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Abstract

A Langevin dynamics based formulation is proposed to describe the shape fluctua-

tions of biopolymer filaments. We derive a set of stochastic partial differential equations

(SPDEs) to describe the temporal evolution of the shape of semiflexible filaments and

show that the solutions of these equations reduce to predictions from classical modal

analysis. A finite element formulation to solve these SPDEs is also developed where,

besides entropy, the finite deformation of the filaments has been taken into account.

The validity of the proposed finite element-Langevin dynamics (FEM-LD) approach is
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verified by comparing the simulation results with a variety of theoretical predictions.

The method is then applied to study the mechanical behavior of randomly cross-linked

F-actin networks. We find that as deformation progresses, the response of such net-

work undergoes transitions from being entropy dominated to being governed by filament

bending and then, eventually, to being dictated by filament stretching. The levels of

macroscopic stress at which these transitions take place were found to be around 1 and

10 percent, respectively, of the initial bulk modulus of the network, in agreement with

recent experimental observations.

Introduction

It is well known that bio-filaments like F-actin and microtubules are responsible for key

functions of cells such as maintaining their shape (Preston et al., 1990), driving movement

(Theriot and Mitchison, 1991), and mechanosensing (Mattila and Lappalainen, 2008). As

such, extensive efforts have been directed over the last decade to uncover how networks com-

posed of these bio-polymer filaments resist deformation and how this load bearing capability

correlates with factors like network architecture (Gardel et al., 2004; Tharmann et al., 2007;

Chaudhuri et al., 2007; Liu et al., 2008), the properties of cross-linking proteins (Wagner et

al., 2006; Lieleg et al., 2008; Lieleg et al., 2009), and the appearance of myosin molecular

motors (Koenderink et al., 2009). For example, it has been shown that like most other

polymeric materials, the shear modulus of a random in vitro actin network increases signif-

icantly with applied stress (Gardel et al., 2004; Tharmann et al., 2007). In contrast, it was

reported that a branched network, consisting of short actin filaments, will actually undergo

stress softening after an initial hardening stage (Chaudhuri et al., 2007). It is commonly

believed that the phenomenon of stress-stiffening originates from the fact that, close to its
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contour length, increasing force has to be applied to a semi-flexible chain, against thermal

undulations. Theoretically, based on proper descriptions of the behavior of a single filament,

various constitutive models have been proposed by invoking assumptions about the nature

of the deformation and/or the architecture of the network. For example, simple theories on

how rubber-like materials (Mark and Erman, 1988) or biological gels (Storm et al., 2005)

respond to deformation have been developed under the assumption that the structure dis-

torts in an affine manner (i.e. all filaments strain uniformly). Similarly, constitutive laws

describing the multiaxial stress-strain behavior of these materials have also been proposed

(Arruda and Boyce, 1993; Palmer and Boyce, 2008) by adopting the so-called Arruda-Boyce

model where the unit cell of the network is assumed to have eight cross-linked chains.

Trying to avoid making a priori assumptions, such as that the deformation is uniform

or the network has a specific unit cell structure, direct simulations on computer generated

networks have received increasing attention. For example, numerical simulations on two di-

mensional networks consisting of straight filaments have revealed that the deformation is not

affine at small strains (Head et al., 2003a; 2003b; Wilhelm and Frey, 2003). Subsequently,

finite element (FEM) simulations (Onck et al., 2005; Huisman et al., 2007) suggested that

the stress-stiffening of a filament network is actually caused by the fact that at small levels of

applied strains, deformation can easily be accommodated by filament bending, however, as

strain increases, more filaments will begin to stretch, which ultimately leads to an increased

resistance against deformation. Recently, by treating myosin motors as force dipoles, the

influence of such molecular motors on the response of actin networks has also been examined

(Chen and Shenoy, 2010) via FEM simulations. One thing we must point out is that thermal

undulations of individual filaments have not really been taken into account in the aforemen-

tioned computational investigations. The only attempt to our knowledge to include this
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effect was made by Onck et al. (2005), where a curved shape was assigned to each filament

at the beginning of simulation (prior to mechanical loading) to represent the influence of

thermal fluctuations. This approach however is not realistic as the filament shape evolves

continuously under the influence of thermal excitations.

The entropy-driven deformation and fluctuations of polymers are usually studied via

Brownian dynamics (BD) simulations where the molecule is treated as a series of beads

interconnected by springs or rods with a set of stochastic forces acting on each bead to

represent thermal fluctuations (Doi and Edwards, 1994). However, among many other issues,

a large number of degrees of freedom is needed in such an approach to accurately capture

the bending and shear effects of realistic structures. Recently, the finite element method

has been used in conjunction with the BD approach to overcome this deficiency where the

polymer is essentially modeled as an elastic beam (Cyron and Wall, 2009; 2010). It has been

demonstrated that simulation results from this approach can match well with experimental

observations and theoretical predictions like the diffusion coefficient and end-to-end distance

of the molecule. Despite these promising advances, several important issues remain unsettled

here. First, on a fundamental level, the validity of the Brownian (or Langevin) dynamics

approach has not been rigorously benchmarked against other theoretical methods. For

example, modal analysis has been extensively used throughout the literature to examine the

thermal undulations of soft objects like bio-polymers (MacKintosh et al., 1995; Marko and

Siggia, 1995) and lipid membranes (Milner and Safran, 1987; Lin et al., 2007). However, the

equivalence or a possible relationship between this analytical approach and the Brownian

dynamics description has not been established. We also feel that special attention should

be paid to the difference between the transverse and longitudinal motions of a semi-flexible

molecule. For example, the viscous coefficients associated with the transverse and axial
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movements of a polymer segment were taken to be of the same order of magnitude in

(Cyron and Wall, 2009; 2010), a treatment that, to us, might not be that appropriate for

analyzing the mechanical response of filaments. In addition, as pointed out earlier, it seems

that thermal excitations have not really been included in previous FEM simulations on the

behavior of realistic filament networks.

