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A New State-Regularized QRRLS Algorithm
With a Variable Forgetting Factor

S. C. Chan and Y. J. Chu

Abstract—This brief proposes a new state-regularized (SR) and
QR-decomposition-based (QRD) recursive least squares (RLS)
adaptive filtering algorithm with a variable forgetting factor
(VFF). It employs the estimated coefficients as prior information
to minimize the exponentially weighted observation error, which
leads to reduced variance over a conventional RLS algorithm and
reduced bias over an L2-regularized RLS algorithm. To improve
the tracking performance, a new measure of convergence status is
introduced in controlling the forgetting factor. Consequently, the
resultant SR-VFF-RLS algorithm stabilizes the update and adap-
tively selects the number of measurements by means of the VFF.
Improved tracking performance, steady-state mean-square error,
and robustness to power-varying inputs over conventional RLS
algorithms can be achieved. Furthermore, the proposed algorithm
can be implemented using QRD, which leads to a lower roundoff
error and more efficient hardware realization than the direct
implementation. The effectiveness of the proposed algorithm is
demonstrated by computer simulations.

Index Terms—Adaptive filters, QR decomposition (QRD),
recursive least squares (RLS), variable regularization, variable
forgetting factor (VFF).

I. INTRODUCTION

THE recursive least squares (RLS) algorithm [1] is an
effective adaptive filtering algorithm that has been widely

used in various applications, such as system identification,
interference suppression, and adaptive echo cancelation (AEC).
Compared with other adaptive filtering algorithms such as the
least-mean-square-based (LMS) algorithms [1], [2], the RLS
algorithms usually have a faster convergence speed. However,
an inherent problem of RLS-like algorithms is that the covari-
ance matrix of input signals may become poorly conditioned
or even singular if the input signal is not persistently exciting
[2]. This is often encountered in acoustic applications such as
AEC, where the level of the excitation signal usually varies
significantly over time. In such situations, the estimation error
variance of the RLS algorithm will increase considerably or
even become unstable. This is even more critical if a small for-
getting factor (FF) is used in variable FF (VFF)-RLS algorithms
at a nonstationary environment. To address this problem, a reg-
ularization technique [3]–[8], which is a useful tool for reducing
the estimation error variance, is usually incorporated into these
algorithms. L2 regularization is a widely used technique in

Manuscript received April 15, 2011; revised July 19, 2011, September 20,
2011, and November 14, 2011; accepted January 9, 2012. Date of publication
February 3, 2012; date of current version March 16, 2012. This paper was
recommended by Associate Editor P. K. Meher.

The authors are with the Department of Electrical and Electronic Engi-
neering, The University of Hong Kong, Pokfulam Road, Hong Kong (e-mail:
scchan@eee.hku.hk; yjchu@eee.hku.hk.).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2012.2184374

RLS algorithms. Recently, the performance of the weighted L2-
based RLS algorithm has been analyzed theoretically in [8].
L1 regularization, on the other hand, tends to produce sparse
solutions as in [9] and [10].

For both L1 and L2 regularizations, the estimated parame-
ters are penalized by the regularization term, leading to an
estimate that is biased toward zero. The undesirable bias can
be asymptotically suppressed to zero by using the smoothly
clipped absolute deviation (SCAD) [11] regularization. How-
ever, these regularization methods usually assume that the
parameters to be estimated possess sparsity, which may not
be applied directly and require additional sparsity-enhancing
transformations [10]. In this brief, a new state-based regular-
ization method for RLS algorithms is proposed. The proposed
state regularization differs from these previous studies in that it
employs the current estimated coefficients as prior information
and minimizes the observation errors as in the conventional
RLS algorithm. The concept is intimately connected to the
Kalman filter and the LMS algorithm, except that an infinite
number of measurements, as in the RLS algorithm, with vari-
able weighting is employed. Simulation results show that it has
a better steady-state MSE than L2 regularization due to the
reduced bias. For a sparse coefficient vector or sparse coef-
ficient changes, sparsity-enhancing transformation and SCAD
proposed in [11] can also be incorporated to achieve better
performance. Another contribution of this brief is to improve
the tracking performance of this state-regularized (SR) RLS
algorithm by introducing a new VFF scheme using a new mea-
sure of convergence status and the approach in [17] to vary the
FF. This resultant SR-VFF-RLS algorithm stabilizes the update
using the previous estimated filter coefficients and adaptively
selects the number of measurements used by means of the VFF.
Therefore, improved tracking performance, steady-state MSE,
and robustness to power-varying inputs over the conventional
RLS can be achieved. Furthermore, the proposed SR-VFF-RLS
algorithm can be implemented using the QR decomposition
(QRD) structure that leads to a lower roundoff error and more
efficient hardware realization than the direct implementation.
The effectiveness of the proposed algorithm is demonstrated by
computer simulations and comparison with conventional RLS
and gradient-based VFF-RLS (GVFF-RLS) algorithms [12].

