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considered in this paper. Optimal control data schedule is presented in
closed-form for a class of systems and some discussions on the optimal
schedule for general systems are presented.
Future work along the line of this work include finding the exact

optimal schedule for general higher-order systems and LQR control
with output feedback, and considering LQG control data scheduling.
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Realization of a Special Class of Admittances with One
Damper and One Inerter for Mechanical Control

Michael Z. Q. Chen, Kai Wang, Yun Zou, and James Lam

Abstract—In this note, we investigate the realization problem of a special
class of positive-real admittances, which is common in vehicle suspension
designs. The number of inerters and dampers is restricted to one in each
case and the number of the springs is arbitrary. To solve the problem, we
first convert a previous result by [6] to a more direct form. A necessary
and sufficient condition for realizability is then derived and explicit circuit
arrangements are provided by assuming that the three-port network con-
sisting of only springs after extracting the damper and the inerter has a
well-defined impedance. To remove the assumption on the existence of a
well-defined impedance, a condition is established on the topological prop-
erty of the -port network without a well-defined impedance to obtain
an equivalent class of such networks so that the realizability condition is
derived with realization. By combining the conditions with and without a
well-defined impedance, the final realization result is obtained.

Index Terms—Electric circuits, inerter, mechanical networks, network
synthesis, passivity.

I. INTRODUCTION

Passive network synthesis is a classical subject in electrical circuit
theory which experienced a “golden era” for the 1930s–1970s [1], [2],
[11], [16]. Despite the relative maturity of the field, certain aspects of
passive network synthesis are still incomplete. For example, the only
general method for transformerless electrical synthesis by Bott and
Duffin [2] appears to be highly non-minimal. However, interest in the
field has declined despite the relatively recent development in the de-
sign of positive real functions [8], [10], [15], [20].
Recently, a new network element, named inerter [4], [19], has been

introduced with the property that the (equal and opposite) force applied
at the terminals is proportional to the relative acceleration between
them. Applications of the inerter to vehicle suspension, motorcycle
steering control and vibration absorption have been identified with per-
formance advantages demonstrated (see [4] and references therein).
One of the main motivations for the inerter was the synthesis of passive
mechanical networks. The inerter completes the analogy between elec-
trical networks and mechanical ones (see [19, Fig. 4]), which makes
any passive mechanical network realizable with three kinds of passive
elements: inerters, dampers, and springs. However, the number of ele-
ments for mechanical networks is much more essential than electrical
ones. Therefore, given the existing and potential applications of the in-
erter, interest in passive network synthesis has been revived [5]–[7],
[12], [13]. The need for a renewed attempt on the same subject and its
fundamental connection to system theory has also been highlighted by
Kalman [14].
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The present note is concerned with the realization problem of a spe-
cial class of positive-real admittances, which is common in vehicle sus-
pension designs. This particular class was first discussed in [19], where
it was pointed out that any such positive-real admittance can be realized
using one inerter, two dampers, and three springs. This note considers
the class of realizations in which the number of dampers and inerters is
restricted to one in each case. In our realizations, we impose the condi-
tion that no lever (transformer) can be employed since large lever ratios
can cause difficulties in practical implementation.
We first present a necessary and sufficient condition for this spe-

cial class of positive-real admittances to be realizable employing one
damper and one inerter by assuming that the impedance of the three-
port network after extracting the damper and the inerter is well-defined.
In addition, an explicit construction is given comprising two circuit ar-
rangements, one employing four springs and the other two. Further-
more, we give the relationship between the topological property of the
-port network and the fact that its impedance is not well-defined, by
which we obtain an equivalent class of networks when the three-port
network does not have a well-defined impedance. The realizability con-
dition of this class of network is derived and a corresponding network
is given, which removes the constraint on the existence of a well-de-
fined impedance.