Aiming to address these issues, a Langevin dynamics based formulation is developed

here to describe the shape fluctuations of bio-polymers. We show that, solutions of the

resulting stochastic partial differential equation (SPDE) asymptotically reduce to the pre-

dictions from classical modal analysis for simple problems and hence unambiguously prove

the validity of this approach. This formulation is then implemented in a finite element

framework where, in addition to entropy, the finite deflection of filament has also been in-

cluded. The validity of the proposed finite element-Langevin dynamics (FEM-LD) approach

is verified by comparing the simulation results with various theoretical predictions. Finally,

as a numerical example, our method is used to investigate the mechanical response of a

random network consisting of numerous actin filaments. Our results clearly demonstrate

how the response of the network changes from being entropy dominated to being governed

by filament bending and then, eventually, to being dictated by filament stretching as defor-

mation increases. In addition, the levels of macroscopic stress at which the aforementioned

transitions take place were found to be around 1 and 10 percent, respectively, of the initial

bulk modulus of the network, in consistent with recent experimental observations.
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Formulation

Consider a filament immersed in a thermal bath as shown in Fig. 1. Due to the bom-

bardment of molecules from the surrounding medium, the filament is expected to undergo

continuous fluctuations in its shape. According to Langevin (Coffey et al., 2004), the effects

of collisions with surrounding fluid molecules on the motion of any particle can be repre-

sented by (i) a viscous force ξV , with V and ξ being the particle velocity and the medium

viscosity respectively, thwarting the movement of the object, and (ii) a random force f driv-

ing the Brownian motion of that particle. Furthermore, the random force must follow a

Gaussian distribution with zero mean and, in the one dimensional case, satisfy the relation,

< f(t) f(τ ) >= 2ξkBTδ(t − τ ), where t and τ represent time, δ corresponds to the Dirac

delta function, and kBT is the thermal energy. The same line of reasoning can be applied

to analyzing thermal undulations of extended objects like filaments and membranes. The

only difference is that, for a filament (treated as a beam here), f must be interpreted as a

distributed load causing the beam to deflect and ξ should represent the viscous coefficient

per unit length of the filament. In addition, the relationship between f and ξ becomes

< f(~x, t) f(~y, τ ) >= 2ξkBTδ(~x− ~y)δ(t − τ ). (1)

Hence, neglecting effects of inertia, the thermal fluctuations of an initially straight filament

can be described by

ξ
∂w

∂t
+ EI

∂4w

∂x4
= f(x, t) (2)
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Figure 1: A filament immersed in a thermal reservoir undergoes shape fluctuations. The
effects of bombardment of water molecules on the motion of the filament can be represented
by a macroscopic medium viscosity ξ and a distributed random load f .

where EI is the bending rigidity of the filament and w is the deflection of the beam, refer

to Fig. 2. We want to point out that (2) is a stochastic partial differential equation (SPDE)

since the force f is random. If both ends of the beam (with length L) are simply supported,

as shown in Fig. 2, then the solution of (2), satisfying the initial condition w(x, 0) = 0, can

be found as

w(x, t) =
2

Lξ

∑

n

sin
nπx

L

∫ L

0

sin
nπs

L

∫ t

0

f(s, τ)e−n4π4EI(t−τ)/ξL4

dτds, (3)

from which the correlation function of w can be obtained as

< w(x, t) w(y, η) >=
2kBTL

3

π4EI

∑

n

sin(nπx/L) sin(nπy/L)

n4

[

e−n4π4EI(η−t)/ξL4

− e−n4π4EI(η+t)/ξL4
]

(4)
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Figure 2: Schematic plot of a simply supported filament. The solid line corresponds to the
deformed beam induced by thermal excitations. The un-deformed filament is represented by
the dashed line. The deflection and axial displacements of the filament are denoted as w and
u, respectively. Following standard FEM procedure, the un-deformed beam is divided into
numerous equal-sized segments. To represent the effect of thermal fluctuations, a constant
load fj

i acting on element i during the time interval from tj to tj+1 must be introduced
according to Eq. (8).

where, without loss of generality, it is assumed η ≥ t. In the limiting case where y = x,

η = t, and t→ ∞, (4) reduces to

lim
t→+∞

< w(x, t) w(x, t) >=
∑

n

2kBTL
3

π4n4EI
sin2(nπx/L). (5)

Notice that, following traditional modal analysis approach, the deflection profile can be

expressed as w(x, t) =
∑

n an(t) sin nπx
L with an being a set of random variables. The

correlation function shown in (5) implies that

< a2
n >=

2kBTL
3

π4n4EI
, (6)
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a relationship that can also be arrived if the theorem of equi-partition is invoked (notice that

< an >= 0). However, we want to point out that, unlike traditional modal analysis which

produces relationships that are valid only when thermodynamic equilibrium is reached, i.e.

over long time periods, the Langevin approach can provide us temporal as well as spatial

correlation functions (like (4)) which fully describe the dynamics of the system. More

importantly, we believe that the Langevin dynamics formulation provides a viable solution

to the outstanding question of how to account for thermally-induced deformations of soft

objects in finite element (FEM) simulations.

Implementation in FEM simulations

Let us start with a beam with both ends hinged as shown in Fig. 2. Following standard

procedures in FEM, we divide the filament, in the un-deformed configuration, into equally

spaced elements. To study thermal fluctuations, we have to first determine a consistent

way of applying loads to each element. The simplest choice is to assume that the load

acting on element i over the time interval [tj tj+1] is uniform and is denoted as fj
i . To be

self-consistent, fj
i should satisfy

fj
i =

1

(xi+1 − xi)(tj+1 − tj)

∫ xi+1

xi

∫ tj+1

tj

f(x, t)dtdx (7)

where xi and xi+1 are the coordinates of the two ends of the element. Obviously, we have

< fj
i >= 0. In addition, the so-called auto correlation function of this force can be found as

< fj
i fj

i >=
2ξkBT

∆x∆t
, (8)
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with ∆x = xi+1 − xi being the element size and ∆t = tj+1 − tj being the size of the time

step. Hence, the effective force acting on each element follows a Gaussian distribution with

a mean of 0 and a variance of 2ξkBT
∆x∆t . For a given deflection profile at time step j, i.e. wj,

the velocity field at that moment ẇj, predicted by (2), can be determined from

∑

i

∫ xi+1

xi

[

EI
d2wj

dx2
δ

(

d2wj

dx2

)

+ (ξẇj − fj
i )δwj

]

dx = 0 (9)

where the symbol δ here represents a small variation. Assuming wj(x) = φ1(x)w
j
i +φ2(x)θ

j
i +

φ3(x)w
j
i+1 + φ4(x)θ

j
i+1 in element i with θ = −dw/dx and φ being the standard cubic

interpolation functions (Reddy, 1993), (9) reduces to

∑

i

δχj
m

[

Mmnχ̇
j
n +Kmnχ

j
n − Fm

]

