uncertainties and
2) control design of quantum systems with initial mixed states and
uncertainties. For the first type of tasks, a partial feedback con-
trol scheme with an FE is presented to design controllers. In this
scheme, an FE is trained to estimate the quantum state for feedback
control of a quantum system, and controlled projective measure-
ment is used to assist in controlling the system. For the second type
of quantum control tasks, a probabilistic fuzzy estimator (PFE)
is trained to estimate the quantum state for control design of a
quantum system with an initial mixed state, and a corresponding
control algorithm is proposed to design a control law that drives the
system from the mixed state to a target pure state. Two examples
of two-spin- 1

2 systems are also presented and analyzed to demon-
strate the process of control design and potential applications of
the proposed approach.

Index Terms—Fuzzy estimators (FEs), partial feedback, proba-
bilistic fuzzy logic, quantum control.

NOMENCLATURE

|ψ〉 State vector (quantum state).
̂|ψ〉 Estimated quantum state.
|ψ〉 Output quantum state.
|φ〉 Quantum eigenstate.
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a∗ Complex conjugate of a.
AT Transpose of A.
A† Adjoint of A.
tr(A) Trace of A.
〈ψ| Adjoint of |ψ〉.
〈φ|ψ〉 Inner product of |φ〉 and |ψ〉.
ρ Density operator.
ρ̂ Estimated density operator.
ρ Output density operator.
U Unitary operator.
{ai}N

i=1 Set {a1 , . . . , aN }.
(ai)N

i=1 Column vector (a1 , . . . , aN )T .
‖A‖ Norm of A.
h̄ Reduced Planck constant.
R Set of real numbers.
M Projective measurement.
δθ Uncertainty of θ.
F Fuzzy set.
˜F Probabilistic fuzzy set.
m Fuzzy membership.
R Rotation operator for a (probabilistic) fuzzy set.
ι ι =

√
−1.

p Probability.
H Hamiltonian operator.
E Set of events.
FE Fuzzy estimator.
PFE Probabilistic fuzzy estimator.

I. INTRODUCTION

R ECENT progress in theory and experiments has shown
that quantum information technology has many advan-

tages, such as speeding up of large number factorization and
enhancing secret communication, over traditional information
technology [1]. However, practical applications of quantum in-
formation technology are still confronted with some important
technical difficulties such as the control of quantum systems
in the presence of uncertainties. Developing effective control
theory and methods [2] has been recognized as a solution to
such difficulties. Some tools (e.g., optimal control and feed-
back control) from classical control theory have been used to
analyze quantum control problems, and some results on quan-
tum control have been presented in [3]–[19] (a comprehensive
list can be found in the recent survey [2]). Even with these re-
sults, quantum control is still in its infancy, and more effort is
necessary to develop a systematic quantum control theory. In
practical applications, it is unavoidable that there exist all kinds
of uncertainties for fragile quantum control systems. Robustness
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has been recognized as an important aspect for practical quan-
tum information technology [20], and several methods have
been proposed to deal with uncertainties in quantum systems.
For example, in [13] an H∞ controller synthesis problem for
a class of quantum linear stochastic systems in the Heisenberg
picture has been formulated and solved. In [21] and [22], a
sliding mode control approach has been proposed to deal with
uncertainties in the system Hamiltonian. In this paper, we pro-
pose a control design approach using FEs for a quantum system
with uncertainties and present two algorithms for two types of
quantum control problems. A common feature of the two con-
trol algorithms is that we use an FE to assist in control design
of quantum systems. The basic motivation to use FEs for the
control of uncertain quantum systems is twofold: 1) There exist
similar representations and operators between quantum systems
and fuzzy systems [23], [24]. It is possible to use a fuzzy system
to simulate the evolution process of a quantum system. 2) Most
control methods have difficulties to acquire feedback informa-
tion without destroying the states of the quantum systems. An
FE can use the information from the fuzzy system to provide an
estimated feedback signal to guide the quantum control process.
In particular, we first present a partial feedback control scheme
using an FE for the control of pure-state quantum systems with
uncertainties and then propose a control algorithm to drive a
quantum system from an initial mixed state to a target pure state
where a PFE [25] is used to simulate the mixed state.

For a pure-state quantum control system, its dynamics can
be described by a bilinear equation (i.e., Schrödinger equation).
Many existing results on quantum control focus on this class of
quantum systems [2]. An important issue is the controllability
of quantum systems [2]. For a controllable quantum system, we
may design a control law to drive the system from a given ini-
tial state to a target quantum state. A straightforward approach
is open-loop coherent control, where we may design a control
Hamiltonian to accomplish a control task. Open-loop coherent
control has been widely used to control quantum optical and
chemical molecular systems [4]. However, it is usually difficult
to design an effective control algorithm for quantum systems
with uncertainties. As we know, in classical control theory,
feedback is the most important control strategy to deal with
uncertainties. In a feedback control system, the control output
signal is measured and then fed back for the controller design.
Although feedback control theory has been very mature for clas-
sical control systems with noises and uncertainties, the feedback
control theory at the quantum level is still in its infancy, and only
a few classical results can be directly extended to quantum sys-
tems [3], [6], [10]. The major challenge of designing feedback
control schemes for quantum systems is the proper acquisi-
tion of the output signal for the controller design. In quantum
feedback control, the feedback strategy may be classical feed-
back involving measurement (where the controller is a classical
controller) or coherent quantum feedback without measurement
(i.e., the controller is also a quantum system [13], [26], [27]).
Although coherent quantum feedback [12], [13] can accomplish
tasks such as entanglement transfer that are not possible using
classical feedback, it is difficult to implement in most practical
applications. Hence, feedback with measurement is the major

approach for quantum feedback control problems. Many ap-
proaches have been proposed for quantum feedback control in-
volving measurement, such as Markovian quantum feedback [3]
and Bayesian quantum feedback [10], [11], which have also
been applied to atomic physics, quantum optics, quantum er-
ror correction [28], and other quantum technologies. Quantum
measurement in feedback control will unavoidably destroy the
coherence in the feedback loop and alter the quantum system’s
state. One of the most challenging open problems for quantum
feedback control is how to get the feedback information prop-
erly. In this paper, we propose a feedback control scheme using
a controlled discontinuous measurement and a quantum state
estimator which is based on fuzzy logic. Usually, the output of
the quantum state estimator is fed back for the control design.
However, when the estimated state is an almost eigenstate (hav-
ing a high fidelity with an eigenstate), a quantum measurement
will be implemented on the quantum system, where the mea-
surement result is used to construct the controller and regulate
the estimator. The feedback information is partially from the
controlled quantum system and partially from the state estima-
tor; therefore, this control scheme is called the partial feedback
control [24].