II. PROBLEM FORMULATION

The realization of the admittance in the form of

(1)

where , and was first discussed in [19].
Defining the resultant [9] of and

in , we have .
It was shown that any positive-real in the form of (1) can be re-
alized using one inerter, two dampers, and three springs. It is known
that many mechanical admittances of suspension struts are in this form
(see [4], [6], [19] and references therein).
For mechanical systems, the spring is the easiest element to be re-

alized practically [6]. Thus, the realization problem of admittance (1)
when the number of inerters and dampers is restricted to one in each
case is meaningful. In [6], it is shown through a counter example that
not all positive-real admittances (1) can be realized using one damper
and one inerter. The present note addresses the following question:
Given a positive-real admittance in the form of (1), what addi-
tional conditions for are needed to be realized with one inerter,
one damper, and an arbitrary number of springs but no levers? The final
result (Theorem 4.1) of this note provides a necessary and sufficient
condition for this realization, which is a neat inequality concerning
only with coefficients , , , and . Hence, it will be convenient
to test the realizability. In addition, the network configurations that can
be used to cover this condition as well as the values of their elements
are given in Theorem 3.4, Theorem 3.5, and Lemma 4.5.

III. REALIZABILITY CONDITIONS WITH
A WELL-DEFINED IMPEDANCE

A network with one damper, one inerter and an arbitrary number of
springs can be shown in Fig. 1, where consists of only springs. In
this section, we assume that has a well-defined impedance. Chen
and Smith have derived a necessary and sufficient condition for any
positive-real admittance to be realized as in Fig. 1 [6].
Lemma 3.1: [6] A positive-real function can be realized as the

driving-point admittance of a network in the form of Fig. 1, where

Fig. 1. General one-port containing one damper and one inerter, where ,
, and consists of only springs.

has a well-defined impedance and consists of only springs, if and only
if can be written in the form of

(2)

where as defined in

(3)

is non-negative definite, and the entries of further satisfy certain con-
ditions such that there exists an invertible matrix
such that is paramount.
To make it easier to check the realizability condition for admittance
in the form of (1), it seems natural to convert the admittance

in the form of (2) to the following form:

(4)

so that the conditions are in terms of the coefficients
. Hence, we have

(5)

We need the following three lemmas to establish Theorem 3.1. Be-
sides, to simplify the expressions, we define the following terms:

, ,
, and .

Lemma 3.2: Consider any function in the form of (4) where
. can also be expressed as (2) with

non-negative definite defined in (3) and the entries of defined in
(5) if and only if , and .

Proof: Sufficiency. Let , , and .
Since , then by introducing the variables , ,
and we can obtain , , and

, further implying that .
By properly assigning the signs of , , and , and because of

, we can always guarantee that ,
which can yield . Now we obtain all the equations in (5).
Hence, we can express (4) as (2). Furthermore, it can be verified that
as defined in (3) is non-negative definite.
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Necessity: By (5), it can be calculated that ,
, , and . Thus,

the lemma is proven.
Lemma 3.3: Consider a non-negative definite matrix in the form

of (3), and the variables , , , , , , and as defined in
(5). Then, there exists at least one of the first- or second-order minors
of being zero if and only if at least one of the variables , , ,
, , , , , , , and

is zero.
Proof: Since the variables , , , , , , and

satisfy (5), we have , , , and
. Consequently, we obtain

. Similarly,
and

. Hence, making use of the above relationship between
the entries of and the coefficients, this lemma can be proven.
It is known from [6, Lemma 3] that for any matrix satis-

fying the above lemma, there always exists an invertible matrix
such that is paramount.

Lemma 3.4: Consider a non-negative definite matrix as defined
in (3), whose first- and second-order minors are all non-zero, and the
variables , , , , , , and as defined in (5). Then, there
exists an invertible such that is a paramount
matrix if and only if one of the following conditions holds:
1) ;
2) , , ,

;
3) , , ;
4) , , ;
5) , , .
Proof: The proof is relatively straightforward by showing the

equivalence between the condition of [6, Lemma 4] and the condition
of this lemma and therefore omitted.
Therefore, the following theorem is obtained, which is equivalent to

Lemma 3.1.
Theorem 3.1: A positive-real function can be realized as

the driving-point admittance of a network in the form of Fig. 1,
where has a well-defined impedance and consists of only
springs, if and only if can be written in the form of (4),
where , , and

, and the coefficients further satisfy the condition
of either Lemma 3.3 or Lemma 3.4.