= 0 (10)

where χj = [wj
i θj

i wj
i+1 θj

i+1]
T and repeated index in the subscript means summation over

that index. The force vector F and two matrices M and K introduced here are defined as

Fm =
∫ xi+1

xi
fj

i φm(x)dx, Mmn =
∫ xi+1

xi
ξφm(x)φn(x)dx, and Kmn =

∫ xi+1

xi
EI d2φm

dx2

d2φn

dx2 dx,

refer to [25] for the explicit forms of these so-called element matrices/vectors. Once χ̇j
m is

calculated from (10), the deflection field at time step j + 1 can be updated as

χj+1
m = χj

m + ∆t · χ̇j
m. (11)

Dividing the beam into 10 equal-sized segments, calculations are carried out for a

filament with EI
kBTL

= 100 (corresponding to short F-actin of length ∼ 120 nm). The mean

square of filament deflection at mid-point, i.e. < w(L/2)2 >, is plotted in Fig. 3 for three

independent simulations. In comparison, theoretical prediction of this quantity from (5) is
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also shown in Fig. 3. Clearly, despite fluctuations, simulation results are found to converge

to this theoretical value.
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Figure 3: Mean-square of filament deflection at mid-point obtained from three independent
FEM-LD simulations. For comparison, prediction from classical modal analysis is also shown
by the dotted line. The dimensionless parameter EI

kBTL is chosen to be 100 in the calculation.

Strategy for finite deflections

All the discussions thus far focused on a single filament with the assumption that the de-

flections are small (refer to (2)). However, obviously a network may undergo finite or even

large deformations in practical situations. Furthermore, buckling can easily take place in

individual filaments within the network even if the bulk deformation is small. To capture

these phenomena in FEM, we have to include possible displacement of the filament in its

axial direction, that is u(x) as illustrated in Fig. 2, in our formulation. Specifically, the
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elastic energy stored in, for example, element i in this case takes the form

U i
elem =

∫ xi+1

xi





EA

2

(

du

dx
+

1

2

(

dw

dx

)2
)2

+
EI

2

(

d2w

dx2

)2


dx (12)

where the first term in the bracket represents the stretching energy with EA being the

stretching rigidity of the filament and the second term corresponds to the conventional

bending energy. Notice that a nonlinear term 1
2

(

dw
dx

)2
has been included in the axial strain

expression here which is often referred to as the von Karman strain (Reddy, 2004).

Before proceeding any further, we have to consider how fast a filament segment moves

in the axial direction in comparison with its transverse motion. By definition, the quantity

ξV represents the drag force acting on a filament segment of unit length moving transversely

with a speed V . Similarly, the frictional force induced by the movement of such segment

along the longitudinal direction (with the same speed V ) is ξaxV , where ξax is the viscous

coefficient associated with the axial motion. Notice that we are considering a segment within

the filament (i.e. not an isolated rod) here, so, theoretically, we believe that ξ and ξax can

be estimated by examining the steady-state viscous flow around an infinite cylinder. The

value of ξ has been found to be of the order of 4πµ with µ being the coefficient of viscosity of

the fluid (Tritton, 1988; Ockendon and Ockendon, 1995). In comparison, direct calculations

suggest that ξax should be much smaller than ξ, refer to the Appendix A. Physically, this

means that u is a fast variable when compared with w, and hence we can assume that

u relaxes rapidly to equilibrium, a treatment that, in our opinion, is more appropriate for

analyzing the mechanical response of bio-filaments or filament networks (see Appendix A for

details). Based on these considerations, a numerical scheme has been developed as follows

• For given displacements at time step j, denoted as wj and uj, calculate w∗ and u∗
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from

∑

i

∫ xi+1

xi

[

EA

(

du∗

dx
+

1

2

(

dwj

dx

)2
)

δ(du∗/dx)− fext
u δu∗

]

dx = 0, w∗ = wj (13)

where fext
u corresponds to possible external load in the axial direction. Adopting a

linear interpolation of u, that is assuming u(x) = ψ1(x)ui + ψ2(x)ui+1 in element i

with ψ being standard linear interpolation functions as shown in the Appendix B, and

a cubic interpolation of w, like before, (13) can be rewritten as

∑

i

δχ∗

m

[

Kmnχ
∗

n + Amnχ
j
n +Bmnrχ

j
nχ

j
r − F u

m

]

= 0 (14)

with χ∗ = [u∗i w∗

i θ∗i u∗i+1 w∗

i+1 θ∗i+1]
T being a 6 × 1 vector, containing all degrees

of freedom associated with the two nodal points of element i, and summation over

repeated index in the subscript is assumed. K, A, B and F
u introduced here are of

dimensions 6 × 6, 6 × 6, 6 × 6 × 6 and 6 × 1, respectively, with components given in

the Appendix B. Notice that (13) implies w∗ = wj while u∗ in general will be different

from uj to enforce equilibrium in the longitudinal direction, which is consistent with

the previous conclusion that u is a fast variable when compared to w. Proper boundary

conditions on χ∗ will be enforced when solving (14). Essentially, what we have done

here is that we ”freeze” deflections of filaments while allowing axial displacements to

vary freely so as to attain equilibrium in the longitudinal direction. As a result, w∗

is not an equilibrated value and that is why a non-vanishing contribution dw∗

dt will

be generated as discussed in the next step. In addition, u∗ calculated here will not
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depend on uj, reflecting the fact that, compared to the transverse motion, the axial

movement of filament is taken to be infinite fast and hence equilibrium can be achieved

”instantaneously” in that direction.

• Calculate ẇ∗ and u̇∗ from

∑

i

∫ xi+1

xi

[

EI
d2w∗

dx2
δ

(

d2w∗

dx2

)

+ EA

(

du∗

dx

dw∗

dx
+

1

2

(

dw∗

dx

)3
)

δ

(

dw∗

dx

)

+ (ξẇ∗ − fj
i − fw)δw∗

]

dx = 0

(15)

and

u̇∗ = 0. (16)

where again fj
i is the random force acting on element i at time step j, given by (8),

and fw is the summation of externally applied transverse load and internally generated

forces acting on junction points within the network, refer to the Appendix B. The

matrix (or index) form of (15) and (16) can be expressed as

∑

i

δχ∗

m [Mmnχ̇
∗

n +Cmnχ
∗

n +Dmnrχ
∗

nχ
∗

r + Emnrsχ
∗

nχ
∗

rχ
∗

s − Fw
m] = 0 (17)

with expressions of M,C,D,E and F
w given in the Appendix B. Boundary conditions

on χ̇∗ will be invoked in solving (17).