In the first type of quantum control problems, we assume
that the initial state is a pure state which can be represented by
a complex unit vector (quantum wavefunction). In theory, we
know all the information of the quantum state from its wave-
function. However, the initial states of most practical quantum
systems are not in pure states. Their states cannot be represented
by unit state vectors and are called mixed states. For a mixed
state, we have incomplete information, and a density operator is
necessary to describe the state [29]. An initial mixed state can
be looked as a case that there exist uncertainties in the initial
state since we have no complete information about the system’s
state. For such a quantum system with an initial mixed state,
the authors of [30] have proven that open-loop coherent control
cannot usually deal with the uncertainties in the initial state.
In [8], a feedback stabilization strategy was presented which
was based on continuous weak measurement to accomplish the
control task to approximately drive the quantum system from
an initial mixed state to an eigenstate. In [31], an incoherent
control scheme was proposed to deal with the uncertainties in
initial states, where a measurement operation is used to drive the
system from a mixed state to a pure state, and then, an optimal
control is applied to transform the pure state to a target state. For
most quantum systems, it is difficult to implement continuous
weak measurement, which limits the applications of the feed-
back stabilization strategy based on continuous measurement.
The incoherent control strategy in [31] is easy to implement.
However, it cannot deal with other uncertainties in the control
process. In this paper, we observe a corresponding relationship
between a mixed quantum state and probabilistic fuzzy logic and
propose an approach of control design using a PFE for quantum
systems with uncertainties and initial mixed states.

This paper is organized as follows. The problem formulation
is presented in Section II. In Section III, a partial feedback con-
trol scheme using an FE is proposed for the control problem of
a pure-state quantum system with uncertainties. In particular,
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some corresponding relationships between the quantum state
and fuzzy logic are established, and a control algorithm is
proposed. Section IV presents a control design approach which
is based on a PFE to drive a quantum system from an initial
mixed state to a target pure state in the presence of uncer-
tainties. Simulated examples are presented to demonstrate the
corresponding control algorithm. Concluding remarks are given
in Section V.

II. PROBLEM FORMULATION

In this paper, we consider finite-dimensional (assumed to
be N -level) quantum systems. The assumption of finite-
dimensional quantum systems is an appropriate approximation
in many practical situations, such as quantum bit (qubit) sys-
tems. Let us denote the eigenstates of the free Hamiltonian H0
of an N -level quantum system as D = {|φi〉}N

i=1 . An evolving
state |ψ(t)〉 of the controlled system can be expanded in terms
of the eigenstates in the set D

|ψ(t)〉 =
N

∑

i=1

ci(t)|φi〉 (1)

where complex numbers ct(t) satisfy
∑N

i=1 |ci(t)|2 = 1. In-
troducing a control u(t) ∈ L2(R) acting on the system via
a time-independent interaction Hamiltonian HI and denoting
|ψ(t = 0)〉 as |ψ0〉, C(t) = (ci(t))N

i=1 evolves according to the
Schrödinger equation [32]

ιh̄Ċ(t) = [A + u(t)B]C(t), C(t = 0) = C0 (2)

where ι =
√
−1, C0 = (c0i)N

i=1 , c0i = 〈φi |ψ0〉,
∑N

i=1 |c0i |2 =
1, h̄ is the reduced Planck constant, and the matrices A
and B correspond to H0 and HI , respectively. We assume
that the A matrix is diagonal and the B matrix is Hermi-
tian [32]. In order to avoid trivial control problems, we as-
sume [A,B] ≡ AB − BA 
= 0. Equation (2) describes the evo-
lution of a finite-dimensional control system. The propagator
U(t1 → t2) is a unitary operator such that for any state |ψ(t1)〉
the state |ψ(t2)〉 = U(t1 → t2)|ψ(t1)〉 is the solution at time
t = t2 of (1) and (2) with the initial condition |ψ(t1)〉 at time
t = t1 [32]. Sometimes, U(t1 → t2) is also simplified as U(t),
t ∈ [t1 , t2 ], if the evolution time t2 − t1 can be neglected when
handling these problems.

To control a quantum system from an initial state |ψinitial〉 to
a desired target state |ψtarget〉, we need to find a control u(t) ∈
L2(R), t ∈ [0, T ], to constitute a desired propagator U(t). For
the discrete case, the control input u(t) is a control sequence
of {u(1), u(2), . . . , u(k)}, where k is an integer and represents
the number of control steps. u(t) can be applied to control
the quantum system toward |ψtarget〉 without measuring the
controlled quantum system during the control process. This class
of control methods is called the open-loop coherent control since
it does not involve measurement and feedback.

Fig. 1 shows an example of open-loop control of a two-
spin- 1

2 system, where |ψtarget〉 − |ψinitial〉 means that we deter-
mine the control input by comparing the two quantum states. A
spin- 1

2 system may be used to constitute a quantum bit (qubit) for

Fig. 1. Open-loop control of a two-spin- 1
2 quantum system.

quantum information industry. It has two eigenstates (| ↑〉 and
| ↓〉), and its quantum state can be manipulated using an elec-
tromagnetic field. The two-spin- 1

2 system, as shown in Fig. 1, is
represented in terms of Kronecker’s product of the single-spin
states as

D = {|φi〉}4
i=1 = {| ↓〉| ↓〉, | ↓〉| ↑〉, | ↑〉| ↓〉, | ↑〉| ↑〉}

|ψ〉 =
4

∑

i=1

ci(t)|φi〉.

