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Abstract—Using the three-order symplectic integrators and fourth-order collocated spatial 

differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to 

solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for 

discretizing Schrödinger equation is described. Then the numerical stability and dispersion 

analyses are provided for the FDTD(2,2), higher-order FDTD(2,4) and SFDTD(3,4) schemes. Next, 

to implement the Dirichlet boundary condition encountered in the quantum eigenvalue problem, 

the image theory and one-sided difference technique are manipulated particularly for high-order 

collocated differences. Finally, a detailed numerical study on 1D and 2D quantum eigenvalue 

problems is carried out. The simulation results of quantum wells and harmonic oscillators 

strongly confirm the advantages of the SFDTD scheme over the traditional FDTD method and 

other high-order approaches. The explicit SFDTD scheme, which is high-order-accurate and 

energy-conserving, is well suited for a long-term simulation and can save computer resources with 

large time step and coarse spatial grids. 

Keywords—symplectic integrators; high-order collocated differences; Schrödinger equation; 

numerical stability and dispersion. 

Ⅰ.  INTRODUCTION 

Numerical solutions of Schrödinger equation have become increasingly important because of the 

tremendous demands for the design and optimization of nanodevices where quantum effects are 

significant or dominate [1]. The eigenvalue problem of Schrödinger equation is fundamentally 

important for the quantum transport and nanodevice modeling. The ballistic electron transport strongly 

depends on the transverse eigenstates of the conducting channel, which strongly relates to the 

nonequilbriium green’s function [1]. Various intriguing phenomena related to the microscopic electron 



transport, such as the resonant tunneling effect [2], Fano-resonance [3], etc, are attributed to the 

excitation of eigenstates or interplay of different eigenstates. Thus, an accurate and efficient method to 

calculate the eigenstates and eigenfrequencies plays an important role in understanding the fundamental 

and device physics. Moreover, eigenstates and eigenfrequencies extraction tailored to industrial 

requirements is also indispensable in quantum computer aided design (CAD). One of commonly 

adopted methods to solve the time-dependent eigenvalue problem of Schrödinger equation is the FDTD 

method [4, 5], but it suffers from intolerable dispersion errors in a long term simulation. 

A large quantity of physical phenomena can be modeled by Hamiltonian differential equations whose 

time evolution is the symplectic transform and flow conserves the symplectic structure [6-9]. The 

symplectic schemes include a variety of different temporal discretization strategies designed to preserve 

the global symplectic structure of the phase space for a Hamiltonian system. They have demonstrated 

their advantages in numerical computations for the Hamiltonian system, especially for a long-term 

simulation. The symplectic scheme has been successfully applied to solve Schrödinger equation with 

three different strategies. For the time-dependent Schrödinger equation, one scheme splits the complex 

wave function into real and imaginary parts [10-13], and another one decomposes the Hamiltonian into 

the kinetic and potential operators [13, 14]. For the time-independent Schrödinger equation, the 

symplectic scheme can also be employed if the generalized coordinate (complex wave function) and 

generalized velocity (spatial derivatives of complex wave function) are introduced [15, 16]. Moreover, 

the symplectic scheme has been extended to solve the nonlinear Schrödinger equation [17, 18]. 

Rigorously speaking, the symplectic scheme is particularly useful for solving Schrödinger equation 

satisfying the energy conservation law for the sum of kinetic and potential energy, which is different 

from Maxwell’s equations dissipating the electromagnetic energy through the lossy materials [19]. 

In comparison with previous works, our work offers some new contributions described as follows: (1) 

a rigorous numerical stability and dispersion analyses of the high-order SFDTD scheme; (2) a 

comparative study of boundary treatments for infinite potential wells; (3) apply the high-order SFDTD 

scheme to the eigenvalue problem of Schrödinger equation and demonstrate its advantages 

comprehensively in terms of accuracy, convergence, and energy conservation. 