• Determine the values of all variables at time step j + 1 by

χj+1
m = χ∗

m + ∆t · χ̇∗

m. (18)
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Starting from a given initial state, the whole calculation is carried out by repeating

the three steps listed above. Several points regarding this scheme need to be highlighted

here: (i) despite the appearance of the nonlinear term in the energy expression, problems

described by (14) and (17) are actually linear; (ii) we know in advance that w∗ = wj

and u̇∗ = 0, however, these quantities are still treated as unknowns in our scheme for the

reason that w and u appeared here are local variables, defined within each element, which in

general are different from the so-called global variables based on which actual calculations

are conducted, refer to the Appendix B. As such, in most cases, we cannot directly assign

values to w∗ and u̇∗; (iii) since the values of all variables are calculated/stored on discrete

nodes, the same interpolation formula is used for representing w∗ and wj , as well as for

u∗ and uj, based on their values at nodal points. As pointed out earlier, here a cubic

interpolation of w within any element is used while a linear interpolation of u is adopted.

Buckling of a single bio-polymer filament

As an example, let’s consider the compressive response a simply supported filament in the

presence of thermal fluctuations. Specifically, we want to extract the relationship between

the compressive strain and the force F needed to be applied on both ends as depicted

in Fig. 2. Calculations were conducted by fixing one end of the filament and assigning

an axial displacement of −∆ to the other end, i.e. u(L) = −∆. As such, a constant

nominal compressive strain ε = ∆/L was maintained in the simulation and the average

axial force within filament was then calculated and monitored. Based on eight independent

simulations, the average axial force, i.e. < F >, as a function of compressive strain is shown

in Fig. 4 by the circular symbols. Notice that the force is normalized by the classic Euler

buckling load Fc0 = π2EI/L2 and ε is normalized by the corresponding Euler buckling strain

15



εc0 = π2EI/EAL2 . Clearly, our results suggest that filament force reaches its maximum

at certain moderate ε/εc0 value, ∼ 3 in Fig. 4, and then gradually drops to Fc0 as the

compressive strain continues to increase.
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Figure 4: Filament force as a function of nominal compressive strain. Circular and square
symbols correspond to results from eight independent 2d and 3d simulations, respectively.
Theoretical predictions on this quantity are represented by the solid (for 2d) and dashed
(for 3d) lines. Parameters chosen here are EI

kBTL
= 100 and EAL

kBT
= 106.

Actually, the same problem has been considered recently via modal analysis approach

(Hu et al., 2012) and the prediction from that study is represented by the solid line in Fig.

4. Clearly, simulation results here match with the theoretical prediction very well. In

particular, our results reproduce the right peak position as well as the correct peak value

of the force. Of course, the formulation given by (13-18) is for the two-dimensional case

only. However, it is straightforward to extend it to accommodate filament deformation in

3d. Specifically, we only need to introduce a new variable v, representing filament deflection

in the third direction, and account for its contribution (similar to that of w) to the bending
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and stretching energies, and finally add a random force in the third direction as well. The

3d simulation results are given in Fig. 4, demarcated by the square symbols. Unlike two

dimensional cases, now the filament force asymptotically approaches Fc0 but can never

exceed it. Prediction from (Hu et al., 2012) on the filament force in 3d is also shown in Fig.

4 by the dashed line. Again, we can see that simulation results agree with theory rather

well.

Mechanical response of actin networks

To further demonstrate the capability of the formulation and the corresponding numerical

scheme proposed here, we then examine the mechanical behavior of a network consisting of

randomly crosslinked actin filaments (each of length ∼ L) as shown in Fig. 5. The lateral

sides of the network are traction-free whereas the bottom is clamped to the ground, that

is all degrees of freedom are fully constrained there. In addition, suppose that the top face

of the network is attached to a rigid surface which moves in the horizontal direction with

a distance ∆, refer to Fig. 5. Our goal is to find how the reaction force F that is applied

on the rigid surface varies with the macroscopic strain defined as γ = ∆/(3L). We proceed

by dividing the whole network into 141 elements and choosing EI
kBTL

= 100 and EAL
kBT

= 106,

i.e. the same as those in Fig. 4. Recall that the persistence length of F-actin is believed

to be of the order of 10-15µm (Boal, 2002) while its stretching rigidity, i.e. EA, has been

reported to be around 35nN (Liu and Pollack, 2002), hence the combination EI
kBTL

= 100 and

EAL
kBT = 106 corresponds to an actin network with L ≈ 120nm. At various fixed strain levels,

that is keeping ∆ constant, calculations are carried out by selecting a uniformly strained

network as the starting configuration.

The average value of F from a typical simulation, at 0.02 percent macroscopic strain,
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Figure 5: A random network consisting of multiple actin filaments undergoes simple shear
deformation.

is shown in Fig. 6 by the solid line. In comparison, the values of this quantity obtained by

neglecting thermal excitations (achieved by setting the random force fj
i in (15) to zero) in

the calculation are also given in Fig. 6. Clearly, < F > quickly converges to a fixed value if

entropy effect is neglected, refer to the inset of Fig. 6. In contrast, it takes much longer for

this force, in the presence of thermal fluctuations, to reach a constant level and then oscillates

around it. Interestingly, although the applied strain is positive, < F > predicted here is

actually negative. We must point out that this finding, i.e. the resistive force is negative at

small strain, is by no means ”universal”. Instead, what this means physically is that, for this

particular network, thermal excitations tend to tilt the structure to the right at zero applied

force (because the architecture is not symmetric here and it is more difficult to shear the

network to the left when compared to deform it to the right). The point we want to make is
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that entropy will dictate how a filament network behaves when the deformation is small and

hence, depending on the specific architecture, the average force exhibited by the network

can be negative, refer to Fig. 6, as well as positive, as observed in several other networks

we have examined (results not shown here). To verify that our FEM implementation agrees

with predictions by standard finite-element software, we have compared our calculations

with the results obtained from the FEM package Abaqus (adopting the same mesh size).

Indeed, as shown in Fig. 6, our results are identical to the static prediction from Abaqus if

entropy is neglected.

Figure 6: The average value of the net force acting on the network, under 0.02% macroscopic
strain, as a function of simulation time.