As shown in Fig. 1, the controller is designed to actuate the mag-
netic field to drive the system to a desired target state. Generally,
open-loop control is effective for some simple quantum control
problems. However, when there are unpredictable noises from
the environments (see Fig. 1), the control performance will be
dramatically deteriorated and the controlled system may even
diverge from the desired track. To deal with unavoidable un-
certainties, feedback control (closed-loop control) should be
adopted instead of open-loop control. In feedback control (ex-
cept coherent feedback), it is necessary to acquire feedback
information by measurement. The measurement will affect or
even destroy the measured quantum states. To reduce the pos-
sible negative effect of quantum measurement, we use a virtual
fuzzy system to simulate the quantum control process to esti-
mate the state of the controlled quantum system. We state the
first type of quantum control problems as follows

Control Problem I: For a pure-state quantum system, find
a control law using an FE to drive the quantum system from a
given initial state to a target state in the presence of uncertainties.

Further, we will consider the quantum system whose initial
state is a mixed state. For a mixed state, it is necessary to employ
a density operator ρ to describe its state. A density operator ρ is
positive and has trace equal to 1. We can usually define a density
operator ρ for a mixed state as follows [1]:

ρ ≡
∑

j

pj |ψj 〉〈ψj | (3)

where 〈ψj | = (|ψj 〉)†,
∑

j pj = 1, and the operation (·)† refers
to the adjoint. That is, we have no exact information for the
mixed state. We just know that the mixed state can be looked as
a mixture |ψj 〉 (j = 1, 2, . . .) with respective probabilities pj .
For a pure state |ψj 〉, its density operator corresponds to ρ =
|ψj 〉〈ψj |. We observe that there are some similar relationships
between the mixed state ρ and the probabilistic fuzzy logic [25].
Hence, it is possible to simulate a quantum control system with
an initial mixed state using a probabilistic fuzzy system. Hence,
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we can state the second type of quantum control problems as
follows.

Control Problem II: For a quantum system with an initial
mixed state, find a control law using a PFE to drive the quantum
system from an initial mixed state ρ to a target pure state in the
presence of uncertainties.

III. CONTROL PROBLEM I: PARTIAL FEEDBACK CONTROL

WITH A FUZZY ESTIMATOR

A systematic partial feedback control scheme is proposed in
this section to control a quantum system from an initial quantum
state to a desired state with the help of an FE. Before the system
design and the control algorithm are presented, the fuzzy logic
and its relationship to a quantum state are briefly introduced.
Then, a method is presented to achieve the translation between
quantum operators and fuzzy operators. Finally, a numerical
example of a two-spin- 1

2 system is demonstrated to test the
control algorithm.

A. Fuzzy Logic

Fuzzy logic is based on the theory of fuzzy set whose elements
have different degrees of membership [33], [34]. An ordinary
fuzzy set is a pair (F,m), where m : F → [0, 1]. For each x ∈
F , m(x) is the grade of membership of x:

x ∈ (F,m) ⇔ x ∈ F and m(x) 
= 0. (4)

If F = {x1 , x2 , . . . , xN }, the fuzzy set (F,m) can be denoted
as

(F,m) =
m(x1)

x1
+

m(x2)
x2

+ · · · + m(xN )
xN

=
N

∑

i=1

m(xi)
xi

.

(5)
It is clear that if the distribution of a fuzzy set m =

{m(x1),m(x2), . . . , m(xN )} is normalized, (5) has the sim-
ilar representation structure of (1). The unitary operator U(t)
on a controlled quantum system can be simulated using the ro-
tation operator on a fuzzy set [23]. Hence, the analog between
quantum mechanical systems and fuzzy logic systems makes
it suitable to simulate the evolution of quantum systems using
fuzzy systems. We define a rotation operation on a fuzzy set as
follows.

Definition 1 (Rotation Operation on Fuzzy Set): The rotation
of a fuzzy set F is defined using a rotation operator R as follows:

R(F ) = R(F,m) = (F,m′) (6)

where F = {xi}N
i=1 , and m = {m(xi)}N

i=1 . Let

α =
(
√

m(xi)eιϕi

)N

i=1

β = R ◦ α = (βi)N
i=1

where eιϕi can be used to simulate the phase in quantum states,
and the symbol ◦ represents that the vector α is multiplied by
the rotation operator R and is transformed to β. Then

m′ = {m′(xi)}N
i=1 = {βiβ

∗
i }N

i=1 .

Fig. 2. Partial feedback control structure of pure-state quantum systems using
an FE.

B. System Design and Control Algorithm

The partial feedback control scheme for pure-state quantum
systems is shown in Fig. 2. In this scheme, an FE is designed to
simulate and estimate the controlled quantum system. That is to
say, the FE is initialized with the initial state of the controlled
quantum system. The FE also runs according to the series of
quantum operators on the quantum system. Hence, the FE can
track the quantum system and provide an output with corre-
sponding information to estimate the state of the real quantum
system to produce a feedback signal. Usually, the estimated
state ̂|ψ(t)〉 is fed back to affect the controller for each con-
trol step. However, when the estimated quantum state is near
to an eigenstate, a projective measurement M (with the same
basis as that of H0) will be triggered for the controlled quantum
system, and the measurement results |ψ(t)〉 will be fed back to
construct a controller to drive the quantum system. These mea-
surement results are also used to regulate the FE to eliminate
the accumulated simulation errors.

