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Analysis and Stabilization of Chaos in the
Electric-Vehicle Steering System

Zhen Zhang, K. T. Chau, Senior Member, IEEE, and Zheng Wang, Member, IEEE

Abstract—This paper presents a new control method to improve
the safety performance of the electric-vehicle (EV) steering sys-
tem. It is found that the EV steering system exhibits unstable
chaotic behaviors at certain speeds, which can deteriorate the
steering performance and even make vehicles fall into spin. In
this paper, a new dynamic model is proposed to describe the EV
steering system, which takes into account the motor drive for
EV propulsion. Moreover, both the driver’s reaction time and
the disturbance caused by irregularities of the road surface are
also incorporated into the EV steering model. It can be identified
that periodic, quasi-periodic, and chaotic motions occur at the EV
steering system with respect to different forward speeds. Thus, a
new control scheme, namely the adaptive time-delayed feedback
control (ATDFC), is proposed and implemented to stabilize the EV
steering system from chaos to stable operation. Finally, the validity
of the proposed model and control are verified.

Index Terms—Adaptive time-delayed feedback control
(ATDFC), chaos, electric vehicle (EV), stabilization, steering
system.

I. INTRODUCTION

W ITH EVER growing consumption of traditional forms
of energy, the study of electric vehicles (EVs) has

attracted considerable attention [1], [2]. Since the traditional en-
gine is replaced by the electric motor, the concept of zero local
emission is truly realized in EVs. The problem of environmental
pollution can thus be alleviated. Along with the development
of EVs, safety performance has become a major concern for
many researchers. According to various studies on the causes of
traffic accidents, the stability of the vehicle steering system is an
important issue. Unstable dynamic lateral behaviors may cause
vehicles to go out of control and even fall into a spin. While
EVs are commercialized and becoming more and more popular,
the stability and maneuverability of the EV steering system
should be improved under various driving conditions, with a
particular focus on the safety of critical cornering behaviors in
an emergency.

For the steering system, studies on the safety of vehicles,
particularly at a high forward speed, have received consider-
able attention from both the automotive industry and research
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institutions. A number of ideas related to steering control have
been tested in experimental prototypes. As early as 1969,
Kasselmann and Keranen proposed an active steering system
based on a feedback signal from a yaw-rate sensor [3]. In 1976,
Fenton et al. also proposed the theory of the steering system and
tested several controller designs by experiments [4]. Along with
the development of nonlinear dynamics, particularly the chaos
theory and its corresponding analytical techniques [5]–[7],
complex nonlinear characteristics were revealed in the vehicle
steering system [8], [9]. As a result, many linear and nonlinear
control methods were successfully designed and implemented
for the steering system. For example, a linear controller and
a nonlinear controller based on the feedback of the lateral
displacement and the yaw rate were proposed in [10] and [11].
In 2007, Cai et al. developed a genetic fuzzy controller for
automatic steering of a small-scale vehicle [12]. An adaptive
steering system, which consists of a vehicle directional control
unit and a driver interaction unit, was designed and imple-
mented by Cetin et al. [13]. Additionally, a steering system with
a new mechanical structure, namely the steer-by-wire system,
was also presented in [14] and [15].

However, the aforementioned studies only focus on improv-
ing the mechanical structure or the control algorithm for the
steering system. The driver’s reaction time is seldom considered
in the dynamic analysis. In addition, the external perturbation
is ignored by many researchers, which can actually cause
instability of the steering system. Such external perturbation
includes the disturbance caused by irregularities of the road
surface, backlashes caused by the driving gear, and wind gust.
In addition, most research is targeted at the steering system for
traditional vehicles and not for EVs. For example, the electric
motor that is used for EV propulsion has complex nonlinear
dynamic behaviors. Thus, the dynamic behaviors of the EV
steering system cannot be properly described if the effect of
the electric motor is ignored.