To better illustrate the roles of entropy and enthalpy, i.e. elasticity, on how such actin

networks behave, the macroscopic stress τ , defined as τ =< F > /(3L)2, as a function of

strain is shown in Fig. 7a. Results presented here are based on four independent calculations
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each with the same simulation time of π4tEI/ξL4 = 8. In addition, τ is normalized by G0

which is the initial bulk shear modulus of the network. Notice that τ = γG0 if thermal

fluctuations are neglected and if there is no strain hardening.

(a) (b)

Figure 7: The macroscopic shear stress within the network as a function of the applied
strain. (a)-network with a mesh size of L = 120 nm; (b)-network with a mesh size of
L = 1.2 µm. At small strain regime, the comparison between simulation results with and
without considering thermal fluctuations is given in the inset. Snap shots showing the
deformed shape the network, at various strain levels, are also provided. As strain increases,
the network response changes from being entropy (regime I) to bending (regime II), and
eventually, to stretching (regime III) dominated.

At this point, it is clear that τ significantly deviates from the value obtained by ne-

glecting temperature effects when the applied strain is small, say less than 0.1%, refer to

the inset of Fig. 7a. However, as γ increases, entropy effects become negligible and the

mechanical response is governed by enthalpy. In addition, the network exhibits strain hard-

ening as deformation increases. Specifically, we find that the hardening becomes significant

when the stress level reaches ∼ 10% of G0. Close examination of the deformed structure, see

the inset in Fig. 7a, suggests that the hardening is caused by the fact that small deforma-

tions can be accommodated by filament bending while direct stretching of some filaments
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becomes inevitable at large strain, a well known phenomenon that has been reported in

previous studies (Onck et al., 2005; Huisman et al., 2007). Hence, our results indicate that,

as deformation progresses, the response of such actin network undergoes transitions from

being entropy dominated to being governed by filament bending and, ultimately, to being

dictated by filament stretching. Furthermore, the levels of macroscopic stress at which these

transitions take place were found to be around 1 and 10 percent, respectively, of the initial

bulk modulus of the network, refer to Fig. 7a.

We have also conducted simulations by increasing the network mesh size to L =

1.2µm, that is a 10-fold increase, and the results are shown in Fig. 7b. Basically, the same

conclusion, i.e. the response changes from being fluctuations- to bending- and, eventually,

to stretching-dominated, was obtained. Furthermore, the critical stress levels around which

these transitions take place were, again, found to be ∼ 0.01G0 and ∼ 0.1G0 respectively.

Since F-actin in biological cells have lengths ranging from 100nm-1µm in the so-called lamel-

lipodium to a few micrometers in the main cell cortex (Fletcher and Mullins, 2010), results

obtained here are expected to be relevant in interpreting measurement data on the me-

chanical properties of real cells. Indeed, Fernández and co-workers (Fernández et al., 2006)

found that significant hardening takes place within 3T3 Fibroblasts when the stress level

is above 10% of their initial moduli. The comparison between results obtained here and

several sets of data reported in (Fernández et al., 2006) is shown in Fig. 8(a) and 8(b),

where the deviation of network behavior from linear response is plotted against the applied

stress. Notice that, in addition to the network shown in Fig. 5 (denoted as network 1 in Fig.

8), we have also conducted simulations on eight other random networks (with structures not

shown here), seven of which containing the same number of filaments as that in Fig. 5 while

the last one consisting of twice the number of F-actin filaments, and similar responses were
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observed. We find that the computational results fit experimental data on the cytoskeleton

in Fibroblasts very well (Fernández et al., 2006). The fact that results corresponding to

different networks apparently collapse into a universal trend, refer to Fig. 8, suggests that

conclusions obtained here should be rather general and robust.

(a) (b)

Figure 8: Deviation of network behavior from linear response as a function of the applied
stress level. Notice that G0 is the initial bulk modulus of the network and τ0 = γG0, with γ
being the applied strain. (a)-networks with the same mesh size of L = 120 nm; (b)-networks
with the mesh size of L = 1.2 µm.

Besides stress, it is also informative to examine the degree of affinity of the network

during deformation. Specifically, we can define the deviation from affine behavior as (Onck

et al., 2005)

Afn =
1

N

N
∑

k=1

‖∆r
k − ∆r

k
aff‖

‖∆rk
aff‖

, (19)

where N is the number of nodal points involved in the calculation, ∆r
k is the displacement

vector of nodal point k after the strain γ is applied while ∆r
k
aff = [γrk

y 0]T is the corre-

sponding value if the deformation is affine with rk
y being the y component of the position
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vector of node k. For the network shown in Fig. 5, Afn as a function of the applied strain is

given in Fig. 9 which demonstrates that the deformation is far away from being affine (i.e.

Afn >> 0) at small strain but becomes increasingly affine-like as deformation progresses

indicating that elasticity has taken over and become the dominant factor in this regime.

Figure 9: The deviation from affine behavior, Afn, as a function of the macroscopic strain.

One important feature of F-actin is that each monomer within the filament can bind

to either ATP or ADP (after hydrolysis). Recent studies have suggested that F-ATP-actin

and F-ADP-actin have different properties (Yogurtcu et al., 2012). In particular, it has been

found that the persistence length of F-ADP-actin is around 9 µm (Isambert et al., 1995;

McCullough et al., 2008; Greenberg et al., 2008), noticeably lower than that of F-ATP-actin

(∼ 12µm). In addition, molecular dynamics simulations (Chu and Voth, 2006) indicated

that the stretching rigidity of F-actin decreases by ∼ 16% (from around 37 nN to 31 nN)

after complete hydrolysis. Based on this information, we expect the normalized bending and

stretching rigidities to become EI
kBTL ≈ 75 and EAL

kBT ≈ 8.4 × 105 when all filaments in the

network shown in Fig. 5 (with L ≈ 120nm) change from F-ATP-actin to F-ADP-actin. The
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influence of chemical state change of filament on the network response is given in Fig. 10

where we can clearly see that hydrolysis causes the network to become ”softer” as expected.

Figure 10: The influence of chemical state change, as well as twist, of filaments on the
mechanical response of the network shown in Fig. 5 (with L = 120nm). The dimensionless
parameters are chosen as EI

kBTL = 100 and EAL
kBT = 106 for F-ATP-actin; EI

kBTL = 75 and
EAL
kBT = 8.4 × 105 for F-ADP-actin; and EI

kBTL = 101 and EAL
kBT = 106 for F-ATP-actin

(twisting+bending).