Control Algorithm (Partial feedback control using an FE)
1) Initialize the controlled quantum system with an initial

state |ψ(0)〉, C0 , and a desired target state |ψtarget〉,
Ctarget ; initialize the FE with a fuzzy set F (0) accord-
ing to |ψ(0)〉.

2) At time t, the controller gives a suitable control corre-
sponding to a quantum operator U(t). Its counterpart of
rotation operator for the FE is R(t). Then, drive the quan-
tum system with U(t). At the same time, apply the fuzzy
operator R(t) to the FE.

3) Then, the FE gives an estimation ̂|ψ(t)〉 of the controlled
quantum state where

̂C(t) = β = (βi)N
i=1 .

4) Enable the projective measurement if ̂|ψ(t)〉 is an almost
eigenstate, i.e.,

∃i ∈ {1, 2, . . . , N}, |ψ(t)〉 = |φi〉, ‖C(t) − β‖ < ε

where C(t) = (0, 0, . . . , 0, 1, 0, . . . , 0)T with the ith com-
ponent equal to 1, and ε > 0 is a real number. ‖ · ‖
is a norm where for a vector C = (ci)N

i=1 , ‖C‖ =
√

∑N
i=1 c∗i ci and for a matrix A, ‖A‖ =

√

tr(A∗A).
Then, the controlled quantum system will collapse to



824 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 5, OCTOBER 2012

an eigenstate |ψ(t)〉 = |φi ′ 〉, i′ ∈ {1, 2, . . . , N}, C(t) =
(0, 0, . . . , 0, 1, 0, . . . , 0)T with the i′th component equal
to 1. We feed it back to the control system and regulate
the FE with C(t) to eliminate the accumulated errors;

otherwise, feed ̂|ψ(t)〉 back instead.
5) The control algorithm ends if the quantum state to

be fed back is very near to the desired target state,
i.e., ‖C(t) − Ctarget‖ < ε for the measured feedback or

‖ ̂C(t) − Ctarget‖ < ε for the estimated feedback, or go to
step 2).

Remark 1: The proposed partial feedback quantum control
algorithm has two main features. 1) The estimator is designed
with a fuzzy system which has a very similar representation as
that of a quantum system. This fuzzy system can simulate the
controlled quantum system very well in a natural way. 2) In step
“4,” when the estimated state ̂|ψ(t)〉 is an almost eigenstate, the
projective measurement will be implemented and the quantum
state will collapse to an eigenstate |ψ(t)〉. Although |ψ(t)〉 will
be the expected eigenstate with a probability near to 1, it may
also have a small probability of failure. Here, the reason that
we use a quantum measurement instead of feeding back an
estimated eigenstate directly is to regulate the estimator to keep
tracking the real system better. Otherwise, the simulation errors
of the FE will accumulate along with the control process due to
unknown disturbances.

Remark 2: It is clear that the proposed partial feedback con-
trol algorithm is a hybrid approach of two control schemes: One
is the typical incoherent control [19] using the feedback signal
by quantum measurement, and the other is the coherent control
using the feedback signal from a classical estimator. We define
the quantum control scheme that is presented in this paper as
partial feedback control because the feedback signals are par-
tially from the quantum system and partially from the classical
estimator. The translation between the quantum control opera-
tors and the classical fuzzy operators plays an important role in
this control approach.

C. Operator Translation

In order to provide real-time state estimation using an FE
for the control of a quantum system, it is important to get an
accurate mapping from the allowed quantum control operators to
the counterpart fuzzy operators. For system (2), the propagator
U(t → t′) is a unitary operator that drives a state |ψ(t)〉 to the
state |ψ(t′)〉 through the controller, where

|ψ(t′)〉 = U(t → t′)|ψ(t)〉.
To simulate this process, the fuzzy rotation operation is uti-

lized, and it can be formulated as

F (t′) = R(t → t′)F (t).

Since F(t) (or F (t)) has the same representation structure as
|ψ(t)〉, we let

R(t → t′) = U(t → t′).

Then as long as U(t → t′) is known, we can get an accurate
mapping from U(t → t′) to R(t → t′). Otherwise, a training

process should be carried out before controlling the quantum
system. The training of quantum/fuzzy operator mapping may
be implemented by an initial quantum control model with adap-
tation and learning from multiple real experiments. In this pa-
per, our interest on partial feedback control is from the control
strategy rather than quantum system modeling. Therefore, it is
assumed that the mapping of operator translation is known in
this paper. The training methods for operator translation will be
investigated in future work.

Remark 3: Even with the assumption that the operator trans-
lation is accurate, the fuzzy system may not be able to simulate
the controlled quantum system completely, because there are
unavoidable stochastic noises δ(t) at time t. There may exist
errors for the FE at each control step. Because of the unknown
noises (uncertainties), the quantum control operator and the
quantum state are not known exactly. Let us denote by δ|ψ(t)〉
the uncertainty of |ψ(t)〉 and by δU(t → t′) the uncertainty of
U(t → t′). Therefore, the quantum state evolution will be

|ψ(t′)〉 + δ|ψ(t′)〉
= (U(t → t′) + δU(t → t′))(|ψ(t)〉 + δ|ψ(t)〉). (7)

We assume that this control operator is still a unitary matrix.
For example, the Hamiltonian uncertainties in [21] and unitary
errors in [20] satisfy this assumption. By matrix and pertur-
bation theory [35], the norm of the uncertainty δ|ψ(t′)〉 can be
bounded using those of δ|ψ(t)〉 and δU(t → t′) by the following
relationship:

‖δ|ψ(t′)〉‖ ≤ ‖δ|ψ(t)〉‖ + ‖δU(t → t′)‖
+ ‖δ|ψ(t)〉‖‖U(t → t′)‖. (8)

Remark 4: In the proposed control scheme, we use an FE to
produce the feedback signal. The process of feedback informa-
tion acquisition does not destroy the state of the controlled quan-
tum system. When the estimated state is an almost eigenstate,
the projective measurement is triggered. From (8), we know that
the measurement process can eliminate the error in the state at
time t [i.e., ‖δ|ψ(t)〉‖ = 0 in (8)]. Compared with open-loop
control, the mechanism of dynamic partial feedback improves
the robustness of the control system. The following numeri-
cal examples will illustrate the robust performance. However, a
strict proof of the stability and robustness for the partial feed-
back control scheme remains open, which is related to specific
uncertainties, given control operations and permissible errors.