The purpose of this paper is to analyze the chaotic behavior
of the EV steering system, and then propose a control scheme
to stabilize the system from chaos to stable operation. The key
is to take into account the characteristics of the electric motor
for EV propulsion. In addition, the human reaction time and the
disturbance caused by irregularities of the road surface are con-
sidered in the mathematical model of the EV steering system.

This paper is mainly comprised of four parts: mathematical
modeling, nonlinear analysis, a control strategy, and verifica-
tion results. In Section II, a new mathematical model of the
EV steering system will be proposed, where the electric motor
characteristics, driver’s reaction time, and disturbance caused
by irregularities of the road surface are taken into account.

0018-9545/$31.00 © 2012 IEEE



ZHANG et al.: ANALYSIS AND STABILIZATION OF CHAOS IN EV STEERING SYSTEM 119

Fig. 1. EV lateral model in a fixed coordinate system.

At this stage, the permanent-magnet dc (PMDC) motor will
be used for exemplification, which is valid for those low-cost
EVs. In Section III, based on the proposed model, various
nonlinear analysis methods will be utilized to investigate the
chaotic behavior of the EV steering system when the forward
speed exceeds the threshold. Then, in Section IV, a new con-
trol algorithm based on the adaptive time-delayed feedback
control (TDFC) method will be proposed and implemented
to stabilize the chaotic behavior of the EV steering system.
Since the control method is considered a general approach to
stabilizing a class of continuous-time chaotic systems with a
time delay, the discussion will be focused on its implementation
for the proposed EV steering model, whereas its mathematical
derivation will be delineated in a general form in the Appendix.
Consequently, in Section V, detailed simulation results will be
provided to verify the validity of the proposed model and the
control method.

II. MODELING

Unlike traditional vehicles, EVs are propelled by electric
motors. Thus, the dynamic characteristics of the electric motor
significantly affect the EV steering system. Here, a new math-
ematical model specifically describing the EV steering system
is developed, where the model of the steering system and the
model of the electric motor are newly incorporated together for
nonlinear analysis and controller design. Additionally, both the
driver’s response and the disturbance resulting from irregulari-
ties of the road surface are considered in this modeling.

For modeling, the EV has a rigid mass and a constant forward
speed along a straight road. The center of gravity of the EV is
located in a body-fixed local coordinate system, as shown in
Fig. 1. Thus, the EV steering motions can be described by 2-D
differential equations.

First, the equation of lateral motion is given by

m(V̇l + VyV ) = 2Ff cos δ + 2Fr (1)

where Vl is the lateral velocity in the local coordinate system,
Vy is the yaw velocity with respect to the local coordinate
system, V is the EV forward speed, Ff and Fr, respectively,
represent the front and rear wheel lateral forces resulting from
the friction between the tires and the road surface, m is the mass

TABLE I
COEFFICIENTS OF TIRE MODELS

of the EV, and δ is the resulting steering angle applied on the
front wheels.

Second, the equation of yaw motion is given by

Iz γ̇ = 2LfFf cos δ − 2LrFr (2)

where Lf is the distance from the front axle to the center of
gravity, Lr is the distance from the rear axle to the center of
gravity, and Iz is the yaw moment of inertia of the EV body
about the vertical axis.

In this model, consisting of (1) and (2), Ff and Fr are func-
tions of the physical properties of the tires and of the sideslip
angles (αf , αr) on the front and rear wheels, respectively. Thus,
the EV dynamic behaviors depend on the accuracy of the tire
model. Accordingly, many researchers have proposed various
tire models, particularly on how to describe its cornering force
characteristics. Among them, a mathematical model called the
magic formula [16] is identified to be the most viable and
practical for implementation, which is given by

Ff =Df sin
{
Cf tan

−1
[
Bf (1−Ef )αf+Ef tan

−1(Bfαf )
]}
(3)

Fr =Dr sin
{
Cr tan

−1
[
Br(1−Er)αr+Er tan

−1(Brαr)
]}

(4)

where the numerical coefficients Bi, Ci, Di, and Ei(i = f, r)
are listed in Table I.