II. SYSTEM MODEL AND THE QRRLS ALGORITHM

Consider the adaptive system identification problem where
an input signal x(n) is applied simultaneously to an L-order
adaptive transversal filter with weight vector w(n) = [w1(n),
w2(n), . . . , wL(n)]T and an unknown system to be identified
with an impulse response w0(n) = [w0_1(n), w0_2(n), . . . ,
w0_L(n)]T . Let x(n) = [x(n), x(n − 1), . . . , x(n − L + 1)]T
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be the input vector. Then, the output of the adaptive filter
is y(n) = xT (n)w(n). The measured output is used as the
desired signal d(n) of the adaptive filter as follows:

d(n) = xT (n)w0(n) + η(n) (1)

where η(n) denotes the additive noise or modeling error and the
superscript T denotes matrix transposition. The adaptive filter
aims to minimize error measurement of the estimation error
e(n) = d(n) − y(n). In RLS algorithms, the cost function is
minimized as follows:

J(n) =
n∑

i=0

λn−i(n)e2(i) (2)

where λn−i(n) = λ(n)λn−i−1(n − 1), 0 ≤ i < n serves the
purpose of an exponential window that puts less weight to errors
at distant past. Here, λ0(n) = 1 and λ(n) is the FF used at
the time index n, which usually satisfies 0 < λ(n) < 1. For
example, λn−i(n) can be chosen as λn−i, where λ is a constant
in a conventional RLS algorithm or is updated adaptively, as
in VFF-RLS algorithms. We only discuss RLS algorithms with
real input in this brief, although it can be extended to complex
systems. By setting the first partial derivative of J(n) with
respect to w(n) to zero, one finds that the optimal weight vector
satisfies the following normal equation:

RXX(n)wopt(n) = pX(n) (3)

where RXX(n) =
∑n

i=0 λn−i(n)x(i)xT (i) and pX(n) =∑n
i=0 λn−i(n)d(i)x(i) are the estimated covariance matrix

of x(n), which is of zero mean, and the estimated cross-
correlation vector of d(n) and x(n), respectively. Applying the
matrix inversion lemma to (3), the following RLS algorithm can
be obtained [1], [8]:

P (n) = λ−1(n)
(
I − k(n)xT (n)

)
P (n − 1) (4a)

k(n) =
P (n − 1)x(n)

λ(n) + xT (n)P (n − 1)x(n)
(4b)

w(n + 1) = w(n) +
(
d(n) − wT (n)x(n)

)
k(n) (4c)

where P (n) is the recursive update of R−1
XX(n) and I is an

identity matrix with an appropriate dimension. Equation (4) can
also be efficiently implemented using a QR-based algorithm
[8], as summarized in Table I, with the first update only.
This QRRLS algorithm is mathematically equivalent to but has
higher numerical stability than the direct implementation. The
arithmetic complexity is of order O(L2).