D. Numerical Example

To demonstrate the proposed approach, several numerical
experiments are carried out on a multispin- 1

2 system. For a two-
spin- 1

2 system, its state can be formulated as

|ψ(t)〉 = c1(t)| ↓〉| ↓〉 + c2(t)| ↓〉| ↑〉
+ c3(t)| ↑〉| ↓〉 + c4(t)| ↑〉| ↑〉

where ci(t) (i = 1, 2, 3, 4) are the complex numbers that satisfy

|c1(t)|2 + |c2(t)|2 + |c3(t)|2 + |c4(t)|2 = 1.
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Fig. 3. Experimental configuration of the partial feedback control using an
FE.

Denoting C(t) = (ci(t))4
i=1 , it evolves according to the

Schrödinger equation [32]:

ιh̄Ċ(t) = [A + u(t)B]C(t).

The translation of C(t) to C(t′) is determined by

C(t′) = e−
ι (A + u ( t )B )

h̄ C(t).

The unitary matrix

U(t) = e−
ι (A + u ( t )B )

h̄

drives the quantum system from C(t) to C(t′) by the control
u(t). For the specific simulation, we assume that the allowed
electromagnetic field controls can construct the following uni-
tary transformations:

U(θ(t)) = {Uk (θ(t))}, k = 1, 2, 3

U1(θ(t)) =

⎛

⎜

⎜

⎜

⎜

⎝

cos θ(t) − sin θ(t) 0 0

sin θ(t) cos θ(t) 0 0

0 0 ι/
√

2 1/
√

2

0 0 1/
√

2 ι/
√

2

⎞

⎟

⎟

⎟

⎟

⎠

U2(θ(t)) =

⎛

⎜

⎜

⎜

⎝

ι/
√

2 0 0 1/
√

2

0 cos θ(t) − sin θ(t) 0

0 sin θ(t) cos θ(t) 0

1/
√

2 0 0 ι/
√

2

⎞

⎟

⎟

⎟

⎠

U3(θ(t)) =

⎛

⎜

⎜

⎜

⎜

⎝

ι/
√

2 1/
√

2 0 0

1/
√

2 ι/
√

2 0 0

0 0 cos θ(t) − sin θ(t)

0 0 sin θ(t) cos θ(t)

⎞

⎟

⎟

⎟

⎟

⎠

where θ(t) = 0,±π
8 ,± π

4 . During the quantum control process,
there are unpredictable disturbances, i.e.,

U(θ′(t)) = U(θ(t)) + δU(t) = U(θ(t) + δθ(t)).

The demonstration of the experimental configuration is shown
in Fig. 3. The FE is implemented using a traditional computer.

Fig. 4. Control performance of the two-spin- 1
2 system from the initial state

C0 = (1, 0, 0, 0)T to the target state Ctarget = (0, 0, 1, 0)T .

During the control process, the output of the controller u(t)
activates the magnetic field to control the two-spin- 1

2 system.
At the same time, u(t) is transmitted to a corresponding fuzzy

operator and acts on the FE. When the estimated state ̂|ψ(t)〉
from the FE indicates that the quantum state is very near to an
eigenstate, the quantum measurement is triggered. For all the
simulated experiments in this section, the experimental settings
are as follows: The stochastic disturbances are a noise with a
uniform distribution on the interval [−10% θ(t), 10% θ(t)]; the
fuzzy set is initialized as α = C0 , R(t) = U(t); the threshold
of triggering quantum measurement is set as ε = 0.05.

In the first group of simulation experiments, the initial quan-
tum state is C0 = (1, 0, 0, 0)T , and the target quantum state
Ctarget = (0, 0, 1, 0)T . The control process using the proposed
approach is shown in Figs. 4 and 5. In Fig. 4, mj are the mem-
berships of the corresponding fuzzy set, |cj |2 are the proba-
bilities of quantum eigenstates of the controlled system using
the proposed partial feedback control, and |c′j |2 are the proba-
bilities of quantum eigenstates of the controlled system using
the open-loop control, where j = 1, 2, 3, 4. Fig. 4 demonstrates
that all the probability amplitudes converge to that of the target
state. Compared with the open-loop control method, the par-
tial feedback control that is presented in this paper performs
much better and is more robust to unpredictable noises with
the feedback information. To compare the control performance
more clearly, Fig. 5 shows the state distances of the controlled
quantum state to the target state. The state distance between two
quantum states with the same eigenstates |ψa〉 =

∑N
i=1 ca

i |φi〉
and |ψb〉 =

∑N
i=1 cb

i |φi〉 is defined as

Distab =
N

∑

i=1

|ca
i − cb

i |2 . (9)

From Fig. 5, it is clear that it is very difficult to control the
quantum system to the target state, while the proposed partial
feedback control method performs better and can control the
quantum system to the target state with a permissible error.
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Fig. 5. State distances to the target state Ctarget = (0, 0, 1, 0)T in the control
process.

In the second group of experiments, the initial quantum
state is C0 = (1

2 ,− 1
2 , 1

2 , 1
2 ι)T , and the target quantum state is

Ctarget = (
√

2
2 ι,− 1

2 ι,−
√

2
4 ι,

√
2

4 ι)T . This group of experiments
is more difficult to control because there are fewer eigenstates
appearing during the control process, and less quantum mea-
surement can be taken. The control results using the proposed
approach are shown in Figs. 6 and 7. In Fig. 6, mj are the
memberships of the corresponding fuzzy set, |cj |2 are the prob-
abilities of quantum eigenstates of the controlled system using
the proposed partial feedback control, and |c′j |2 are the proba-
bilities of quantum eigenstates of the controlled system using
the open-loop control, where j = 1, 2, 3, 4. These experimen-
tal results also show that the partial feedback control approach
performs well and evidently improves the performance of open-
loop control.