In the fixed coordinate system, as shown in Fig. 1, (xN , yN )
denotes the coordinate of the center of mass G, and ψ represents
the EV heading angle with respect to the road center line. Then,
it yields

ẏN =Vl cosψ + V sinψ (5)

ψ̇ =Vy. (6)

Equation (5) can be written as

Vl =
(ẏN − V sinψ)

cosψ
. (7)

Equations (1) and (2) can be written as

V̇l =
2Ff cos δ + 2Fr

m
− VyV (8)

V̇y =
2LfFf cos δ − 2LrFr

Iz
. (9)
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By differentiating (8) and (9) with respect to time t and
substituting (5) and (6), the basic model describing the lat-
eral dynamics of the EV in the fixed coordinates can be
obtained as

ÿN =
2[Ff cos δ + Fr] cosψ

m
− tanψ[ẏN − V sinψ]ψ̇ (10)

ψ̈ =
2[LfFf cos δ − LrFr]

Iz
. (11)

For EV propulsion, different types of electric motors can
be used [1]. For simplicity, the PMDC motor is adopted for
exemplification. It should be noted that when the ac motor
is adopted, the use of vector control can transform the con-
trol variables to dc quantities similar to that of dc motors.
The mathematical model of the PMDC motor [1] can be
expressed as

ω̇ =
KT Ia −Bmω − Tl

Jm
(12)

İa =
Vin −KEω −RaIa

La
(13)

where ω is the motor rotational speed, Ia is the armature cur-
rent, KT is the torque constant, KE is the back electromotive
force constant, Ra is the armature resistance, La is the armature
inductance, Bm is the viscous damping, Jm is the moment of
inertia, Tl is the restoring torque, and Vin is the input voltage.

Additionally, the relation between V and ω can be ex-
pressed as

V = nωR (14)

where R represents the radius of the tire and n is the speed
reduction ratio between the motor rotational speed and the
vehicle forward speed. By substituting (14) to (10), it yields

ÿN =
2[Ff cos δ+Fr] cosψ

m
−tanψ[ẏN−nωR sinψ]ψ̇. (15)

Therefore, the mathematical model of the EV steering system
in the fixed coordinate system can be described by (11)–(13),
and (15).

In this paper, the time delay impact on the stability of the
EV steering system, which is caused by the driver’s response,
is considered. The driver’s model proposed in [17] is adopted
as follows:

δ(t) = −K

[
y(t− Tr) +

L

V
ẏ(t− Tr)

]
(16)

where δ(t) denotes the steering angle from the driver’s re-
sponse, and Tr denotes the time delay caused by the driver’s
response.

Additionally, vehicles are readily affected by external distur-
bances, such as irregularities of the road surface, backlashes
from the driving gear, wind gusts, etc. Thus, the disturbance
term Q cos(2πfdt) is included to take into account the possible
external disturbances occurring in the EV steering system,

where Q denotes the amplitude of the periodic disturbance [18].
Hence, the resulting steering angle δ(t) can be expressed as

δ(t)=−K
[
y(t−Tr)+

L

nωR
ẏ(t−Tr)

]
+Q cos(2πfdt) (17)

where the disturbance frequency fd is related to the EV forward
speed V and a constant disturbance gain Kd. It is given by

fd = KdV. (18)

Therefore, the EV steering system equations can be written in
state form as follows:

ẋ1 =x3 (19)
ẋ2 =x4 (20)

ẋ3 =
2 [Ff cos δ(t) + Fr] cosx2

m
− tanx2[x3 − nωR sinx2]x2 (21)

ẋ4 =
2 [Lf cos δ(t)− LrFr]

Iz
(22)

ẋ5 =
KTx6 −Bmx5 − Tl

Jm
(23)

ẋ6 =
Vin −KEx5 −Rax6

La
(24)

where x(t) = (yN , ψ, ẏN , ψ̇, ω, Ia).
Thus, the sideslip angles of front and rear wheels in terms of

the state variables are, respectively, obtained as

αf = arctan

[
x3 − nx5R sinx2 + Lfx4 cosx2

V cosx2

]
−δ(t) (25)

αr= arctan

[
x3 − nx5R sinx2 − Lrx4 cosx2

V cosx2

]
. (26)

Finally, the aforementioned modeling is based on some as-
sumptions or working hypotheses that are evaluated as follows.