The organization of the paper is given as follows. The general formulations of the high-order SFDTD 

scheme for discretizing the time-dependent Schrödinger equation are presented in Section 2. Analyses 

and comparisons of numerical stability and dispersion are described in Section 3. The boundary 

treatments for quantum eigenvalue problems are discussed in Section 4. The numerical results of 1D 



and 2D quantum wells and harmonic oscillators are shown in Section 5. Conclusion is summarized in 

Section 6. 

II. Symplectic Framework of Schrödinger Equation 

A. Traditional formulations 

The time-dependent Schrödinger equation is given by [2] 
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where   is the wave function that is a probability amplitude in quantum mechanism describing the 

quantum state of a particle at position r  and time t , m  is the mass of the particle, 2
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kinetic energy operator,  rV  is the time-independent potential energy, and V
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 is the 

Hamiltonian operator. To avoid using complex numbers, one can separate the variable  tr,  into its 

real and imaginary parts as 

     tritrtr IR ,,,                                (2) 

Inserting Eq. (2) into Eq. (1), we can get the following coupled set of equations [5] 
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A mesh is defined in a discrete set of grid points that sample the wave function in space and time. 

The discretized real and imaginary parts of the wave function can be represented as 
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where x , y , and z  are, respectively, the spatial steps in the x , y , and z  coordinate directions, 

t  is the time step, i , j , k  and n  are integers. The first-order time derivatives can be discretized 

by a second-order centered-difference scheme. The second-order Laplace operator in Eqs. (3) and (4) is 

discretized by using the second-order collocated difference, which distinguishes from the Yee (staggered) 

cell in the FDTD method of Maxwell’s equations [20, 21]. As a result, the update equations of the real 



and imaginary parts of the wave function are of the forms 
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B. Symplectic scheme 

A wave function of space and time evaluated at a discrete point in the collocated grid and at a discrete 

stage in the time step can be notated as 

              ( , , ) , , , ( )n l m
x y z l ti j k i j k n                           (9) 

where /n l m  denotes the lth  stage after n  time steps, m  is the total stage number, and l  is 

the fixed time with respect to the lth  stage. 

For the spatial domain, the explicit qth -order-accurate collocated differences are used to discretize 

the second-order spatial derivatives, i.e. 

   
2 /2

1
2 2

/2

1n l m q
n l m q

r
r qh

W h r O 


 



 



 
      

                 (10) 

where , ,x y z  , , ,h i j k , and rW  is the spatial difference coefficients as shown in Table I. 

 

Table I.  Coefficients of qth -order collocated differences 

 

 

 

 

 

With the help of Eqs. (3) and (4), the Schrödinger equation can be casted into a matrix form 

Order (q) 2W  1W  0W  1W  2W  

2  1 -2 1  

4 121  34  25  34  121  
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where 0vA  and 0vB  if 2v . It is easy to proof that L  in Eq. (11) is an asymmetric operator 

and therefore the exact solution of Schrödinger equation exp( )Lt  is an orthogonal operator. In other 

words, the time evolution of Schrödinger equation essentially rotates the normalized wave function with 

a perfectly energy-conserving feature. Using the product of elementary symplectic mapping, the exact 

solution of (11) from 0t   to tt    can be approximately reconstructed [22, 23] 
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where lc  and ld  are the coefficients of symplectic integrators, and p  is the order of the 

approximation. The symplectic integrators can satisfy the time-reversible condition or symmetric 

condition [11, 22, 24]. Here we use 3m   and 3p  , thus a three-stage three-order explicit 

symplectic integrator is constructed [20]. The high-order SFDTD(3,4) scheme, which is 

third-order-accurate in time and fourth-order-accurate in space, can hold the energy-conserving property 

of Schrödinger equation without the amplitude error. The detailed update equation for the real part of 

the wave function at the lth  stage can be written as 
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Ⅲ.  Numerical Stability and Dispersion Analyses 

A. Stability analysis 

According to the von Neumann stability method, the solution of the wave function can be represented 

as a superposition of plane-waves 

 )(exp),,,( 00 zzyyxx kkkjkijAtzyx   

0 sin cosxk k   , 0 sin sinyk k   , cos0kkz        (19) 

where 0
mp

k 


 is the wave number, mp  is the momentum, and   and   are the spherical angles. 