III. SR-VFF-QRRLS ALGORITHM

A. The SR-QRRLS Algorithm

In some acoustic and related applications, the input to the
adaptive filter, such as speech signals, may not be persistently
exciting when the input signal level is very low. Consequently,
the covariance matrix RXX(n) may be ill-conditioned, and a
large estimation error variance will result. To address this prob-
lem, a regularization term on the adaptive filter coefficients, i.e.,
κ(n)‖w(n)‖2

2, is usually imposed on the objective function (2)
to limit the variation in w(n). The solution, instead of (3), will
be modified to

(RXX(n) + κ(n)D) w(n) = pX(n) (5)

TABLE I
THE R-QRRLS/VR-QRRLS ALGORITHM

where κ(n) is a possibly variable regularization parameter and
D is a positive definite matrix. We note that the rank-1 update
of RXX(n) = RXX(n − 1) + x(n)xT (n) in the conventional
QRRLS algorithm can be efficiently implemented by updating
the Cholesky factor R(n) of RXX(n) recursively using the
QRD, as shown in recursion (i) of Table I. The update of the
term κ(n)D in (5) is however complicated since it is of full
rank. In [8], an L2-regularized QR recursive least M-estimate
algorithm was proposed. The idea is to apply the regularization
successively using QRD. For the LS case considered here,
the robust weighting in [8] can be chosen as unity, and it
gives a QRD implementation, as shown in Table I [i.(a)], for
approximating the L2 regularization. It can be seen that the
QRD is executed once for the data vector [xT (n), d(n)] and
once for the regularization vector [

√
µ(n)dl, 0] at each time

instant, where dl is the lth row of the regularization matrix
D and µ(n) = κ(n)L. If the vector is sequentially applied,
then l = (n mod L) + 1. Therefore, the complexity is twice
that of the RLS algorithm. Another solution for introducing
regularization to the least squares lattice algorithm was also
proposed in [7], where a vector composed of a shift-invariant
signal was introduced as additional inputs. If the regularization
parameter κ(n) is made variable at each iteration, this yields the
variable L2-regularized QRRLS algorithm. In [8], the following
regularization parameter κ(n) was proposed to balance between
bias and variance errors for white input:

κ(n) = σ2
xλ−1(n)

√
1 − λ(n)

√
γ

(
σ2

η/σ2
x(n)

)
/‖w0‖2

2 (6)

where γ=1/((1/L)(2 + ((1−λ(n))L/λ(n))) + (1−λ(n))L/
λ2(n)), σ2

x is the averaged input power over the whole duration,
whereas σ2

x(n) is the short-term averaged input power, which
can be estimated by using a FF; σ2

η is the noise variance; and
‖w0‖2

2 is the squared norm of the system channel, which is usu-
ally assumed to be known a priori [3]. For instance, in acoustic
applications, ‖w0‖2

2 can be estimated by, for example, Sabin’s
reverberation formulas [3]. By using L2 regularization, the ill-
conditioned problem can be improved significantly. However, it
is shown from (5) that L2 regularization introduces a bias to the
true solution, particularly when a large regularization parameter
is used. To solve this problem, let us rewrite (3) as

(RXX(n) + κ(n)I) w(n) = pX(n) + κ(n)w(n) (7)
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where D has been chosen as an identity matrix. First, it can
be seen that the optimal solution to (7) is identical to that of
(3). Second, the matrix RXX(n) + κ(n)I for a sufficiently
large κ(n) is positive definite and, hence, invertible. Therefore,
the regularization in (7) is unbiased and depends on the state
w(n). To iteratively solve (7), the weight vector w(n) on the
right-hand side is approximated by its values in the previous
iteration, i.e., w(n − 1). Hence, the algorithm is asymptotically
unbiased. The relationship between this simplified version of
(7) and the LMS algorithm can be seen by considering a
single measurement x(n) at time instant n, i.e., RXX(n) ≈
x(n)xT (n), pX(n) ≈ x(n)d(n); hence, it is unable to obtain a
unique solution to (7). However, the relaxation w(n) ≈ w(n −
1) allows us to utilize the prior information obtained up to the
(n − 1)th iteration and the current information. Equation (7),
after some manipulation, can be rewritten as

w(n) = w(n − 1) +
x(n)ep(n)