Another interesting factor to consider is the twist of filaments. Recently, De la Cruz

et al. (2010) have proposed that the elastic energy density Ue stored in a F-actin subjected

to both bending and twisting can be estimated as

2Ue

kBT
= LBκ

2
1 + LTκ

2
3 + 2LTBκ1κ3 (20)

where κ1 and κ3 are the curvature and twist (both having a unit of radian per unit length)

in the 2D filament, respectively. LB and LT represent the so-called bending and torsional

persistence lengths of F-actin. The last term on the right hand side of Eq. (20) describes the

effect of twist-bend coupling in actin filaments. Furthermore, it has been estimated that the
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values of LT and LTB for F-ATP-actin are around 1.4 and 0.4 µm respectively (De la Cruz

et al., 2010). Eq. (20) suggests that when a torsionally unconstrained F-actin is undergoing

bending deformation, spontaneous twist will be induced in the filament to minimize the

strain energy. It can easily be shown that 2Ue/kBT = (LB−L2
TB/LT )κ2

1 when the minimum

energy state is reached. In comparison, if the F-actin is fully constrained against twist (i.e.

κ3 = 0), then the strain energy density in the filament is simply 2Ue/kBT = LBκ
2
1. At

this point, it is clear that we just need to increase the effective bending rigidity EI from

(LB−L2
TB/LT )kBT to LBkBT if all filaments in a 2D network change from being torsionally

unconstrained to fully confined against twist (by, for example, rigid corsslinking proteins).

However, such increase is very small (around 1%), given that LB/(LB −L2
TB/LT ) ≈ 1.01 for

LB = 12µm, and hence the influence of filament twist on the deformation of 2D networks

should be negligible, as confirmed by the simulation results shown in Fig. 10. Of course,

considering the effect of filament twist in a two-dimensional configuration will inevitably be

ambiguous. To really answer this question, simulations on networks with realistic three-

dimensional structures must be conducted.

It is noteworthy to mention that, besides finite element method (FEM), other compu-

tational approaches have also been developed to determine the deformation of semi-flexible

networks. For example, Levine and co-workers (Head et al., 2003a; Bai et al., 2011) have

discretized the network by assigning nodes at every crosslinking points, as well as the mid-

points between each pair of adjacent crosslinks, and then estimated the strain energy in

terms of the extension and angle rotation of each segment. Such approach is more effi-

cient than FEM because, effectively, only the first bending mode between two neighboring

crosslinks has been considered. However, in terms of accuracy, this method will not be

as good as FEM especially for flexible networks where higher bending modes of individual
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filament may contribute significantly to their bulk response. In addition, as pointed out

earlier, modal analysis has been used by Van der Giessen and co-authors (Onck et al., 2005;

Dillen et al., 2008) to introduce undulations of filaments in the network at its stress free

state to represent the influence of entropy, a treatment greatly simplying/accelerating the

calculation but, at the same time, overlooking the dynamic nature of thermal excitations.

We must point out that crosslinking points between filaments are treated as rigid and

infinite strong in this study while, in reality, cross-linker proteins are deformable and their

binding with F-actin can also be disrupted by force. In addition, the focus here is to examine

how factors like entropy, filament bending, and filament stretching influence the behavior

of networks while the role of other important players such as filament concentration and

cross-linker density has not been investigated. Careful studies in the future are needed to

address these important issues.

Concluding remarks

In this paper, we developed a numerical method to capture the thermal undulations of

bio-polymers and then applied it to investigate the mechanical response of physiologically

relevant actin networks. Main results of this study can be summarized as follows

• A Langevin dynamics based formulation is proposed to describe the shape fluctuations

of bio-filaments. We show that, solutions of the resulting stochastic partial differential

equation(SPDE) asymptotically reduce to predictions from classical modal analysis for

simple problems and hence unambiguously provide support to this approach.

• Methods have been developed to implement the formulation in finite element (FEM)

simulations where, in addition to entropy, the finite deflection of filament has also been
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taken into account by introducing the well-known von Karman strain.

• The validity of the proposed finite element-Langevin dynamics (FEM-LD) approach is

verified by comparing the simulation results on the behavior of a single filament with

various theoretical predictions.

• As an application, our method is used to investigate the mechanical response of net-

works consisting of numerous randomly crosslinked F-actin. Simulation results indi-

cated that, as deformation progresses, the response of such network undergoes transi-

tions from being entropy dominated to being governed by filament bending and then,

ultimately, to being dictated by filament stretching. Furthermore, the levels of macro-

scopic stress at which these transitions take place were found to be around 1 and 10

percent, respectively, of the initial bulk modulus of the network.

• Our results quantitatively agree well with experimental data on the strain-hardening

behavior of Fibroblasts.

We expect that the FEM-LD approach proposed here to be very useful in simulating

phenomena like actin-driven motility (Lin, 2009; 2010; Rafelski et al., 2009; Dayel et al.,

2009; Lin et al., 2010) where thermal undulations of polymerizing filaments are thought

to play a central role. In addition, it can also serve as a computational platform for fu-

ture studies on the dynamics (Lieleg et al., 2010; 2011) or mechanical response (Hong et

al., 2008; 2010) of biopolymer networks/gels where the influence of factors like the associ-

ation/dissociation (Broedersz et al., 2010) and possible unfolding (Kim et al., 2009; 2011)

of cross-linking proteins on the bulk viscoelastic rheological behavior of the network can be

systematically examined. Investigations along these lines are in progress.
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Appendices

Appendix-A

To determine the viscous coefficient ξ and ξax introduced in our formulation, we have to

estimate the drag force acting on an infinite cylinder moving transversely as well as longitu-

dinally in the fluid, as shown in Fig. A1. The governing equations in this case are (Ockendon

and Ockendon, 1995)

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ µ∇2
u, (A1)

and

∇ · u = 0 (A2)

where u is the velocity vector, t represents time, p is the pressure, ρ and µ are the density

and viscosity of the the fluid, respectively. Notice that (A1) is the famous Navier-Stokes

equation and (A2) comes from the assumption that the fluid is incompressible.

The problem depicted in Fig. A1(a) has been considered by various researchers.