The qth -order collocated differences are used to discretize the second-order spatial derivatives, i.e. 
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For simplicity, we consider a 1D Schrödinger equation with zero potential energy 
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and corresponding spatial discretization form is given by 

0
2

0
2

z
R R

I I
z

m
t

m

 
 





     
           
 



                    (22) 

It is trivial to access the discretized evolution matrix dL  with the high-order symplectic integration 

scheme 
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The eigenvalues   of the evolution matrix satisfy the following eigen-equation 

0)det()(2  dd LLtr                               (24) 



where )( dLtr  and )det( dL  are the trace and determinant of the evolution matrix, respectively. 

Regarding that the discretized evolution matrix is a symplectic matrix with the determinant of 1. The 

eigen-equation then can be simplified as 
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The above results can be generalized to a 3D Schrödinger equation with zero potential energy, i.e.  
l

zyxt

m

l
l

ld

m
gLtr 

















 


 22

2

1

)(
2

)1(2)( 
                (28) 

Finally we can get 
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where CFL  is the Courant-Friedrichs-Levy (CFL) number. Table 2 lists the maximum stability (CFL 

number) of the traditional FDTD(2,2) method, FDTD(2,4) approach, and SFDTD(3,4) scheme. The 

symmetric symplectic integrators for the SFDTD(3,4) scheme is given as follows: 26833010.01 c , 

18799162.02 c , 91966152.03 c , and 1l m ld c   (1 l m  ). 

Table II. The numerical stability for various algorithms. 1,2,3d   is the dimension number. 

 

 

 

 

 

 

 

From the table, we can conclude that the spatial high-order collocated differences decrease the CFL 

Algorithm CFL Number 

FDTD(2,2)  d1/  

FDTD(2,4)  d0.8660/  

SFDTD(3,4)  d1.3019/  



number, which can be improved by the high-order symplectic integrators. Particularly, the stability of 

the SFDTD(3,4) scheme can go beyond that of the traditional FDTD(2,2) method through a careful 

optimization of symplectic integrators. An open question lies at what is the fundamental stability limit 

for the high-order symplectic scheme, which should be studied in future work. 

 

B. Numerical dispersion analysis 

The dispersion relation of free space photon described by Maxwell’s equations is of form 

|| 0kc                                  (30) 

where c  is the speed of light and ),,(0 zyx kkkk  is the wave vector with the amplitude of 0k . 

Critically different from free space photon with the cone-shaped 3D dispersion relation, the dispersion 

relation of free electron is a paraboloid, i.e. 
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Resembling to Maxwell’s equations, we can define a dummy velocity of Schrödinger equation as 
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, so Eq. (31) can be rewritten as 
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According to the plane wave expansion and energy-conserving property of symplectic schemes, the 

dispersion relation of free electron can be written as 
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The relative error of phase velocity is given by 
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 , and   can be obtained by Eq. (33). 

We set the stability criterion to be 
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 that is the maximum stability of the 

FDTD(2,4) approach. Fig. 1 shows the relative phase velocity error as a function of points per 

wavelength (PPW) for a plane wave traveling at  0  and 0   . The spatial resolution is set to be 

7 points per wavelength. We redraw the relative error at 30    versus the propagating angle   as 



shown in Fig. 2. According to Figs. 1 and 2, the SFDTD(3,4) scheme and the FDTD(2,4) approach 

show lower numerical dispersion than the traditional FDTD(2,2) method. Accordingly, the high-order 

collocated differences allow coarser grids within a given error bound, which in turn results in shorter 

CPU time and less storage. Intriguingly, the high order symplectic integrators did not reduce the 

dispersion compared to the low-order symplectic integrators (second-order staggered time stepping 

strategy), which is quite different from the corresponding results of Maxwell’s equations [19, 25].  
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Fig. 1.  The relative dispersion error as a function of the spatial resolution (points per wavelength). 
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Fig. 2.  The relative dispersion error as a function of the spherical angle  . The spherical angle is 

30 , the spatial resolution is 7 points per wavelength, and the stability constant is 
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.Ⅳ  Boundary Conditions 

For solving the eigenvalue problem of Schrödinger equation, the Dirichlet boundary condition should 

be implemented properly to guarantee the simulation accuracy. Taking a one-dimensional quantum well 

as an example, we have   00   and   0L  respectively for the left and right boundaries, where 

L is the length of the quantum well. 