1) With respect to the EV weight, the human’s weight takes
only a small proportion. Thus, it is ignored in the pro-
posed EV steering model. Since the mass is independent
of time, the mass discrepancy caused by this assumption
will not significantly affect the dynamic characteristics of
the EV steering system.

2) The time delay caused by the steering mechanism is
ignored since it is far less than the delay resulting from
human response. Thus, the driver’s response time is con-
sidered as the only time delay existing in the proposed EV
steering model.

3) The rolling resistance of vehicle tires theoretically de-
pends on the tire types, tire pressure, tire temperature, ve-
hicle speed, tread thickness, number of plies, and torque
transmitted level. Since its variation is not so significant
as compared with the road load, it is assumed to be a
constant and absorbed into the restoring torque.

4) In reality, the disturbance caused by the irregularity of the
road is very complex. To investigate the robustness of the
proposed control method, the corresponding disturbance
is assumed to be Q cos(2πfdt), as proposed in [18].
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Fig. 2. Bifurcation diagram.

III. ANALYSIS

To assess the safety of the EV steering system, the nonlinear
dynamics of the ψ are studied with respect to different V ’s.
Since the Vin is generally used to perform speed control of the
PMDC motor, the relationship between the ψ and the Vin is
analyzed.

Nonlinear characteristics of the EV steering system can be
observed by the bifurcation diagram, the largest Lyapunov
exponent, phase portraits, or power spectra. In this paper,
numerical simulations of the EV steering system described by
(19)–(24) are carried out by using the Runge–Kutta method.
Parameters of the EV steering system and the driver’s response
model are n=1.3, m=740 kg, Iz=2900 kg · m2, Lf =1.1 m,
Lr=1.4 m, R=0.3 m, K=0.009 rad/m, L=65 m, Kd=
0.022, Q=0.05 rad, Tr=0.2 s, KT =0.584 (N · m)/A, KE=
0.584 V/rad/s, Jm=0.08 kg · m2, Bm=0.015 (N · m)/rad/s,
Ra=0.1 Ω, La=0.008 H, and Tl=7 N · m.

The bifurcation diagram is a widely used technique to de-
scribe the transition from periodic motion to chaotic motion for
a dynamic system. Fig. 2 shows the bifurcation diagram of the ψ
with respect to Vin. It shows that the heading angle stays in the
state of stable periodic oscillation for Vin < 88 V, namely the
EV forward speed is less than 15 m/s. When Vin is increased to
88 V, the system dynamics start to bifurcate so that the dynamic
behavior varies qualitatively, namely the EV steering system
exhibits quasi-periodic and then chaotic oscillations. With fur-
ther increasing Vin, the amplitude of chaotic oscillations tends
to grow larger. Meanwhile, the heading angle intermittently
transits to periodic oscillations and then back to the chaotic
state. In addition, the corresponding time responses, phase
portraits, and power spectra can also illustrate its route to chaos.

Fig. 3 describes the time response of the ψ with respect to the
Vin. As shown in Fig. 3(a), it can be seen that the ψ oscillates
with a constant period when the Vin is equal to 82 V. Along with
the increasing bifurcation parameter, the ψ exhibits the stable
period-2 orbits, as shown in Fig. 3(b). Fig. 3(c) shows that the
EV steering system enters into the chaotic domain. By choosing
the Vin as 110.8 V, Fig. 3(d) shows that the system escapes from
the chaos back to the period-3 oscillation. When the voltage
increases beyond 111 V, the chaos in the EV heading angle ψ
occurs again.