Proof: Sufficiency. By Lemma 3.2, can also be expressed
as (2), where is defined in (3) and is non-negative definite, and the
non-negative coefficients , , , , , , and satisfy (5).
Furthermore, by [6], if at least one of the first- or second-order minors
of is zero, then there must exist an invertible
such that is a paramount matrix if the condition of Lemma 3.3
is also satisfied. Finally, by Lemma 3.1, the sufficiency part is proven.

Necessity: By Lemma 3.1, can be written in the form of
(2) where as defined in (3) is non-negative definite. Then, it is
obvious that can also be expressed as (4) with the coefficients
defined in (5), which indicates that ,

, and . Then, we can conclude
that the condition of either Lemma 3.3 or Lemma 3.4 is satisfied.
Now we are focusing on the realization of admittance (1). First, it is

necessary to show the positive-realness of admittance (1).
Lemma 3.5: [7], [19] A real-rational function in the form of

(1) with and is positive-real if and only if
, , and .

As defined in Section II,
is the resultant between the numerator and denominator of . It is

known that if and only if a positive-real in the form of
(1) can be written in the form

(6)

where , , and [9]. Therefore, we have the
following theorem.
Theorem 3.2: Consider a positive-real function (1), where

and . If
, then it can be realized with at most one damper

and two springs.
Proof: From the discussion above, it is known that if ,

then can be written as (6), where , , and .
Furthermore, it is obvious that ,
which is a realization of at most one damper and two springs.
From Theorem 3.2, we see that in order to investigate the realiz-

ability conditions of (1), it is only necessary to consider the case when
. Then, the next theorem presents the realizability condition for

admittance (1) to be realized in the form of Fig. 1.
Theorem 3.3: Consider a positive-real function

where , and
. It can be realized as the driving-point admit-

tance of a network in the form of Fig. 1, where has a well-defined
impedance and consists of only springs, if and only if

(7)

or

(8)

Proof: Necessity. By Theorem 3.1, it is known that
in the form of (1) with can be expressed as (4) with

. Thus, there are two possible cases.
For the first case, the coefficients in (4) can be regarded as follows:

(9)

which are all non-negative. Furthermore, yields
(8).
For the second case, multiplying the common factor , the

coefficients in (4) can be regarded as

(10)

Moreover, yields
. If , then we have , which is the condition
derived in the first case. If , then must hold,
which reduces the positive-realness condition to ,

, and , indicating that , , and
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. Hence , and . Besides,
can be expressed as

(11)

It can be calculated that ,
, ,

,
,

. Thus,
the condition of Lemma 3.3 cannot be satisfied, which indi-
cates that the condition of Lemma 3.4 must hold. We see that

. Con-
sequently, we conclude that only the third condition of Lemma 3.4
holds. Thus, it follows that . Since
the equation

holds, we can obtain (7).
Sufficiency: When (8) is satisfied, express in the form of

(4) with the coefficients , , , , , , satisfying (9), in-
dicating that they are all non-negative and the condition of Lemma
3.3 must be satisfied. The positive-realness of guarantees that

, and holds because of
.

When (7) is satisfied, combining with the positive-realness of ,
we conclude that . Multiply the numerator and the
denominator of (1) by a common factor simultaneously, where
is defined in (11), then can be expressed as (4) with the coef-

ficients satisfying (10), which are all positive. From the necessity part
of the proof, the condition of Lemma 3.2 and the third condition of
Lemma 3.4 hold. Thus, by Theorem 3.1, can be realized by the
required network of this theorem.
We now provide explicit network constructions that will satisfy the

realizability conditions. We treat the two conditions (7) and (8) of The-
orem 3.3 in Theorems 3.4 and 3.5, respectively.
Theorem 3.4: Consider a positive-real function in the form of

(1) where , , and
. If condition (7) holds, then can be realized

as in Fig. 2 with

(12)

where is defined in (11).
Proof: This theorem can be proven by [6, Lemma 4, Theorem 7]

and the sufficiency part of Theorem 3.3.
Theorem 3.5: Consider a positive-real function in the form of

(1) where , , and
. If condition (8) holds, then can be realized

Fig. 2. Network realization of Theorem 3.4.

with at most one inerter, one damper, and two springs (values given in
the proof).