In view of high-order spatial differences, the image theory [26] and one-sided difference technique 

[27] adopted in Maxwell’s equations can be naturally extended to Schrödinger equation. For the image 

theory, we impose the wave function at the left boundary as   00  ,    11~   , and 

   22~   , where  1~  and  2~  correspond to the image points of  1  and  2  as 

illustrated in Fig. 3(a). For the right boundary, we have   0L ,    11~  LL  , and 

   22~  LL   as shown in Fig. 3(b). 

         

               (a)                                        (b) 

Fig. 3.  A schematic pattern of the image theory method.  

 

For the one-sided difference technique (Fig. 4), the high-order one-sided difference at the left 

boundary is given by 
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Likewise, the one-sided difference at the right boundary is of form 
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               (a)                                      (b) 

Fig. 4.  A schematic pattern of the one-sided difference technique.  

 

Ⅴ.  Numerical Results 

A.  1D Schrödinger equation 

(a)  A particle in a 1D box 

The simplest form of a particle in a box model considers a one-dimensional system. Here, the particle 

only moves backward and forward along a straight line with impenetrable barriers at either end. The 

walls of a one-dimensional box may be visualized as regions of space with an infinitely large potential 

energy. The potential energy is  
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where a  is the length of the box and x  is the position of the particle within the box. 

Regarding the simulation domain and cell size, they depend on the length of the box to be simulated 

and the highest eigenenergy of the particle of interest, respectively. Without loss of generality, we 

choose the domain to be  34,0x . The cell size 1x , the stability constant in Eq. (18) is 

1.0
22
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 , and the iteration step 41000max N . The eigenenergies of the quantum well are 

quantized as 
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In order to excite all possible modes, the delta source is located at the center of the box with two grids 

offset. Table Ⅲ lists the calculated eigenfrequencies. Compared with the analytical solution, 

SFDTD(3,4) scheme can achieve best accuracy.  

 

Table Ⅲ.  The eigenfrequency comparisons for a particle in a 1D infinite well. 

Algorithm FDTD(2,2) FDTD(2,4) SFDTD(3,4) Analytical 

1  240 242 247 247 

2  981 983 998 998 



3  2220 2222 2227 2227 

 

To further confirm the advantages of the SFDTD(3,4) scheme, the errors between the calculated 

eigenstates and the analytical solutions are depicted in Fig. 5. Obviously, the error associated with the 

SFDTD(3,4) scheme is significantly suppressed. 
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Fig. 5.  The errors between the third eigenstate (the real part of the wave function) calculated and the 

analytical solution for a particle in a 1D infinite well.  

 

Fig. 6 shows the 2L  norm error as a function of the grid size for the third eigenstate. Using the 

image theory to treat the impenetrable boundary, the high-order spatial differences indeed reduce the 

numerical error but achieve the same convergence rate compared with the low-order spatial difference 

method. Fig. 7 corresponds to the one-sided difference technique, where the high-order convergence 

rate can be clearly observed. By the aid of the high-order strategies applied both in space and time 

domains, the SFDTD(3,4) scheme achieves the best convergence rate. 
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Fig. 6.  The 2L  norm error (between the third eigenstate calculated and the analytical solution) as a 

function of the grid size. The image theory is adopted for boundary treatments. 
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Fig. 7.  The 2L  norm error (between the third eigenstate calculated and the analytical solution) as a 

function of the grid size. The one-sided difference technique is adopted for boundary treatments. 