Specifically, when the so-called Reynolds number (i.e. 2ρV a/µ) is small, the steady state

drag force (per unit length) acting on the cylinder has been found to be of the order of 4πµV

(Tritton, 1988; Ockendon and Ockendon, 1995). Hence, we can estimate that the value of ξ

is around 4πµ. For the case where the cylinder is moving along the longitudinal direction

as shown in Fig. A1(b), the problem is axisymmetric and so, at steady state, the velocity

and pressure fields can be expressed as (in the cylindrical coordinates)

u = uz(r)~ez , p = p(r) (A3)
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Figure A1: Schematic plot of an infinite-long cylinder (with radius a) moving transversely
(a), as well as longitudinally (b), with a velocity V in the fluid.

where ~ez is the unit vector along the axial direction. Notice that since we are dealing with

an infinite cylinder, u and p are not expected to depend on z. To estimate the frictional

force, assume that there is a stationary boundary at r = b where the fluid velocity drops to

zero. In this case, the solutions are

uz(r) =
ln(b/r)

ln(b/a)
V, p = p0. (A4)

The drag force acting on the cylinder can then be calculated as

fz = 2πaµ
duz(r)

dr
|r=a= −

2πµ

ln(b/a)
V (A5)

where the negative sign stands for the fact that the frictional force is opposite to the direction

of motion. In light of (A5), ξax can be found as ξax = 2πµ

ln(b/a)
. Recall that the conclusion

that ξ ∼ 4πµ is obtained by considering a long cylinder moving transversely in an infinite
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fluid medium (Tritton, 1988; Ockendon and Ockendon, 1995). Hence, to be self-consistent,

we must take b/a to be very large when comparing the values of ξax and ξ. At this point, it

is clear that the viscous coefficient associated with the axial movement of a filament segment

should be much smaller than that corresponding to its transverse motion, that is ξax << ξ.

A simple explanation is given in Fig. A2 where the relative motion of medium molecules

with respect to the cylinder is illustrated. Basically, liquid molecules near a cylinder moving

transversely must change their moving speed and direction, as shown in Fig. A2(a), leading

to a relatively high macroscopic drag force. In contrast, at steady state, medium molecules

near a cylinder surface will not be significantly disturbed by its axial movement (instead,

they just move along with the cylinder), refer to Fig. A2(b). As a result, the frictional force

acting on the cylinder is expected to be very small in this case.

� � � � � � � � � � � � � �

� � � � � �

�

� �

Figure A2: Illustration of the relative motion of medium molecules with respect to the
moving cylinder. (a)-liquid molecules (small circles) must change their speed and moving
direction to circulate around an infinite cylinder moving transversely. (b)-for an infinite
cylinder moving along the longitudinal direction, liquid molecules near its surface do not
need to change their motions, instead they just keep moving along with the cylinder.

It must be pointed out that the conclusion obtained here (i.e. the drag coefficient of a

filament segment moving along the axial direction of the rod is much smaller than that of the
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same segment moving perpendicular to the filament) is different from that by considering

the free diffusion of a rod, as depicted in Fig. A3(a), where the drag forces prevent the

whole rod from moving longitudinally and transversely, respectively, have been found to be

within a factor of two of each other (Broersma, 1960; Cyron and Wall, 2009; 2010). However,

we believe that our approach is more appropriate for examining the mechanical response of

biopolymer networks for several reasons

• First of all, unconstrained rigid body motions (i.e. linear translation and rotation)

of the filament are inadmissible in analyzing the deformation of biopolymer networks

(or any other solid structures for that matter) because of the confinement at the

boundaries and the fact that different filaments are connected to each other. Therefore

motion of a segment is determined by the displacement of its neighbors; as such, the

scenarios shown in Fig. A3(a) are not directly relevant here. To make this point

clear, let’s consider the network shown in Fig. A3(b) where three filaments crosslink

to form an equilateral triangle with all corners fully constrained against displacement.

Evidently, no linear translation or rotation of the whole filament is possible/allowed

when examining the deformation of such structure. Instead, we should look at the

movement of a segment within a filament (that is, not an isolated cylinder with two end

faces exposed to the medium) which, we believe, is consistent with the two-dimensional

treatment of the problem adopted here.

• More importantly, a natural consequence of using the picture shown in Fig. A3(a) to

estimate the viscous force acting on the filament is that the drag coefficients obtained

there inevitably depend on the total length, L, of the rod (Broersma, 1960; Cyron and

Wall, 2009; 2010) which will introduce serious consistency problems when applied to
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study the mechanical behavior of networks. For example, following this logic, drag

forces acting on three segments, each with the same element size ∆x and located at

the centers of each side of the equilateral triangle shown in Fig. A3(b), will be different

even if they all move with the same transverse speed (just because the three filaments

have different lengths, i.e. L1 6= L2 6= L3). However, in light of the symmetry (recall

that all corners of the equilateral triangle are constrained against displacement), the

magnitudes of these frictional forces are expected to be the same from a physical point

of view. This problem will become serious when, for example, in vivo actin networks

are considered where the length of F-actin can range from several tens of nanometers

to several microns. In comparison, such an issue will not appear if our approach is

adopted (that is, both ξ and ξax are independent of the total filament length from our

formulation, refer to Eq. (A5) and subsequent discussions).

• Finally, although we feel that it is more appropriate to take ξax as much smaller than

ξ, we have, nevertheless, conducted additional simulations by assigning non-vanishing

values of ξax. Notice that in this case a random axial force fax, which relates to

ξax via a relationship similar to that given in Eq. (1), acting on the filament also

needs to be introduced in the calculation. Specifically, we examined the mechanical

response of a single filament, as shown in Fig. 2, when ξax/ξ equals to 0.2, 0.5, and

1 respectively. Choosing the same parameters as those in Fig. 4, the mean square

of filament deflection at the mid-point (that is < w(L/2)2 >) under zero nominal

strain, i.e. ε = 0, against time is shown in Fig. A4. Interestingly, simulation results

corresponding to different ξax/ξ values all converge to the same level. Based on eight

independent calculations, the average of < w(L/2)2 >, as well as its deviation, as a
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function of ξax/ξ is plotted in Fig. A5(a). Similarly, the dependence of the axial force

F within filament, refer to Fig. 2, on ξax is illustrated in Fig. A5(b). Clearly, our

results suggest that the exact value of the longitudinal drag coefficient does not affect

the long-term response of the system.
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Figure A3: (a)-Standard picture for estimating drag forces on a rod under free diffusion.
(b)-A network consisting of three corsslinked filaments with different lengths. An equilateral
triangle is formed within the network with three corners constrained against displacement.
Three elements, at the centers of each side of the triangle and with the same size ∆x, are
highlighted in red.