The phase portrait with the heading angle versus its velocity
is provided in Fig. 4. It also indicates a transition of the dynamic
behaviors from periodic, quasi-periodic, and chaotic motions. It
can be seen that periodic-n motion occurs when the Vin equals
82 V, 101.2 V, and 110.8 V, as shown in Fig. 4(a), (b), and (d),
whereas the chaotic oscillation can be observed when Vin is
107 V, as shown in Fig. 4(c).

Additionally, the Lyapunov exponents can qualify the rates of
stretching and squeezing of the attractor in the state space, and
indicate the exponential rate of the divergence and convergence
of close trajectories. Thus, the largest Lyapunov exponent λmax

is calculated to mathematically verify the existence of chaos.
The solution flow of the system state variables is expressed as

X(t) = T tX0 (27)

where T t is the map describing the time-t evolution of X , and
the solution flow of their deviation δX is given by

δX(t) = U t
X0

δX0 (28)

where U t
X0

is the map describing the time-t evolution of δX .
By taking the evolution time Δt � 1 and the ith orthogonal
and normal base vector of the d-dimension state space at the
jth step ‖eji � 1‖, the Lyapunov exponent λi (i = 1 ∼ d) of
the d-dimension system can be obtained as [19]

λi= lim
h→∞

1
hΔt

h−1∑
j=0

log

∥∥∥TΔt
(
Xj+eji

)
−TΔt(Xj)

∥∥∥∥∥∥eji∥∥∥ . (29)

Since the proposed dynamic system has a time-delayed com-
ponent, the state variable on the interval [t, t− τ ] can be ap-
proximated by N samples taken at intervals Δt = τ/(N − 1).
Therefore, the largest Lyapunov exponent can be computed
[20]. To mathematically verify the results in Figs. 5–7,
the largest Lyapunov exponents are calculated. By using
MATLAB, the largest Lyapunov exponents are −1.011,
−0.875, and −0.648, when Vin is equal to 82, 101.2, and
110.8 V, respectively. These negative values mean that the flow
solutions attract to a stable fixed point or a stable periodic orbit.
When the voltage Vin is set as 107 V, the largest Lyapunov
exponent becomes positive, which is 1.215. This indicates that
the solution of the dynamic system displays chaotic oscillation.

IV. ADAPTIVE TIME-DELAYED FEEDBACK CONTROL

The TDFC method is one of the most appealing methods to
suppress chaos [21]. The key of the TDFC method is to add a
proportional variable to the difference of the state variables be-
tween the current state and the one-period delayed state. It has
been successfully used in industry applications. Nevertheless,
the effectiveness of the TDFC method is easily affected by the
system parameter variations.

Consequently, this paper presents a modified TDFC by using
an adaptive law to tune the feedback gain. The new control
scheme, namely the adaptive TDFC (ATDFC), can drive the
EV steering system from chaos to stable periodic behaviors
effectively. In addition, it remains insensitive to the system
parameter variations while it improves the robustness of the
controlled system.
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Fig. 3. Time responses of EV heading angle ψ. (a) Vin = 82 V. (b) Vin = 101.2 V. (c) Vin = 107 V. (d) Vin = 110.8 V.

Fig. 4. Phase portraits of EV heading angle ψ versus the velocity ψ(1). (a) Vin = 82 V. (b) Vin = 101.2 V. (c) Vin = 107 V. (d) Vin = 110.8 V.

First, the steering system is expressed in a linear form by
using Talyor expansion. Second, based on the linearized model,
the proposed ATDFC law is incorporated as given by (31),
where the corresponding adaptive gain matrix is governed by
(32). In the controller model, the control matrix B, the positive
definite matrix P , and the gain η are chosen in such a way that

the control performance is acceptable. Third, the controller time
delay is optimally chosen according to the gradient-descent
approach [22]. It should be noted that the mathematical proof of
the proposed ATDFC method in a closed loop for a general class
of continuous-time chaotic systems with time delay is shown in
the Appendix.
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Fig. 5. PWM dc-dc converter with ATDFC.