From all these simulated results, it is clear that no matter the
initial state and target state are eigenstates or not, the partial
feedback control algorithm using an FE successfully drives the
pure-state quantum system to its desired target state with a
permissible error. The results also show that the proposed control
method is robust to unknown disturbances.

IV. CONTROL PROBLEM II: CONTROL DESIGN WITH A

PROBABILISTIC FUZZY ESTIMATOR

Now we consider the control problem II. To implement a
partial feedback control for a quantum system with an initial
mixed state, a probabilistic fuzzy logic system is used to model
the quantum state and the stochastic uncertainties as well [24].

A. Probabilistic Fuzzy Logic

A probabilistic fuzzy logic system is different from an or-
dinary fuzzy logic system, and it uses probabilistic fuzzy sets
instead of ordinary fuzzy sets to capture the information with
stochastic uncertainties [36], [37]. Similar to the definition of
probabilistic fuzzy set in [25] and [38], the concept of proba-
bilistic fuzzy set is defined as follows.

Fig. 6. Control performance of the two-spin- 1
2 system from the

initial state C0 = ( 1
2 ,− 1

2 , 1
2 , 1

2 ι)T to the target state Ctarget =
(
√

2
2 ι,− 1

2 ι,−
√

2
4 ι,

√
2

4 ι)T .

Fig. 7. State distances to the target state Ctarget = (
√

2
2 ι,− 1

2 ι,−
√

2
4 ι,

√
2

4 ι)
in the control process.

Definition 2 (Probabilistic Fuzzy Set [38]): The probabilis-
tic fuzzy set ˜F is expressed by a probability space (E,P ),
where E = {Ej = (F,mj )} is the set of all possible events
x ∈ (F,mj ), and P = {pj = P (Ej )} is the corresponding set
of probabilities. For all element event Ej ∈ E

pj = P (Ej ) ≥ 0, P
(
∑

Ej

)

=
∑

P (Ej ), P (E) = 1.
(10)

The probabilistic fuzzy set ˜F can be expressed as the union
of finite ordinary fuzzy sets with a probability distribution as
follows:

˜F =
⋃

x∈(F,m )

((F,m), P ). (11)

Fig. 8 shows a 3-D illustration of a probabilistic fuzzy set ˜F1
(discrete case):

˜F1 =
⋃

j=1,2,3

{((F,mj ), pj )} (12)
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Fig. 8. Three-dimensional illustration of probabilistic fuzzy sets.

where F = {x1 , x2 , x3 , x4}, p1 = P (m1) = 0.5,m1 =
{0.7, 0.1, 0, 0.2}, p2 = P (m2) = 0.4,m2 = {0, 0.6, 0.3, 0.1},
p3 = P (m3) = 0.1, and m3 = {0.2, 0.5, 0.3, 0}.

Similar to the ordinary fuzzy logic system, operations such
as fuzzification, inference engine, and defuzzification can be
defined based on the probabilistic fuzzy set introduced earlier.
Some set-theoretic and logic operations, such as intersection
and union, can also be specified for a probabilistic fuzzy set.
In particular, to simulate the quantum operations on quantum
mixed states, we can also define a unitary operator R on the
probabilistic fuzzy set to change the membership function of
the probabilistic fuzzy set, which is an extension of the rotation
operation on the ordinary fuzzy set.

Definition 3 (Rotation Operation): The rotation of a prob-
abilistic fuzzy set ˜F is defined using a rotation operator R as
follows:

R( ˜F ) = R

⎛

⎝

⋃

x∈(F,m )

((F,m), P )

⎞

⎠ =
⋃

x∈(F,m ′)

((F,m′), P )

(13)
where F = {xi}N

i=1 , and m = {m(xi)}N
i=1 . Let

α = (
√

m(xi)eιϕi )N
i=1

β = R ◦ α = (βi)N
i=1

where eιϕi can be used to simulate the phase in quantum states.
Then

m′ = {m′(xi)}N
i=1 = {βiβ

∗
i }N

i=1 .

Example 1: One rotation operator R is represented with the
following rotation matrix:

R =

⎛

⎜

⎜

⎜

⎜

⎝

√
2/2

√
2/2 0 0

−
√

2/2
√

2/2 0 0

0 0
√

3/2 1/2

0 0 −1/2
√

3/2

⎞

⎟

⎟

⎟

⎟

⎠

.

Now, we apply R to ˜F1 with αi =
√

m(xi)eιϕi , i = 1, 2, 3.
For simplicity, α and β are set as real vectors. We
can calculate to get α1 = {0.8367, 0.3162, 0, 0.4472}, α2 =

{0, 0.7746, 0.5477, 0.3162}, andα3 ={0.4472, 0.7071, 0.5477,
0}. Then

β1 = R ◦ α1 = {0.8152,−0.3680, 0.2236, 0.3873}
m′

1 = {0.6646, 0.1354, 0.05, 0.15}
β2 = R ◦ α2 = {0.5477, 0.5477, 0.6325, 0}
m′

2 = {0.3, 0.3, 0.4, 0}
β3 = R ◦ α3 = {0.8162, 0.1838, 0.4743,−0.2739}
m′

3 = {0.6662, 0.0338, 0.225, 0.075}

˜F ′
1 = R

⎛

⎝

⋃

j=1,2,3

{((F,mj ), pj )}

⎞

⎠

=
⋃

j=1,2,3

{((F,m′
j ), pj )}. (14)

As the statement of quantum mixed states in the problem for-
mulation, a mixed state must be described by a density operator
ρ. By a comparison of relative counterparts between a quantum
mixed state and a probabilistic fuzzy system (as shown in Table
I), we will show that a PFE is suitable to estimate the evolution
of a quantum mixed state, and a PFE can provide an effective
estimation of the state of the controlled quantum system.