κ(n) + xT (n)x(n)
(8)

where ep(n) = d(n) − xT (n)w(n − 1). One immediately
recognizes that (8) is a variable step-size LMS algorithm with
the step size µ(n) = (κ(n) + xT (n)x(n))−1, which can also
be viewed as a normalized LMS algorithm with unity step size.
Thus, the relaxed form of (7) will reduce to the LMS algorithm
when one measurement is used. This partially explains the
improved performance of the LMS algorithm when the input
changes considerably. On the other hand, to avoid an excessive
bias, the number of measurements used in the RLS algorithm
should be reduced by using a small FF. In this case, the RLS
algorithm, without using the prior state information w(n − 1),
may become unstable. Sufficient L2 regularization may help
to avoid the instability, but the convergence speed has to be
compromised. By using the relaxed form of (7) and a small FF,
we shall show later that such relaxation can be realized using a
QRD implementation. Moreover, in a stationary environment,
a large FF can be used together with the QRD to utilize all the
available measurements. Since the regularization in (7) involves
changing the covariance matrix to RXX(n) + κ(n)I and the
cross-correlation vector to pX(n) + κ(n)w(n − 1), which is
a function of the previous state vector, we shall call it “state
regularization.” In fact, after removing the first term on both
sides of (7), the relaxation now becomes

I · w(n) ≈ w(n − 1) (9)

which is closely related to the state equation in the Kalman
filter. In fact, one can view (9) as a state equation, i.e., w(n) =
w(n − 1) + u(n) with u(n) being the state noise, which re-
quires the current weight vector to stay close to the previous
weight vector in case the number of relevant measurements is
limited at a nonstationary environment. If u(n) is Gaussian
distributed, an L2 regularization on the deviation from the
previous weight vector is imposed. Therefore, this algorithm
can be viewed as a special case of Kalman filter, except that
an infinite number of measurements with variable weighting
is employed in the QRD-RLS algorithm. Further, if u(n) is
assumed to be Laplacian distributed, an L1 regularization on
the deviation from previous weight vector should be imposed.
Since L1 and SCAD can be realized as weighted L2, we
only consider L2 regularization. Moreover, sparsity-enhancing
transformation, as proposed in [10], can also be used to im-

prove its performance for sparse coefficient vectors. Finally,
we note that the variable regularization parameter described
in (6) can be used together with the proposed SR QRD to
overcome the problem due to nonpersistent excitation. To solve
the relaxed form of (7) recursively, we need to find the QRD
of the matrix RXX(n) + κ(n)I . This can be implemented
in a similar way as the L2-regularized QRRLS. To imple-
ment the last term at the right-hand side of (7), we found
that, instead of appending [

√
µ(n)dl, 0] to the second QRD,

the state regularization can be approximately implemented by
appending [

√
µ(n)dl,

√
µ(n)wl(n − 1)] to the second QRD

successively, where wl(n − 1) is the lth element of w(n − 1).
The regularization parameter κ(n) can also be updated, as in
(6). This yields the proposed SR-QRRLS algorithm, as shown
in Table I [i.(b)]. This algorithm corrects asymptotically the
bias introduced by L2 regularization. By incorporating the VFF
scheme proposed later, it shows in simulation results that the
proposed SR-VFF-QRRLS algorithm combines advantages of
RLS and LMS while avoiding their disadvantages.

B. SR-QRRLS Algorithm With VFF

As mentioned earlier, to achieve a low steady-state excess
MSE (EMSE) in a stationary environment, a large FF has to be
used. On the other hand, a relatively small FF has to be used in a
nonstationary environment to facilitate tracking. Consequently,
the FF plays an important role in such RLS algorithms, and
much effort has been devoted to the selection of the FF to
obtain good performance in terms of convergence speed,
tracking capability, and steady-state EMSE in stationary and
nonstationary environments [12]–[15], [18]. In [13] and [14],
the FF was updated by applying an appropriate weighting
window to the input data sequence. However, it is not easy to
determine the parameters for adjusting the FF. In [12], the FF is
adaptively adjusted according to the gradient of the estimated
MSE so as to minimize the MSE. However, the tracking speed
for sudden-change parameters may be degraded since FF may
converge slowly. Recently, a robust VFF-RLS algorithm has
been proposed in [15] with a similar performance to that in [12].
Intuitively, the FF controls how the measurements are used in
estimation. A less number of measurements should be used if
the estimation variance increases rapidly due to nonstationary
inputs or systems. Here, we propose a measure of the estimation
variance of w(n) to determine the number of measurements
and, hence, FF to be used. It is known from the classical perfor-
mance analysis of the LMS algorithm for Gaussian inputs [16]
E[x(n)e(n)] = E[x(n)(xT (n)(w0(n) − w(n)) + η(n))] =
RXXE[v(n)], where v(n) = w0(n) − w(n) is the weight
error vector. Therefore, a good measure of the convergence
status is the estimated norm of its time average as follows:

