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Abstract

Severe trauma such as burn injury is often associated with a systemic inflammatory syndrome characterized by a
hyperactive innate immune response and suppressed adaptive immune function. Dendritic cells (DCs), which sense
pathogens via their Toll-like receptors (TLRs), play a pivotal role in protecting the host against infections. The effect of burn
injury on TLR-mediated DC function is a debated topic and the mechanism controlling the purported immunosuppressive
response remains to be elucidated. Here we examined the effects of burn injury on splenic conventional DC (cDC) and
plasmacytoid DC (pDC) responses to TLR9 activation. We demonstrate that, following burn trauma, splenic cDCs’ cytokine
production profile in response to TLR9 activation became anti-inflammatory dominant, with high production of IL-10
(.50% increase) and low production of IL-6, TNF-a and IL-12p70 (,25–60% reduction). CD4+ T cells activated by these cDCs
were defective in producing Th1 and Th17 cytokines. Furthermore, burn injury had a more accentuated effect on pDCs than
on cDCs. Following TLR9 activation, pDCs displayed an immature phenotype with an impaired ability to secrete pro-
inflammatory cytokines (IFN-a, IL-6 and TNF-a) and to activate T cell proliferation. Moreover, cDCs and pDCs from burn-
injured mice had low transcript levels of TLR9 and several key molecules of the TLR signaling pathway. Although
hyperactive innate immune response has been associated with severe injury, our data show to the contrary that DCs, as a
key player in the innate immune system, had impaired TLR9 reactivity, an anti-inflammatory phenotype, and a dysfunctional
T cell-priming ability. We conclude that burn injury induced impairments in DC immunobiology resulting in suppression of
adaptive immune response. Targeted DC immunotherapies to promote their ability in triggering T cell immunity may
represent a strategy to improve immune defenses against infection following burn injury.

Citation: Shen H, de Almeida PE, Kang KH, Yao P, Chan CW (2012) Burn Injury Triggered Dysfunction in Dendritic Cell Response to TLR9 Activation and Resulted
in Skewed T Cell Functions. PLoS ONE 7(11): e50238. doi:10.1371/journal.pone.0050238

Editor: Michael P. Bachmann, Carl-Gustav Carus Technical University-Dresden, Germany

Received June 30, 2012; Accepted October 22, 2012; Published November 26, 2012

Copyright: � 2012 Shen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research work was supported by a grant funded by the Shriners Hospital for Children. Dr. Shen is supported by a Shriners Hospital fellowship. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: camchan@hku.hk

Introduction

Burns are a serious global health problem, according to the

World Health Organization, with over 195,000 related deaths

each year. Burn injury alters host immune functions, predisposing

patients to opportunistic and nosocomial infections, sepsis, and

multiple organ system dysfunction and failure. Burn injury often

leads to a systemic inflammatory state, which has been attributed

to the resulting exacerbated innate immune response, referred to

as systemic inflammatory response syndrome (SIRS) [1,2].

Macrophages, which upregulate Toll-like receptor 4 (TLR4)

responses, are believed to be the major source of inflammatory

mediators during SIRS [3,4,5,6]. The adaptive immune system, by

contrast, acquires a suppressive phenotype characterized by a

reduced T helper (Th) 1 and cytotoxic T cell response, and

heightened T regulatory (Treg) cell activity [7,8,9,10,11,12]. The

mechanism responsible for initiating and controlling this immu-

nosuppressive response after burn injury remains to be elucidated.

Dendritic cells (DCs) are known to play a key role in linking the

innate and adaptive arms of the immune system [13]. The

heterogeneous DC family is mainly classified into conventional

and plasmacytoid DCs. Conventional DCs (cDCs) efficiently

induce antigen-specific T-cell responses [13], whereas plasmacy-

toid DCs (pDCs) produce high amounts of type I interferon (IFN)

[14]. Recent studies have demonstrated that pDCs play an

important role in activating cDCs [15,16], NK cells, B cells, and T

cells [17,18]. In addition, we and others have reported an immune

cell population named interferon-producing killer DCs (IKDCs)

which control infection by possessing an unique ability of directly

lysing infected cells followed by presenting the Ags to T cells

[19,20,21]. Given that these DC subsets have unique functional

characteristics, we have, in this study, compared the effects of

severe injury on the different DC subpopulations.