 

The energy-conserving property of Schrödinger equation determines the normalized condition of the 



wave function in long-term simulations. In order to testify the property, a Gaussian pulse is employed as 

the initial condition and the iteration step max 10000N  . Fig. 8 shows the wave function integral over 

the quantum well region by using various approaches. The SFDTD(3,4) scheme can hold the 

normalized condition of the wave function better.  
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Fig. 8.  The wave function integral over the quantum well region after 10000 iterations.  

 

(b)  1D harmonic oscillator 

The simulation domain is confined to be  34,0x , 1x , 1.0
22
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 , and 

max 41000N  . The one-sided difference technique is used for boundary treatments. The harmonic 

oscillator model is fundamentally important for the quantum simulation of nanodevices and its potential 

energy is given by 
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where 2k m . The eigenenergies of the harmonic oscillator are 
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The analytical wave function ( , )x t  can be written as 
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where 






m

 and nH  is the Hermite polynomial. Table IV and Fig. 9 respectively show the 

eigenfrequencies and the eigenstate errors of the harmonic oscillator. Likewise, the SFDFD(3,4) scheme 

shows good numerical performances for the eigenvalue problem of Schrödinger equation with a 

parabolic potential. 

 

Table IV  The eigenfrequency comparisons for a 1D harmonic oscillator model. 

Algorithm FDTD(2,2) FDTD(2,4) SFDTD(3,4) Analytical 

1  1510 1513 1518 1518 

2  4545 4550 4554 4554 

3  7573 7582 7590 7590 
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Fig. 9.  The errors between the sixth eigenstate (the real part of the wave function) calculated and the 

analytical solution for a 1D harmonic oscillator.  

 

B.  2D Schrödinger equation 

(a)  2D quantum well 

The simulation domain is set to   [0,29][0,29]]L,0[L,0  yxD , 1 , 
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and the iteration step 40000max N . The one-sided difference technique is adopted to handle the 

boundaries of the infinite potential well. The eigenenergies can be trivially obtained 
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where ),( yx nn  is the mode number. Table V lists the eigenfrequencies and Fig. 10 shows the obatined 

eigenstate 3,3 . In contrast to the FDTD(2,2) and FDTD(2,4) approaches, the SFDTD(3,4) scheme 

could obtain more accurate results. 

 

Table V  The eigenfrequency comparisons for a 2D quantum well. 

Algorithm FDTD(2,2)  FDTD(2,4)  SFDTD(3,4)  Analytical 

1,1  254 267 272 272 

2,1  662 670 679 679 

2,2  1072 1080 1088 1088 

3,1  1366 1380 1388 1388 
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Fig. 10.  The eigenstate (the real part of the wave function) corresponding to 3xn  and 3yn  for 

a 2D quantum well.  

 

Fig. 11 shows the 2L  norm error of the eigenstate 2,2  plotted as a function of the grid size. The error 

by the SFDTD(3,4) scheme decreases fastest with a reduced grid size. 
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Fig. 11.  The 2L  norm error (between the eigenstate 2,2  calculated and the analytical solution) as a 

function of the grid size. The one-sided difference technique is adopted for boundary treatments.  

 

(b)  2D harmonic oscillator 

For a 2D harmonic oscillator, the potential is taken as )(
2

1
),( 22 yxkyxV  . The other parameters 

are set to be the same as those in the 2D quantum well. The time-dependent solution of the wave 

function is  
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The eigenfrequencies of the 2D harmonic oscillator are calculated by the FDTD(2,2), FDTD(2,4), and 

SFDTD(3,4) methods (See Table VI). The SFDTD(3,4) scheme shows very significant advantages 

under the complicated potential energy condition, which is always met in the quantum device 

simulation. 

 

 

 



 

Table Ⅵ  The eigenfrequency comparisons for a 2D harmonic oscillator model. 