Fig. 6. Time response of heading angle ψ using the ATDFC method
(Vin = 107 V).

Fig. 7. Phase portrait of heading angle ψ versus the velocity ψ(1) (Vin =
107 V). (a) When t ∈ [0, 50]. (b) When t ∈ (50, 100].

To design the controller, the EV steering system is first
represented by

ẋ(t) = Ax(t) +A′x(t− Tr) (30)

where A and A′ are the Jacobian matrices of the nonlinear
function f with respect to x(t) and to x(t− Tr), respectively,
as given by

A =
∂f

∂x(t)
and A′ =

∂f

∂x(t− Tr)
.

By using MATLAB, it yields

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 A32 A33 A34 0 0
0 A42 A43 A44 0 0
0 0 0 0 A55 A56

0 0 0 0 A65 A66

⎤
⎥⎥⎥⎥⎥⎦

where A32 = 4BCD/m, A33 = −4BCD/mRn, A34 =
−2BCD(Lf−Lr)/mRn, A42=2BCD(Lf−Lr)/Iz , A43=
−2BCD(Lf − Lr)/IzRn, A44 = −2BCD(L2

f+L2
r)/IzRn,

A55=−Bm/Jm, A56=Kt/Jm, A65=−Ke/La, and A66=
−Ra/La. In addition

A′ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

A′
31 0 A′

33 0 0 0
A′

41 0 A′
43 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

where A′
31=−2BCDK/m, A′

33=−2BCDKL/mRn, A′
41=

−2BCDKLf/Iz , and A′
43 = −2BCDKLLf/IzRn.

An ATDFC can be chosen as

u(t) = K̃(t) [x(t)− x(t− Tc)] (31)

where Tc denotes the controller delay time, and K̃(t) is the
feedback gain matrix. This gain matrix can be tuned by an
adaptive law, as given by

K̃(t) = −η

t∫
0

xT (t)PB (x(t)− x(t− Tc)) dt (32)

where η is a positive constant, P is a positive definite and sym-
metric constant matrix, and B is a vector. Thus, the controlled
system can be obtained as follows:

ẋ(t)=Ax(t)+A′x(t−Tr)+BK̃(t) [x(t)−x(t−Tc)] . (33)

To practically implement the ATDFC method, an easily mea-
surable electrical parameter of the PMDC motor, namely the
armature current Ia, is chosen as the feedback control parame-
ter. Then, the whole control system can readily be implemented
by a pulsewidth-modulated (PWM) dc-dc converter, as shown
in Fig. 5, in which Vc is the control signal resulting from the
difference between Vin and the ATDFC output, namely the
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reference V ∗
in, and the PWM pulse is generated by comparing

Vc and the instantaneous sawtooth signal Vst.
The key to the ATDFC method is to determine proper values

of the control matrix B, the positive value η, the positive
definite symmetric matrix P , and Tc. First, the positive value
η is chosen as 1.325. Second, since the Ia is chosen as the only
feedback control signal, the control matrix B and the positive
definite symmetric matrix P can be chosen as

B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 5.3

⎤
⎥⎥⎥⎥⎥⎦ .

Finally, the Tc can be determined by using the gradient-descent
approach, which is summarized by the following three steps.
Relevant derivations and detailed discussions can be found
in [22].

Step 1) Define a performance index as

J =
1
n

n∑
i=1

‖x(t0 + ih)− x(t0 + ih− Tc)‖2 (34)

where h is the time step length, and n is the total
number of time-series data. Then, the gradient can
be derived as

∂J

∂t
=

2
n

n∑
i=1

[x(t0 + ih)− x(t0 + ih− Tc)]
T ẋ(t0 + ih− Tc).