σ2
xe(n) = λeσ

2
xe(n − 1) + (1 − λe)xT

e (n)xe(n) (10)

where λe is an FF and xe(n) is averaged from x(n)e(n) over
a time window of length Ts so as to suppress the effect of
background noise on σ2

xe(n). By adopting the approach in [17],
we propose to estimate the exponential window size of the
algorithm L(n) at each time instant from the measure in (10)
as follows:

L(n) = round
{
LL +

[
1 − g

(
GN (n)

)]
(LU − LL)

}
(11)
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where GN (n) = σ2
xe(n)/σ2

0 with σ2
0 is the average of the

first Ts0 estimates of σ2
xe(n) at the beginning of adaptation;

the operator round{.} rounds its argument to the nearest
integer; LL and LU are the lower and upper bounds of L(n),
respectively; and g(x) = min{x, 1} is a clipping function that
keeps its positive argument x within the interval [0, 1]. From
(11), the factor then can be estimated as

λ(n) = 1 − 1/L(n). (12)

Equations (10)–(12) yield the proposed VFF scheme for SR-
VFF-QRRLS. It can be seen that if a system change with
σ2

xe(n) comparable to or larger than σ2
0 is encountered, a

small FF will be chosen to obtain fast tracking speed. At the
steady state, GN (n) is usually small, and a larger FF will be
employed to obtain a smaller EMSE. Therefore, σ2

0 serves as a
reference for measuring the magnitude of σ2

xe(n) to control the
FF through (11) and (12). To reduce the effect of input power on
σ2

0, we assume that an approximate nominal signal level σ̂2
x is

available, e.g., from users’ experience or experiments. Let σ̂2
x0

be the signal level recorded during the computation of σ2
0. Then,

σ2
0 can be scaled by σ̂2

x/σ̂2
x0 for later computation to account

for possible dependence on the input power. Alternatively, σ2
0

can be obtained from Monte Carlo simulations using typical
signal levels and system impulse response, if this information
is available.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed algorithms,
computer simulations of the system identification problem are
carried out. Their performances are compared with the conven-
tional RLS algorithm and the GVFF-RLS algorithm proposed
in [12], which usually outperforms other VFF algorithms in
convergence and tracking speed [15]. Three different situations
are considered. First, the convergence and tracking behavior
of various algorithms is examined in a sudden-change model.
Second, the tracking capability of these algorithms is studied
in a random-walk channel model. Finally, a commonly encoun-
tered situation in acoustics, where the system is of long impulse
response and the input power is time-varying, is studied. Unless
specified otherwise, the simulation results are averaged over
100 Monte Carlo runs.

A. Performance Comparison in a Sudden-Change Channel

In this experiment, the impulse response of the system to
be identified changes from w0(0) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]T to w0(1500) = [0.1,−0.2,−0.3,−0.4,−0.5,
−0.6, 0.7, 0.8, 0.9, 1]T at the 1500th iteration. Both white
and colored inputs are used to excite the system. The white
Gaussian input is of zero mean and unit variance, whereas the
colored input is simulated by a first-order autoregressive (AR)
process: x(n) = 0.9x(n − 1) + g(n), where g(n) is a zero-
mean Gaussian sequence with unit variance. The additive noise
power at the output w0 is set to achieve an SNR of 10 dB,
where SNR = 10 log10(((1/N)

∑N
n=0 y2(n))/σ2

η), and N is
the signal length. The proposed SR-VFF-QRRLS are compared
with the conventional RLS and the GVFF-RLS algorithm [12].
For a fair comparison, the VFF scheme is also applied to the
L2-QRRLS algorithm with a constant FF in [8]. The resultant

Fig. 1. Learning curves for EMSE in the sudden-change channel model with
white Gaussian input at SNR = 10 dB.

Fig. 2. Learning curves for EMSE in the sudden-change channel model with
first-order AR input at SNR = 10 dB.