Algorithm FDTD(2,2)  FDTD(2,4)  SFDTD(3,4)  Analytical 

1,1  352 363 360 360 

2,1  773 788 785 785 

2,2  1210 1218 1189 1189 

 

VI. CONCLUSION 

The high-order SFDTD(3,4) scheme, which is fourth-order accurate in space and third-order accurate 

in time, is energy-conserving and conditionally stable. On one hand, the scheme can achieve high-order 

accuracy by using both the fourth-order spatial collocated difference and the one-sided difference 

technique. On the other hand, incorporating the symplectic integrators, the scheme demonstrates 

desirable numerical performances under a long-term simulation. In this work, we studied the numerical 

stability and dispersion of the SFDTD(3,4) scheme and successfully applied it to the analyses of the 

eigenvalue problem of Schrödinger equation. Our numerical results validate significant advantages of 

the SFDTD(3,4) scheme in terms of accuracy, converge, and energy conservation. The work is 

fundamentally important for the quantum device simulation. The simple source code for implementing 

the SFDTD(3,4) scheme can be found in the Appendix. 
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APPENDIX 

A simple C++ code for implementing the SFDTD(3,4) scheme is given as follows: 

 

/*1D SFDTD program for Schrodinger equation simulation*/ 

#include <math.h> 

#include <stdlib.h> 

#include <stdio.h> 

#define KE 14 

const int CountFreq=1200; 

double SweepFreq[CountFreq]; 

double Real_Point[CountFreq][KE]; 

double Imag_Point[CountFreq][KE]; 

double Real_Ref[CountFreq]; 

double Imag_Ref[CountFreq]; 

int main() 

{ 

double psi_rl[KE],psi_im[KE]; 

int n,k,kc,ke,kstart,kcenter,NSTEPS,n_pml; 

double P; 



double pi,melec,hbar; 

double ddx,dt,ra; 

FILE *fp; 

double lap_rl,lap_im,ke_rl,ke_im,kine,PE,s1,s2; 

double RealTime=0; 

double Fourier_Frq=0; 

int TIMESTAGE=3; //number of stages 

for(k=0;k<KE;k++) 

{ 

psi_rl[k]=0.; 

psi_im[k]=0.; 

} 

pi=3.141592653589793; 

melec=9.10938188e-31; 

hbar=1.05457148e-34; 

double const1=8637.993775443278; //m_elec/hbar 

ddx=2.5*pow(10.0,-4.0); 

double stab=0.5; 

dt=stab*(const1)*pow(ddx,2.0); 

ra=(dt/(ddx*ddx))*(hbar/(2*melec)); 

int Pos=int(KE/2+3); 

psi_rl[Pos]=1; 

psi_im[Pos]=0; 

double ra1[3]={0,0,0}; 

double ra2[3]={0,0,0}; 

//Symplectic integrator 

double 

D[3]={0.91966152301739985705089763815343,-0.1879916187991597820078528680789,0.2683300957817599249569552299255}; 

double 

C[3]={0.2683300957817599249569552299255,-0.1879916187991597820078528680789,0.91966152301739985705089763815343}; 

double TimeTableH[3]={C[0],C[0]+C[1],C[0]+C[1]+C[2]}; //time table of H-field for SFDTD 

const double TimeTableE[3]={0,D[0],D[0]+D[1]}; //time table of E-field for SFDTD 

int i,w; 

//Frequency 

for (w=0;w<CountFreq; w++) 

{ 

SweepFreq[w]=1+0.5*w; 

} 

// Fourier transform initial 

for (w=0; w<CountFreq; w++) 

{ 

Real_Ref[w]=0.; 

Imag_Ref[w]=0.; 

for ( int j=0; j<KE; j++) 

{ 

Real_Point[w][j]=0.; 

Imag_Point[w][j]=0.; 



} 

} 

NSTEPS=41000; //time steps 

for (n=0;n<=NSTEPS;n++) 

{ 

for (int i=0; i<TIMESTAGE; i++) 

{ 

printf("%d\n",n); 

s1=C[i]*dt; //time coef 

//boundary treatment (one-sided difference) 

psi_rl[1]=exp(-s1)*psi_rl[1]-1.0/12*ra*(1-exp(-s1))/(s1)*(psi_im[5]-6*psi_im[4]+14*psi_im[3]-4*psi_im[2]-15*psi