(35)
Step 2) Update the controller delay time Tc as

Tc(i+ 1) = Tc(i)− β
∂J

∂Tc(i)
(36)

where β is a properly chosen positive parameter.
Step 3) Set a tolerance ξ > 0. If J > ξ, go to Step 2; other-

wise, ∂J/∂t = 0, and then the Tc becomes constant.
In this paper, the controller delay time is chosen as
Tc = 7.325 s.

V. VERIFICATION RESULTS

By using MATLAB, numerical simulation is carried out. As
shown in Fig. 6, chaos can be suppressed with respect to Vin

equal to 107 V when the ATDFC takes effect after t = 50 s. It
shows that both the amplitude and the frequency of ψ can be
stabilized, confirming that the EV heading angle is prevented
from the unstable oscillation by using the proposed ATDFC
method. Thus, the safety performance of the EV steering sys-
tem can be improved effectively.

In addition, Fig. 7(a) and (b) depicts the phase portraits of
the ψ versus the velocity ψ(1). Fig. 7(a) shows a messy phase
trajectory, which indicates that the EV heading angle oscillates
at varying periods and displays a chaotic state. Meanwhile,
Fig. 7(b) depicts the phase portrait after applying the ATDFC
method at t = 50 s, which indicates that the EV steering system
exhibits the stable periodic oscillation. Thus, it verifies that

Fig. 8. Time responses of heading angle ψ(Tr = 0.2 s) using (thin line)
conventional TDFC method and (thick line) ATDFC method.

Fig. 9. Time responses of heading angle ψ(Tr = 0.4 s) using (thin line)
conventional TDFC method and (thick line) ATDFC method.

the proposed control method can suppress chaotic behaviors
effectively.

To examine the robustness of the proposed control method,
Vin is set as a constant value that is equal to 107 V. Then,
Tr = 0.2 s is chosen to represent a fast response and Tr = 0.4 s
to represent a slow response. The feedback gain of the conven-
tional TDFC is chosen as K = 0.12. Fig. 8 shows that both the
conventional TDFC and ATDFC methods can stabilize the EV
steering system from chaos to the periodic oscillation. In terms
of the control effect, however, the ATDFC method produces a
much better performance than the conventional TDFC method.
Additionally, as shown in Fig. 9, the conventional TDFC cannot
suppress the chaos when the driver’s response is slow (Tr =
0.4 s), whereas the ATDFC is still effective. Thus, the ATDFC
method not only can offer a better control effect but also can
improve the robustness of the EV steering system.

VI. CONCLUSION

In this paper, a new nonlinear dynamic model has been
proposed to describe the steering system in EVs. As the en-
gine of EVs, the PMDC motor is first introduced to analyze
nonlinear dynamic characteristics of the EV steering system.
In addition, this paper has taken into account the time delay
resulting from the driver’s response, which seriously affects the
stability of the EV steering system. Moreover, the impact of
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irregularities of the road surface is also considered as an exter-
nal disturbances.

This paper provides the time responses, phase portraits, and
power spectra to characterize dynamic behaviors of the EV
steering system. First, the input voltage of the PMDC motor is
chosen as the bifurcation parameter. The numerical simulation
results have indicated that the EV steering system exhibits
complex nonlinear dynamic behaviors with the increase in the
PMDC motor input voltage, namely the periodic, multiperiodic,
and chaotic motions. These unstable dynamic behaviors will
deteriorate the safety performance of EVs. Additionally, the ex-
istence of chaos has been mathematically proven by calculating
the largest Lyapunov exponent.

A new control method has been proposed and implemented
to stabilize the EV steering system and thus improve the safety
of EVs. By using the ATDFC method, the feedback gain can
be tuned by an adaptive law to suppress the system parameter
perturbation, such as the driver’s reaction time. The simulation
results have shown that dynamic behaviors of the EV steering
system can be effectively stabilized from chaos to stable peri-
odic oscillation.

It should be noted that the given EV steering system is based
on the use of a relatively low-voltage low-power PMDC motor
for propulsion; similar analysis can be extended to those high-
end EV steering systems using a high-voltage high-power ac
motor for propulsion but involving much more complicated
coordinate transformation and field-oriented control.