Proof: Since , it is implied by that .
If and , then . Therefore,

, which comprises one spring, one inerter and at
most one damper with the values being , ,
and , respectively.
If and , then we have

, which com-
prises two springs, one inerter, and at most one damper with the values
being , , ,
and , respectively.

IV. FINAL REALIZABILITY CONDITIONS

The results presented in previous sections are under the assumption
that in Fig. 1 has a well-defined impedance since the result in [6] is
under this assumption as well as other results [5]. This section mainly
investigates the realization problem of when this constraint is
removed in order to solve the realization problem of completely.
For any -port network without levers (transformers), we can

formulate a graph of named augmented graph by letting each
element or each port correspond to an edge of a graph, and each velocity
node correspond to a vertex of the graph. Define the graph consisting of
all the edges corresponding to ports as port graph . can always be
regarded as being connected, for otherwise we can obtain one by letting
one velocity node of a component be common with that of another.
Basic notions of graph theory are referred to [17].
Lemma 4.1: Consider an -port network consisting of at most

three kinds of elements, which are springs, dampers, and inerters. Then,
the impedance of network is not well-defined if and only if there
exists a cut-set of as a subgraph of .

Proof: Necessity. Assume that such cut-set does not exist. By [17,
p. 33], is made part of the complement of a tree of . Then, from
[3], we see that is nonsingular and the impedance is of the
form , where is the reduced
incidence matrix of with the columns of corresponding to the
elements and the columns of corresponding to the ports, and
is the positive definite diagonal matrix whose diagonal entries are the
admittances of all the elements. This contradicts with the assumption.

Sufficiency: Assume that the impedance of exists, then
any vector is permitted. Since there is
a cut-set of as a subgraph of , a constraint on the entries of

is immediately obtained [17]. This contradicts
with the assumption.
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Fig. 3. General network discussed in Lemma 4.2, where , , and has a
well-defined impedance and consists of only springs.

Lemma 4.2: Consider a positive-real function in the form of
(1) with , and . can be realized as the
admittance of a network as shown in Fig. 1 with the impedance of
being not well-defined and its augmented graph nonseparable, if

and only if it is the admittance of the network as shown in Fig. 3, where
has a well-defined impedance, whose augmented graph is nonsepa-

rable, and consists of only springs.
Proof: Sufficiency. It is obvious that the network in Fig. 3 with the

augmented graph of nonseparable is a special case of Fig. 1. Besides,
since it is obvious that the two edges of corresponding to ports ter-
minated with the damper and the inerter constitute a cut-set, by Lemma
4.1 the impedance of is not well-defined.

Necessity: It is obvious that has a zero at .
By [18, Theorem 2], there must be a path consisting of only
springs, where and are two terminals of .
We will prove that the two edges of the port graph of corre-

sponding to the ports terminated with the inerter and the damper consti-
tute a cut-set of the augmented graph . By Lemma 4.1, we know that
there must exist a cut-set among the three edges of . It is shown in
[17, Theorem 3-3] that any nonseparable graph with at least two edges
must be cyclically connected, which means that any two vertices in
can be placed in a circuit. Then, it implies that the number of edges
of any cut-set of is at least two. Therefore, it suffices to show that
any such cut-set can never contain the edge that corresponds to the
only port of whose two terminals are and . Assume that there
exists such cut-set among those three edges containing the edge ,
then by the property of the cut-set, separates into two parts, which
results in terminals and located in each part. Then, all the paths

of the network in Fig. 1 must contain a damper, or an inerter, or
both, which contradicts with the conclusion stated at the beginning of
the necessity part.
Then, by the property of cut-set and the analysis of all the possible

cases, the network in Fig. 1 can always be equivalent to that in Fig. 3,
where contains only springs. Since it has been shown that any cut-set
of never contains , we can prove that must have a well-defined
impedance because no cut-set is contained in its port graph.
We now present a necessary and sufficient condition for any positive-

real function to be the admittance of the network in Fig. 3 in Lemma
4.4 based on Lemma 4.3. The realization is then given in Lemma 4.5.
lemma 4.3: Consider any 2 2 symmetric matrix . If is

non-negative definite, then there must exist an invertible matrix
with such that is paramount.