In Table I, the symbol M = {Mi = |φi〉〈φi | : i = 1, . . . , N}
represents a measurement operator, and it is a projective mea-
surement operator in this paper. From the comparison shown in
Table I, it is clear that when the quantum mixed state ρ evolves
with the unitary transformation U , this process can be simulated
by a counterpart of probabilistic fuzzy system ˜F with the ro-
tation transformation R. The FE provides an estimate ρ̂ of the
quantum system’s state. The partial feedback control scheme of
a quantum system with an initial mixed state using a PFE is
shown in Fig. 9.

B. System Design and Control Algorithm

Control Algorithm (Partial feedback control using a PFE)
1) Initialize the controlled quantum system with an initial

state ρ(0) : {pj , |ψj 〉} and a desired target state ρtarget ;
initialize the PFE with a probabilistic fuzzy set ˜F (0) ac-
cording to ρ(0).

2) At time t, the controller gives a suitable control which
is denoted as a quantum operator U(t). Its counterpart
of a rotation operator for the FE is R(t). Then, drive the
quantum system with U(t). At the same time, apply the
fuzzy operator R(t) to the FE:

ρ(t′) = U(t)ρ(t)U †(t)

˜F (t′) = R(t)( ˜F (t)) =
⋃

j

{((F,m′
j ), pj )}.

3) Then, the PFE gives an estimate ̂ρ(t) of the controlled
quantum system

̂ρ(t) =
∑

j

pj
̂|ψj 〉̂〈ψj |
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TABLE 1
COMPARISON BETWEEN A QUANTUM MIXED STATE AND A PROBABILISTIC FUZZY SYSTEM

Fig. 9. Partial feedback control structure of a quantum system with an initial
mixed state using a PFE.

where

̂|ψj 〉 =
∑

i

βi |φi〉.

4) Trigger the projective measurement if |p(|φi〉) − 1| < ε

with p(|φi〉) = tr(Mi
̂ρ(t)), where ε > 0 is a real number.

Then, the controlled quantum state will collapse to an
eigenstate |φi ′ 〉, i′ ∈ {1, 2, . . . , N}, whose density matrix
corresponds to ρ, feed it back to the quantum system, and
regulate the FE to eliminate the accumulated errors of the
PFE; otherwise, feed ̂ρ(t) back instead.

5) The control algorithm ends if the feedback quantum state
is very near to the desired target state, i.e., ‖ρ(t) −
ρtarget‖ < ε′ for the measured feedback or ‖̂ρ(t) −
ρtarget‖ < ε′ for the estimated feedback, where ε′ > 0
is a positive real number or go to step 2).

Remark 5: The operator translation and error analysis are sim-
ilar to those in Section III. Besides describing a single quantum
system, the mixed state ρ is often used to describe a quantum
ensemble [1]. A quantum ensemble ρ =

∑

j pj |ψj 〉〈ψ| can be
looked as a mixture of a number of pure states |ψj 〉 with re-
spective probabilities pj . Hence, it is also possible to develop
quantum control methods using a PFE for the control of quantum
ensemble [39].

C. Numerical Example

To test the proposed partial feedback control approach using
a PFE, several numerical experiments of a two-spin- 1

2 system
are also presented. For these experiments, the following unitary
transformations are taken as the allowed electromagnetic field

controls:

U(θ(t)) = {Uk (θ(t))}, k = 1, 2, 3

U1(θ(t)) =

⎛

⎜

⎜

⎜

⎜

⎝

cos θ(t) − sin θ(t) 0 0

sin θ(t) cos θ(t) 0 0

0 0 −ι/
√

2 1/
√

2

0 0 1/
√

2 −ι/
√

2

⎞

⎟

⎟

⎟

⎟

⎠

U2(θ(t)) =

⎛

⎜

⎜

⎜

⎜

⎝

−ι/
√

2 0 0 1/
√

2

0 cos θ(t) − sin θ(t) 0

0 sin θ(t) cos θ(t) 0

1/
√

2 0 0 −ι/
√

2

⎞

⎟

⎟

⎟

⎟

⎠

U3(θ(t)) =

⎛

⎜

⎜

⎜

⎜

⎝

−ι/
√

2 1/
√

2 0 0

1/
√

2 −ι/
√

2 0 0

0 0 cos θ(t) − sin θ(t)

0 0 sin θ(t) cos θ(t)

⎞

⎟

⎟

⎟

⎟

⎠

where θ(t) = 0,±π
8 ,± π

4 .
The unpredictable disturbances during the quantum control

process are denoted as

U(θ′(t)) = U(θ(t)) + δU(t) = U(θ(t) + δθ(t)).

To demonstrate the control performance, the state distance be-
tween two quantum mixed states is defined using the density
matrix. For two quantum states that are described with ρa and
ρb , the state distance between them is defined as

Distab = ‖ρa − ρb‖.

The experimental settings are as follows: The stochastic dis-
turbances are a noise with a uniform distribution on the interval
[−10% θ(t), 10% θ(t)]; R(t) = U(t); the threshold of trigger-
ing quantum measurement is set as ε = 0.05; and the algorithm
ending criteria ε′ = 0.02. The initial quantum mixed state is
{(pj , |ψj 〉)}, j = 1, 2, 3, where

p1 = 0.6, C1 = (−0.4619 − 0.1913ι, 0.6036 + 0.2500ι

0.2500 + 0.1036ι,−0.1913 + 0.4619ι)T

p2 = 0.3, C2 = (0.0698 − 0.4951ι,−0.2162 + 0.6469ι

− 0.1628 + 0.0912ι,−0.3994 − 0.3008ι)T
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Fig. 10. Trajectory of the two-spin- 1
2 system from the initial mixed state ρ(0)

to the target state ρ(8).