_im[1]); 

psi_rl[KE-2]=exp(-s1)*psi_rl[KE-2]-1.0/12*ra*(1-exp(-s1))/(s1)*(psi_im[KE-6]-6*psi_im[KE-5]+14*psi_im[KE-4]-4*p

si_im[KE-3]-15*psi_im[KE-2]); 

//update equation for real part of wave function 

for (k=2;k<KE-2;k++) 

{ 

psi_rl[k]=exp(-s1)*psi_rl[k]-1.0/12*ra*(1-exp(-s1))/(s1)*((-1)*psi_im[k-2]+16*psi_im[k-1]-\ 

30*psi_im[k]+16*psi_im[k+1]-1*psi_im[k+2]); 

} 

//boundary condition 

psi_rl[0]=0.; 

psi_rl[KE-1]=0.; 

s2=D[i]*dt; //time coef 

//boundary treatment (one-sided difference) 

psi_im[1]=exp(-s2)*psi_im[1]+1.0/12*ra*(1-exp(-s2))/(s2)*(psi_rl[5]-6*psi_rl[4]+14*psi_rl[3]-4*psi_rl[2]-15*psi

_rl[1]); 

psi_im[KE-2]=exp(-s2)*psi_im[KE-2]+1.0/12*ra*(1-exp(-s2))/(s2)*(psi_rl[KE-6]-6*psi_rl[KE-5]+14*psi_rl[KE-4]-4*p

si_rl[KE-3]-15*psi_rl[KE-2]); 

//update equation for imaginary part of wave function 

for (k=2;k<KE-2;k++) 

{ 

psi_im[k]=exp(-s2)*psi_im[k]+1.0/12*ra*(1-exp(-s2))/(s2)*((-1)*psi_rl[k-2]+16*psi_rl[k-1]-\ 

30*psi_rl[k]+16*psi_rl[k+1]-1*psi_rl[k+2]); 

} 

//boundary condition 

psi_im[0]=0.; 

psi_im[KE-1]=0.; 

RealTime=(n+TimeTableH[i])*dt; //real time 

//Fourier transform 

for (w=0; w<CountFreq; w++) 

{ 

Fourier_Frq=SweepFreq[w]; 

Real_Ref[w]=Real_Ref[w]+cos(Fourier_Frq*RealTime)*psi_rl[Pos]; 

Imag_Ref[w]=Imag_Ref[w]-sin(Fourier_Frq*RealTime)*psi_rl[Pos]; 

for (i=1; i<KE-1; i++) 

{ 



Real_Point[w][i]=Real_Point[w][i]+cos(Fourier_Frq*RealTime)*psi_rl[i]; 

Imag_Point[w][i]=Imag_Point[w][i]-sin(Fourier_Frq*RealTime)*psi_rl[i]; 

} 

} 

} 

} 

// save results 

fp=fopen("power_SFDTD.txt","w"); 

for (w=0; w<CountFreq; w++) 

{ 

P=0.; 

for (i=1; i<KE-1; i++) 

{ 

P=P+pow(Real_Point[w][i],2.0)+\ 

pow(Imag_Point[w][i],2.0); 

} 

fprintf(fp,"%lf %lf\n",SweepFreq[w],P); 

} 

fclose(fp); 

for (k=0;k<KE;k++) 

{ 

printf("%d %lf %lf\n",k,psi_rl[k],psi_im[k]); 

} 

fp=fopen("prl_SFDTD.txt","w"); 

for (k=0;k<KE;k++) 

{ 

fprintf(fp,"%lf\n",psi_rl[k]); 

} 

fclose(fp); 

fp=fopen("pim_SFDTD.txt","w"); 

for (k=0;k<KE;k++) 

{ 

fprintf(fp,"%lf\n",psi_im[k]); 

} 

fclose(fp); 

fp=fopen("eigenfunction_SFDTD.txt","w"); 

w=937; 

for (i=0; i<KE; i++) 

{ 

fprintf(fp,"%lf %lf\n",Real_Point[w][i],Imag_Point[w][i]); 

} 

fclose(fp); 

return 0; 

} 

 