Proof: This lemma can be easily proven by the definition of
paramountcy and the property of non-negative definiteness.
Lemma 4.4: A positive-real function can be realized as the

driving-point admittance of a network in the form of Fig. 3, where

has a well-defined impedance and consists of only springs, if and only
if can be written in the form of

(13)

where and , and the coefficients satisfy
.

Proof: Necessity. The admittance of the network in Fig. 3 can be
calculated as

(14)

where , , and

(15)

is the impedance of , which is paramount by [6]. Furthermore, (14)
can be expressed as

(16)

where , and is obtained through

(17)

where . Hence, must be non-negative definite.
Letting , , , , and

, we have , , and
. By the positive-realness of , leads to

, which implies the nonexistence of . Then, we have .
Sufficiency: It suffices to show that can be expressed as

(14), where and as defined in (15) is paramount. Formulate
a function in the form of (16), where , , ,
and , which must exist because the positive-re-
alness of guarantees that . Consequently, it is
verified that as defined in (17) is non-negative definite. Further-
more, since holds, it can be calculated that ,

, , , and hold,
indicating that can also be expressed as (16) with , and
as defined in (17) being non-negative definite. By Lemma 4.3, there

must exist an invertible matrix , where such
that

is paramount. Therefore, we have , , and
, making (16) become

Letting and gives (14), where and is
paramount.
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Fig. 4. Network with not well-defined when expressed in the form of Fig. 1.

Lemma 4.5: Consider a positive-real function in the form of
(1) with , , and . can be realized
as the driving-point admittance of a network as shown in Fig. 3, where
has a well-defined impedance and consists of only springs, if and

only if . Moreover, if the condition holds, then it can be
realized by the network shown in Fig. 4 with the values of the elements
given below

(18)

Proof: The condition can be easily derived from Lemma 4.4. Fur-
thermore, the admittance of the network shown in Fig. 4 is calculated to
be .
Substituting (18), whose values are non-negative, into the above equa-
tion results in (1) because of . Therefore, this lemma is
proven.
Now, the final condition is presented in Theorem 4.1.
Theorem 4.1: Consider a positive-real function in the form of

(1) where , , and
. It can be realized as the driving-point admittance

of a network consisting of one inerter, one damper, and an arbitrary
number of springs, that is, the network shown in Fig. 1, if and only if

(19)

Proof: Necessity. When has a well-defined impedance, then
by Theorem 3.3 it implies (7) or (8), that is,

or holds. When does not has a well-
defined impedance and its augmented graph is nonseparable, then
by Lemma 4.5 we have . When does not has a well-
defined impedance and its augmented graph is separable, we can
always obtain an equivalent network in the form of Fig. 1, which
satisfies either of the above two cases. Combining the above conditions,
we obtain (19).

Sufficiency: Since condition (19) holds, it implies that at least
one of the conditions of Theorem 3.3 and Lemma 4.5 must hold. Then,
admittance (1) can be realized by the required network by Theorem
3.4, Theorem 3.5, and Lemma 4.5.

V. CONCLUSION

This note has studied a realization problem for one special class of
admittances, which is widely used in passive suspension design. The
number of inerters and dampers is restricted to one in each case and the

number of the springs is arbitrary. To solve the problem, we first con-
verted a previous result by Chen and Smith [6] into a more direct form.
Then, a necessary and sufficient condition for realizability with the as-
sumption that the three-port network consisting of only springs has
a well-defined impedance was derived. Furthermore, explicit circuit
arrangements were provided to cover the realizability conditions. Fur-
thermore, a relationship between the topological property of the -port
network and the fact that its impedance is not well-defined was pro-
vided. Consequently, considering the property of this class of admit-
tance and the above relationship, we obtained an equivalent general
network when the impedance of is not well-defined through the use
of graph theory. Then, a necessary and sufficient condition for the real-
izability of this kind of networks was derived and a network construc-
tion covering this condition was presented. Finally, combining this con-
dition with the previous one yielded the final realization without any
assumption on the existence of a well-defined impedance.
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