APPENDIX

We consider a general continuous-time chaotic system with
the time delay described by the following:

ẋ(t) = f (x(t)) + g (x(t− τ)) , x(t0) = x0 ∈ Rn.

By using the Talyor expansion (x = x0), the linear differential
equation can be obtained as

ẋ(t) = Ax(t) +A′x(t− τ)

where A = ∂f/∂x(t), and A′ = ∂g/∂x(t− τ).
Suppose that the system is currently in the chaotic state and

x̄(t) is the expected periodic solution as

˙̄x(t) = Ax̄(t) +A′x̄(t− τ).

Then, an ATDFC can be chosen as

u(t) = K̃T (t) (x(t)− x(t− τC))

where τC is the delay time, and K̃(t) denotes an adaptive tuned
feedback gain that has a constant limit gain K̃∗, as given by

lim
t→∞

K̃(t) = K̃∗.

Then, the controlled system can be obtained as

ẋ(t) = Ax(t) +A′x(t− τ) +BK̃T (t) (x(t)− x(t− τC)) .

Consequently, the design problem is then to determine the
feedback gain K̃(t) such that the controlled system orbit can

track the target as follows:

lim
t→∞

‖x(t)− x̄(t)‖ = 0.

Taking e = x(t)− x̄(t) and ΔK̃(t) = K̃∗ − K̃(t), the corre-
sponding error dynamic system can be obtained as

ė(t) = ẋ(t)− ˙̄x(t)

=Ae(t) +A′e(t− τ) +BK̃T (t)

× (x̄(t) + e(t)− x̄(t− τC)− e(t− τC)) .

Without loss of generality, let x̄(t) = 0. Thus, it yields

ė(t)=Ae(t)+A′e(t−τ)+B
(
K̃∗−ΔK̃(t)

)T

(e(t)−e(t−τC)).

Then, the control objective is to force e(t) → 0 as t → ∞.
Let us consider the following Lyapunov function candidate:

V (e,ΔK̃)=eTPe+

t∫
t−τ

eTUedt+

t∫
t−τC

eTV edt+
1
η
ΔK̃TΔK̃

where P , U , and V are three positive definite matrices. Then,
the derivative of Lyapunov function candidate is given by

V̇ = ėT (t)Pe(t)+eT (t)P ė(t)

+ eT (t)Ue(t)−eT (t−τ)Ue(t−τ)+eT (t)V e(t)

−eT (t−τC)V eT (t−τC)−
2
η
ΔK̃T (t)

˙̃
K(t)

= −
[
U1/2e(t−τ) + U−1/2A′TPe(t)

]T
×
[
U1/2e(t−τ) + U−1/2A′TPe(t)

]
−
[
V 1/2e(t−τC)+V −1/2K̃∗BTPe(t)

]T
×
[
V 1/2e(t−τC)+V −1/2K̃∗BTPe(t)

]
+eT (t)

× [ATP+PA+U+V +PA′U−1A′TP

+ PBK̃∗TV −1K̃∗BTP+K̃∗BTP+PBK̃∗T ]e(t)

+ 2ΔK̃T
[
−1/η ˙̃

K(t)−eT (t)PB (e(t)−e(t−τC))
]
.

Therefore, the adaptive feedback gain matrix K̃(t) can be
chosen as

K̃(t) = −η

t∫
0

eT (t)PB (e(t)− e(t− τC)) dt.

Since P , U , and V are three positive definite and symmetric
constant matrices, the Riccati polynomial matrix isbreak ex-
pressed as

ATP + PA+ PA′U−1A′TP + PBK̃∗TV −1K̃∗BTP

+ K̃∗BTP + PBK̃∗T + U + V
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which is either zero or seminegative definite (= 0,≤ 0 or < 0).
Hence, the control objective can be achieved, i.e., ‖e(t)‖ → 0
as t → ∞, namely the system obits can track the expected state.
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