p3 = 0.1, C3 = (0.3967 − 0.3044ι,−0.1647 + 0.6477ι

− 0.2147 − 0.0853ι,−0.4957 + 0.0653ι)T (15)

and the density matrix is

ρ(0) =

⎛

⎜

⎜

⎜

⎜

⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞

⎟

⎟

⎟

⎟

⎠

(16)

where ρ11 = 0.2500 + 0.0000ι, ρ12 = −0.3228 − 0.0021ι,
ρ13 = −0.1040 + 0.0322ι, ρ14 = 0.0147 + 0.2281ι, ρ21 =
−0.3228 + 0.0021ι, ρ22 = 0.4403 − 0.0000ι, ρ23 = 0.1323
− 0.0410ι, ρ24 = −0.0201 − 0.3240ι, ρ31 = −0.1040 −
0.0322ι, ρ32 = 0.1323 + 0.0410ι, ρ33 = 0.0597 + 0.0000ι,
ρ34 = 0.0214 − 0.1012ι, ρ41 = 0.0147 − 0.2281ι, ρ42 =
−0.0201+0.3240ι, ρ43 =0.0214+0.1012ι, and ρ44 =0.2500
+ 0.0000ι. The target state is a quantum pure state
Ctarget = (0, 0,−1, 0)T , and its density matrix is

ρtarget =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

The simulation experimental results is shown in Figs. 10 and
11. In Fig. 10, this control task is achieved by the proposed
partial feedback control approach. The fuzzy rules used are
defined as follows.

Rule  ( = 1, 2, 3, 4): IF |tr(M
̂ρ(t)) − 1| < ε = 0.05,

THEN trigger the projective measurement M ;
Rule (i, j) (j = 1, . . . , 15): IF |tr(M

̂ρ(t)) − 1| ≥ ε = 0.05
and the estimated quantum state ̂ρ(t) is ˜Fi , THEN the control
output is Uj .

Here, ˜Fi is the predefined probabilistic fuzzy set (in this nu-
merical example, we choose 16 probabilistic fuzzy sets, i.e.,
i = 1, . . . , 16), and the control rules are attained by experi-
ence according to the real quantum control system. For ex-
ample, nine specific probabilistic fuzzy sets ˜Fi that are used
in this numerical example can be found in Table II. How-

Fig. 11. Control performance of the two-spin- 1
2 system with the initial mixed

state using a PFE.

ever, for general quantum control problems, 16 probabilistic
fuzzy sets are far from enough, and many more probabilistic
fuzzy sets are required to simulate the quantum system. In ad-
dition, in more complex control problems, it is another key
task to obtain the fuzzy rules to determine the control opera-
tions. We may employ a learning process to accomplish such
a task (e.g., using quantum reinforcement learning in [40]).
The detailed learning process and more simulation experi-
ments for more complex control problems will be presented
in our future work. Here, we only focus on a simple exam-
ple aiming to demonstrate the basic idea of the proposed ap-
proach. The simulation result gives a decision of a control se-
quence {U2(π

8 ), U1(π
8 ), U3(π

8 ), U2(π
8 ), U2(π

8 ), U1(π
8 ), U1(π

8 )}
and a projective measurement M1 . Fig. 10 demonstrates
the trajectory of the two-spin- 1

2 system that evolves from
the initial mixed state ρ(0) to the target state ρ(8) un-
der the partial feedback control scheme. This control task
is achieved by a control decision of a control sequence
{U2(π

8 ), U1(π
8 ), U3(π

8 ), U2(π
8 ), U2(π

8 ), U1(π
8 ), U1(π

8 )} with a
projective measurement M1 . As shown in Fig. 10, the projec-
tive measurement M1 is triggered on the quantum state ρ(3)
because |tr(M1

̂ρ(3)) − 1| = 0.04 < ε.
The change of memberships during the control process is

shown in Table II, where mj denotes the membership regarding
|ψj 〉 in a quantum mixed state, {R1(π

8 ), R2(π
8 ), R3(π

8 )} are the
fuzzy rotation operations that correspond to the electromagnetic
field controls {U1(π

8 ), U2(π
8 ), U3(π

8 )}, respectively, M1 denotes
the measurement operation M1 = |φ1〉〈φ1 |, and I(ρ0) provides
the initial membership regarding the initial quantum mixed state.
For m1 = m2 = m3 (corresponding to a pure state), we omit
p1 , p2 , p3 since their values do not affect the following results.
Fig. 11 gives more results of the performance comparison be-
tween the proposed method and an open-loop control method.
These results demonstrate the success of the proposed partial
feedback control scheme for the quantum system with an initial
mixed state with the help of a PFE. It evidently improves the
performance of open-loop control and helps with finding more
suitable controls as well. These experimental results further



830 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 5, OCTOBER 2012

TABLE II
MEMBERSHIP FUNCTIONS OF A PFE DURING THE CONTROL PROCESS

prove that the proposed partial feedback control method using
FEs provides a useful tool for the control design of quantum
systems with uncertainties.

V. CONCLUSION

Robust control of quantum systems is an important issue for
the development of practical quantum technology. This paper
has proposed an approach of control design for quantum systems
with uncertainties, where an FE is used to estimate the quantum
state of the controlled quantum system. Two types of quan-
tum control problems have been investigated. For a pure-sate
quantum system, we have presented a partial feedback control
scheme where a fuzzy system is trained to estimate quantum
states, and a controlled projective measurement is also used to
assist in controlling quantum systems with uncertainties. The
main advantage is that this scheme can avoid the direct mea-
surement on quantum systems and can obtain feedback infor-
mation from an FE as well. For a quantum system with an initial
mixed state and uncertainties, a PFE is trained to estimate quan-
tum mixed states for control design. We have demonstrated the
proposed method by several simulated examples. Our future
work will focus on the control of complex quantum systems
and other control design methods using intelligent computation
techniques.
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