Efficient priming of T cells relies on appropriate DC

maturation, which is elicited in response to recognition of specific

pathogen-associated molecular patterns (PAMPs) via pattern

recognition receptors (PRRs), including toll-like receptors (TLRs)

[22]. To date, ten functional TLRs have been identified in
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humans; each recognizes unique PAMPs to induce immune

activation. For example, in response to Gram-negative bacteria

infection, TLR4 plays an important role in triggering effective host

immunity by recognizing endotoxin lipopolysaccharides (LPS),

integral components of the outer bacterial membrane [23]. TLR9

importantly controls bacterial and viral infections, such as those of

Escherichia coli, Pseudomonas aeruginosa, and DNA viruses, by

recognizing unmethylated CpG DNA motifs [24,25,26]. Recent

findings report that activation of multiple TLRs is required for a

complete immune response during microbial challenge [25,27,28].

Burn injury patients are susceptible to infection from a variety of

pathogens, including Gram-positive and Gram-negative bacteria

as well as viruses. Here, we examined the effect of burn injury on

DC responses to TLR9 activation. Our data suggest that DCs do

not contribute to post-injury SIRS; rather, DCs function is skewed

toward an immunosuppressive phenotype, with an impaired

ability to activate T cell responses.

Materials and Methods

Mice
BALB/c (female, 6–8 weeks old) mice were purchased from The

Jackson Laboratory (West Sacramento, CA). DO11.10 transgenic

(Tg) mice expressing MHC class II-restricted TCR for ovalbumin

(OVA) 323–339 (OVA323–339) peptide and Clone 4 Tg mice

expressing MHC class I-restricted TCR for influenza virus A/PR/

8 hemagglutinin (HA) (The Jackson Laboratory; Bar Harbor,

Maine) were used to test antigen-specific T cell responses. This

study was carried out in strict accordance with the recommenda-

Figure 1. Reduced numbers and percentages of splenic cDCs and pDCs following burn injury. Mice were subjected to non-lethal thermal
injury and total splenocytes were purified and stained using antibodies for distinct surface markers. The effect of burn injury on each DC subset was
examined. (a) A representative FACS plot demonstrating the percentages of splenic cDCs (CD11chiB220neg) and CD11clowB220+ DC subpopulations at
d3 post-injury in comparison to sham. The CD11clowB220+ population comprises of pDCs (CD11clowB220+PDCA1+) and IKDCs (CD11clowB220+DX5+).
Percentages of CD11chiB220neg cDCs and CD11clowB220+ DCs are shown as mean 6 SEM (n = 9, 3 independent experiments). Percentages (b) and
absolute numbers (c) of splenic cDCs, pDCs and IKDCs at various time points post burn and sham injury are shown. Data are shown as mean 6 SEM
(n = 9, 3 independent experiments). *P,0.05; **p,0.01, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.g001
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tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. The protocol was approved by

the Committee on the Ethics of Animal Experiments of the

University of California Davis (Permit Number: 12630).