Appendix-B

In our FEM formulation, a cubic interpolation of w and a linear interpolation of u are

adopted. In other words, it is assumed that, within element i, the displacement fields can

be expressed as
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Figure A4: Mean square of filament deflection at mid-point under zero nominal strain (i.e.
ε = 0, refer to Fig. 2). The parameters chosen here are the same as those in Fig. 4.

w(x) = φ1(x)wi + φ2(x)θi + φ3(x)wi+1 + φ4(x)θi+1, u(x) = ψ1(x)ui + ψ2(x)ui+1 (B1)

with θ = −dw/dx and

φ1(x) = 1 − 3

(

x− xi

∆x

)2

+ 2

(

x− xi

∆x

)3

, φ2(x) = −(x − xi)

(

1 −
x− xi

∆x

)2

φ3(x) = 3

(

x− xi

∆x

)2

− 2

(

x− xi

∆x

)3

, φ4(x) = −(x− xi)

[

(

x− xi

∆x

)2

−
x− xi

∆x

]

ψ1(x) = 1 −
x− xi

∆x
, ψ2(x) =

x− xi

∆x
(B2)

where ∆x = xi+1−xi with xi and xi+1 being the coordinates of the two ends of the element.

Let N(x) = [ψ1(x) φ1(x) φ2(x) ψ2(x) φ3(x) φ4(x)]
T , then the non-vanishing components
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Figure A5: (a)-< w(L/2)2 > as a function of ξax/ξ. (b)-The dependence of average filament
force on ξax/ξ (notice that < F > is negative here indicating that this force is tensile).
Results shown here are based on eight independent simulations with the nominal strain of
filament being zero.

of various matrices/vectors defined in (14) can be found as

Kpq = EA

∫ xi+1

xi

dNp

dx

dNq

dx
dx, Kmm = λ, Amm = −λ

Bpmn =
EA

2

∫ xi+1

xi

dNp

dx

dNm

dx

dNn

dx
dx, F u

p =

∫ xi+1

xi

fext
u Np(x)dx (B3)

where p(or q)= 1, 4 and m(or n)= 2, 3, 5, 6. λ is a large number (much bigger than other

components in K) introduced to enforce w∗ = wj as specified in (13). Similarly, the non-

vanishing components of various matrices/vectors introduced in (17) are

Mmn = ξ

∫ xi+1

xi

Nm(x)Nn(x)dx, Mpp = λ, Cmn = EI

∫ xi+1

xi

d2Nm

dx2

d2Nn

dx2
dx

Dmpn = EA

∫ xi+1

xi

dNm

dx

dNp

dx

dNn

dx
dx, Emnrs =

EA

2

∫ xi+1

xi

dNm

dx

dNn

dx

dNr

dx

dNs

dx
dx
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Fw
m =

∫ xi+1

xi

(

fj
i + fext

w

)

Nm(x)dx (B4)

where, again, p = 1, 4 and m(or n, r, s)= 2, 3, 5, 6. fext
w represents the externally applied

transverse load on element i. Since increments in u and w are calculated separately in our

scheme, special attention must be paid to junction points where multiple filaments crosslink

with each other as illustrated in Fig. B1. Let’s focus our attention on element i (shown in

Fig. B1) which shares a common node with elements from another filament. The first thing

we need to consider is that, in this case, the axial displacement ui of the common node,

defined in element i, also partially represents the deflection, i.e. w, defined in other elements

(such as element r in Fig. B1), suggesting that u̇∗i should not be zero when calculating the

velocity field in the second step of our scheme. As such, modifications to M, given in (B4),

must be made as

M11 = λJ(i, 1), and M44 = λJ(i, 2) (B5)

where J(i, 1) = 0 if the first node in element i is a junction point while equals to 1 otherwise.

Similarly, J(i, 2) will be non-vanishing (equals to 1) only when node 2 of the element is not

a crosslinking point. In addition to displacement, we also need to consider forces generated

at junction points. As depicted in Fig. B1, the axial force f i
ax generated within element i

will contribute to the bending of the other filament and hence must be taken into account

in the force vector F
w, defined in (B4), as
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Fw
1 = EA

[

u∗i+1 − u∗i
xi+1 − xi

+
(θ∗i )2

2

]

[1−J(i, 1)], and Fw
4 = −EA

[

u∗i+1 − u∗i
xi+1 − xi

+
(θ∗i+1)

2

2

]

[1−J(i, 2)].

(B6)
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Figure B1: Schematic plot of a junction point within the network.

Another issue we must point out is that the vector χ appeared in (14) and (17) contains

variables defined in the local coordinate system (attached to the element itself) which in

general can be different from the so-called global variables, defined in a fixed reference

frame (refer to Fig. B2), based on which actual calculations are conducted. Introducing a

new vector χ̂ =
[

ûi ŵi θ̂i ûi+1 ŵi+1 θ̂i+1

]T

with the hat symbol indicating that the

variable is defined in the global reference frame, the transformation between χ and χ̂ can

be achieved by

χ = T · χ̂ (B7)

where T is a 6 × 6 transformation matrix defined as (Reddy, 1993)
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Figure B2: Definition of local and global degrees of freedom as well as their relationship.

T11 = T22 = T44 = T55 = cosα, T33 = T66 = 1

T12 = −T21 = T45 = −T54 = sinα (B8)

with α being the rotation angle between the local and global frames, refer to Fig. B2. As

such, in terms of global variables, (14) can be rewritten as

∑

i

δχ̂∗

m

[

K̂mnχ̂
∗

n + Âmnχ̂
j
n + B̂mnrχ̂

j
nχ̂

j
r − F̂ u

m

]

= 0 (B9)

where

K̂ij = TkiKklTlj , Âij = TkiAklTlj

B̂ijk = TliBlmnTmjTnk, F̂ u
i = TjiF

u
j . (B10)
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Similarly, (17) can be transformed to

∑

i

δχ̂∗

m

[

M̂mn
˙̂χ
∗

n + Ĉmnχ̂
∗

n + D̂mnrχ̂
∗

nχ̂
∗

r + Êmnrsχ̂
∗

nχ̂
∗

rχ̂
∗

s − F̂w
m

]

= 0 (B11)

with

M̂ij = TkiMklTlj , Ĉij = TkiCklTlj , F̂w
i = TjiF

w
j

D̂ijk = TliDlmnTmjTnk, Êijkl = TmiEmnpqTnjTpkTql. (B12)

Notice that all subscript indices in (B10) and (B12) can assume values from 1 to 6. Finally,

in order to reduce memory cost, only the non-vanishing components of these matrices are

stored during the calculation.
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