Fig. 3. Learning curves for EMSE in the random-walk channel model with
first-order AR input at SNR = 15 dB.

algorithm is denoted as L2-VFF-QRRLS. The FF of the RLS
algorithm is set to be 0.996. The parameters of the GVFF-RLS
algorithm are α = 0.3, β = 0.99, µ = 0.04, as used in [12],
which also give best performance under this setting. ω∗ is cho-
sen as 0.996 to achieve a similar EMSE to the RLS algorithm.
After extensive testing, the following parameters for the VFF
scheme are recommended to achieve a satisfactory performance
under various conditions: a short window length Ts = 20 and
λe = 0.9 are used to achieve a quick response when the system
changes rapidly, and a longer window Ts0 = 100 is used to
estimate a more reliable reference for the convergence status
σ2

0. LL and LU are, respectively, chosen as 20 and 600 so that
the minimum and maximum FFs are 0.95 and 0.998. The EMSE
curves of all the algorithms are shown in Figs. 1 and 2. The
FF and the regularization parameter κ(n) are also shown in the
subplots of the figures. The two VFF-QRRLS algorithms have
similar convergence speed with that of GVFF-RLS. However,
they have faster tracking speeds when the system changes at
the 1500th iteration due to the fast response of the proposed
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Fig. 4. Learning curves for EMSE (c) for the impulse response in (a) with a segment of music shown in (b) as input at SNR = 15 dB.

measure GN (n). The initial convergence speed of SR-VFF-
QRRLS over L2-VFF-QRRLS is not significant because the SR
tries to constrain w(n) around its initial value 0. Comparing
the results for white and colored inputs, the SR-VFF-QRRLS
converges to a lower steady-state EMSE than the other algo-
rithms with colored inputs, although they use similar FFs. This
is because the regularization further normalizes eigenvalues of
colored input covariance matrix as [8]. The high steady-state
EMSE of L2-VFF-QRRLS is due to the bias of L2. Similar
observations were obtained at different SNRs, and they were
omitted due to page limitation.

B. Performance Comparison in a Random-Walk Channel

Identification of a time-varying system is considered in this
experiment. The random-walk model for channel coefficients is
w0(n + 1) = w0(n) + υ(n), where w0(0) is the same, as in
Section IV-A, and υ(n) is a white Gaussian vector sequence
with zero-mean and variance matrix σ2

υI . σ2
υ, and the SNRs are

chosen as 5 × 10−5 and 15 dB, respectively. The input signal is
the first-order AR process mentioned before. All the algorithm
parameters are identical to that in the sudden system change
model. The EMSE curves are shown in Fig. 3. As can be seen,
the SR-VFF-QRRLS algorithm has the best tracking perfor-
mance due to the effectiveness of the state regularization im-
posed by (9). There is a bias in the L2-VFF-QRRLS algorithm
caused by L2 regularization, particularly after system changes.

C. Performance Comparison With Time-Varying Input Power

In this experiment, the performance of the algorithms is
examined in an environment with time-varying input power.
The sampling frequency is 16 kHz. A longer channel is used
to simulate the acoustic impulse response inside a vehicle as
shown in Fig. 4(a), and its length is 200. The input signal is
a segment of music, as shown in Fig. 4(b). The SNR is set
to be 15 dB. The FF of the RLS algorithm is set to be 0.99.
The other algorithmic parameters are the same as that in the
previous experiment. The performances of various algorithms
are compared in Fig. 4(c). It shows that RLS is very sensitive to
input power. The estimation variance becomes very large when
the exciting signal is low due to the ill-conditioning problem of
the RLS algorithm. GVFF-RLS cannot alleviate this problem
by using the VFF. The two regularized VFF-RLS algorithms,
however, adaptively select the regularization parameters and
offer high immunity to variation in input power. Compared
with L2-VFF-QRRLS, SR-VFF-QRRLS obtains even faster
convergence speed, better stability, and lower EMSE values.

V. CONCLUSION

A new SR-VFF-QRRLS algorithm, which employs previous
estimated filter coefficients to stabilize the update and a VFF,
has been presented. Improved tracking performance, steady-
state MSE, and robustness to power-varying inputs over con-
ventional RLS can be achieved.
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