Reagents and Flow Cytometry
All fluorochrome-labeled mAbs were purchased from BD

Biosciences (San Jose, CA), with the exception of PE-conjugated

anti-mPDCA-1 (Miltenyi Biotec; CA). The following mAb staining

profile was employed: anti-mouse CD3e (145-2C11), anti- mouse

CD4 (L3T4), anti-CD8a (53-6.7), anti-CD11c (HL3), anti-B220/

CD45R (RA3-6B2), anti-CD40 (3/23), anti-CD80 (1G10), anti-

CD86 (GL1), anti-I-Ek/d (14-4–42). Prior to staining with labeled

mAbs, FccRII/III receptors were blocked with anti-CD16/32

(2.4G2) mAb. Flow cytometry analysis was performed using a

Beckman-Coulter CyAn ADP (Fullerton, CA). CpG ODN1668

(TCCATGACGTTCCTGATGCT) and ODN2395

(TCGTCGTTTTCGGCGCGCGCCG) were purchased from

Operon (Huntsville, AL), and OVA323–339 (Ile-Ser-Gln-Ala-Val-

His-Ala-Ala-His-Ala-Glu-Ile-Asn-Glu-Ala-Gly-Arg) and hemag-

glutanin (HA) (lle-Tyr-Ser-Thr-Val-Ala-Ser-Ser-Leu) peptides

from American Peptide Company (Sunnyvale, CA). Buprenorphr-

ine was purchased from Reckitt Pharmaceuticals (Richmond, VA).

Burn Injury Model
To study the effect of burn injury on DCs, a thermal injury

protocol was followed, as described previously [29]. Briefly, dorsa

of female BALB/c mice (6–8 weeks old) were shaved one day prior

to the experiment. Immediately prior to burn injury, mice were

anesthetized with 2.5% isoflurane, and 25% of the dorsal surface

was immersed in either 90uC (burn) or 24uC isothermic water

(sham) for 9s. Buprenorphrine (0.03 mg/mouse) and 0.9% saline

(1 ml) were given intraperitoneally for analgesia and fluid

resuscitation immediately after injury.

Table 1. Reduced numbers and percentages of splenic CD4+CD82 and CD42CD8+ cDCs following burn injury.1

Cell (%) Cell number (106)

Days post-injury Sham Burn Sham Burn

CD4+CD82cDCs d1 0.7560.04 0.5660.09** 0.5660.02 0.3460.06*

d3 0.7060.04 0.5360.06** 0.5760.07 0.3560.07*

d5 0.6460.04 0.5960.06 0.5060.06 0.3860.06*

d7 0.6960.03 0.6360.10 0.5560.04 0.5360.05

CD42CD8+

cDCs
d1 0.1560.03 0.1260.02* 0.1060.02 0.0760.01*

d3 0.1560.04 0.1060.02* 0.1160.03 0.0760.01*

d5 0.1360.04 0.1660.04 0.1060.02 0.1160.03

d7 0.1460.02 0.1760.02* 0.1160.03 0.1460.02*

CD42CD82

cDCs
d1 0.2160.03 0.2360.03 0.1660.01 0.1460.02

d3 0.1660.02 0.1660.02 0.1360.01 0.1160.01

d5 0.1660.05 0.1660.03 0.1460.03 0.1260.03

d7 0.1860.04 0.2760.03* 0.1460.04 0.2360.06*

1Data are shown as mean 6 SEM (n = 9, 3 independent experiments).
*P,0.05, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.t001

Figure 2. Absolute counts of infiltrating DCs recruited to the
burn and sham injury site. Three days post burn injury, the skin
specimens of burn and sham injury (2 cm62 cm) were harvested and
digested in Dispase II and collagenase D. Cells were isolated and stained
for CD11c+ for DCs followed by flow cytometry analysis. Absolute
numbers of infiltrating CD11c+ DCs are shown as mean 6 SEM (n = 8, 4
independent experiments).
doi:10.1371/journal.pone.0050238.g002

Table 2. Ratios of splenic DC subsets following burn injury.1

Ratio

Days post-
injury sham burn

CD4+CD82cDCs:
CD42CD8+cDCs

D1 5.0160.77 4.7961.18

D3 5.0861.50 4.7861.48

D5 4.6060.91 3.9961.17

D7 5.2060.99 3.7260.65*

cDCs:pDCs D1 1.5360.09 1.7760.36

D3 1.4960.23 1.6360.20

D5 1.8760.18 2.2660.29*

D7 1.5260.26 1.7960.29

1Data are shown as mean 6 SEM (n = 9, 3 independent experiments).
*P,0.05, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.t002

Altered Dendritic Cell Functions following Injury

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e50238



Total Cell Isolation and DC Counts
Cells were isolated from spleens and wound draining lymph

nodes (LNs) (i.e. two axillary, two brachial, three mesenteric and

two inguinal) on days 1, 3, 5, and 7 post-burn and -sham injuries,

as previously described [19]. Briefly, spleens were chopped into

small fragments, subjected to digestion by Liberase (27 WU/ml;

Roche, Indianapolis, IN) and DNase I (0.1%; Roche) at room

temperature for 20 min, then treated with EDTA (100 mM). LNs

were pooled and smashed without digestion. Total lymphocytes

were collected by density centrifugation in Nycodenz medium

(Accurate Chemical and Scientific Corporation, Westbury, NY).

To determine the number of each DC subset upon burn injury,

cells were stained with APC-conjugated anti-mouse CD11c, PE-

Texas Red-conjugated anti-mouse B220, FITC-conjugated anti-

mouse PDCA, and biotin-conjugated anti-mouse MHC Class-II.

Percentages of DC subsets were analyzed by flow cytometry (i.e.

cDCs as CD11chighB2202; pDCs as CD11clowB220+PDCA+;

IKDCs as CD11clowB220+DX5+). To determine the number of

DCs infiltrated to the site of burn injury, skin specimens

(2 cm62 cm) were isolated from burn- and sham-injured mice

then chopped and digested in Dispase II (0.4 U/ml) for 2 hr,

followed by collagenase D (1 mg/ml) treatment for 30 min at

37uC. Cells were collected and stained for anti-CD11c. Absolute

DC numbers were determined based on the DC percentages

quantified by flow cytometry and the total cell counts.

DC Preparation and in vitro Challenge
Enriched DCs were prepared by depleting T and B cells from

total splenocytes using purified rat anti-mouse CD3 and anti-

mouse CD19 mAbs, then anti-rat IgG magnetic beads (Qiagen),

followed by further enrichment using CD11c+ magnetic beads

(CD11c+ isolation kit, Miltenyi Biotec). The enriched CD11c+

DCs were seeded in a 96-well round-bottom tissue culture plate

(56105 cells/well) in RPMI-1640 supplemented with 10% FCS, L-

glutamine, Na pyruvate, Hepes, non-essential amino acids and

1025 M b-ME (Complete Medium) with GM-CSF (10 ng/ml;

Peprotech, NJ) and challenged with the TLR9 agonist, unmethy-

lated CpG ODN 1668 (CpG; 6 mg/ml). The effect of injury on

maturation of cDCs was examined at 24 h post-TLR9 activation

and pDCs at 40 h post-activation. After activation, cells were

washed and stained with APC-conjugated anti-mouse CD11c, PE

Texas Red-conjugated anti-mouse B220, FITC-conjugated anti-

mouse PDCA, PE-conjugated anti-mouse CD80, or CD86 and

biotin-conjugated MHC Class-II with streptavidin PE-Cy7 as

secondary. cDCs and pDCs were analyzed as CD11chiB2202 and

CD11clowB220+PDCA+, respectively, by flow cytometry. In some

cases, cDCs and pDCs were further prepared from the enriched

DC population to a higher purity of .98% using a BD FACSAria

II cell sorter (cDCs: CD11chighB2202DX52PDCA2; pDCs:

CD11clowB220+PDCA+). The sorted cDCs or pDCs were seeded

in a 96-well U-bottom plate (26105 cells/well) and challenged

with CpG (6 mg/ml). IL-3 (10 ng/ml; Peprotech) was added to the

pDC culture to maintain viability. Supernatants were harvested

18–20 hr later and tested for levels of IL-6, IL-10, IFN-c, TNF-a,

and IL-12p70 using a BD Mouse Inflammation Cytometric Bead

Array (CBA; BD Biosciences) following the manufacturer’s

instructions. IL-12p70 (R&D Systems) and IFN-a (PBL Interferon

Source, Piscataway, NJ) production was validated by ELISA assay.

T Cell Proliferation Assay
OVA-specific CD4+ and HA-specific CD8+ transgenic T cells

from DO11.10 and Clone-4 TCR Tg mice, respectively, were

purified using CD4+ and CD8+ T cell isolation kits (Miltenyi) with

a purity .95%. FACS-sorted cDCs and pDCs (26104 cells/well)

were activated with CpG1668 (6 mg/ml) and pulsed with various

concentrations of OVA323–339 or HA peptide (10 - 0.01 mg/ml) for

18–20 hr, then washed and co-cultured with CFSE-labelled CD4+

or CD8+ T cells (26105/well). Three days later, proliferation of T

cells was assessed by flow cytometry, by CFSE dilution.

Supernatant was collected to determine IL-2, IL-4, IL-6, IFN-c,

TNF-a, IL-17A, and IL-10 levels with a mouse Th1/Th2/Th17

CBA kit (BD Bioscience).

RNA Isolation and qRT/PCR
Three days after burn injury, splenic cDCs and pDCs were

purified to a purity of .98%, as described above, and were stored

in TriZol (invitrogen) until further processing. RNA was isolated

using a RNeasy Plus Mini Kit (QIAGEN, CA) and cDNA was

prepared using a Reaction Ready First Strand cDNA Synthesis

Kit (SuperArray Bioscience Corp., MD). The expression of genes

related to TLR-mediated signal transduction was examined by

real-time PCR Array using a SuperArray real-time PCR Kit

(SuperArray Bioscience Corp., MD). Fold changes of transcript

levels of genes in DCs of burn mice were calculated relative to

those in the sham group. Transcript levels of TLR9 was evaluated

by qPCR, performed using a SYBR@Green ERTMqPCR Super-

Mix Kit (Invitrogen) using the forward primer 59-CGT TTC TCG

GTG CTG GAC CTA AGC G-39 and the reverse primer 59-

CTG AAA GGC ATT GGT GTG GTT G-39. Gene expression

was normalized to the housekeeping gene b-actin. Relative gene

expression was calculated by the comparative DDCt method,

according to the manufacturer’s instruction.

Statistics
Results were analyzed using PRISM version 3.0 software by

two-tailed ANOVA. A p,0.05 was considered to be significant.

Results

Burn Injury Reduced Splenic cDC and pDC Numbers
To examine the effects of burn injury on DC subsets, mice were

subjected to non-lethal thermal injury (25% total body surface, full

thickness) and the numbers of cDCs and pDCs at the site of injury,

spleen and wound draining lymph nodes (LNs) were examined at

various time points thereafter. In the first three days following

burn injury, the percentage of splenic CD11chiB220neg cDCs and

CD11clowB220+ DC subpopulations was decreased, comparison to

sham-injured animals (Fig. 1a). The CD11clowB220+ subpopula-

Table 3. Cell numbers and percentages of wound draining
lymph node cDCs and pDCs following burn injury.1

Cells (%) Cells number (104)

Days post-
injury Sham Burn Sham Burn

cDCs d1 0.7860.02 0.5160.10* 5.7061.69 5.3260.96

d3 0.7360.18 0.5860.10 6.0862.86 4.5261.25

d5 0.6560.14 0.5160.10 6.8060.11 5.5661.12

pDCs d1 0.6660.04 0.2260.03** 4.2560.44 1.7760.35*

d3 0.6360.07 0.5260.03* 5.0461.28 4.0460.78

d5 0.4360.04 0.4460.06 4.2960.68 4.9561.24

1Data are shown as mean 6 SEM (n = 9, 3 independent experiments).
**P,0.001;
*p,0.05, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.t003

Altered Dendritic Cell Functions following Injury

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e50238



Figure 3. Burn injury impaired TLR9-induced cDC maturation. Three days post-injury, total splenic CD11c+ DCs were activated with or
without CpG (24 hr) and stained for CD11c, B220, CD80, CD86 and MHC II. CDCs were gated as CD11chiB2202 and the expression of CD80, CD86 and
MHC II were analyzed by flow cytometry. (a) Representative FACS plots of non-activated (left) and TLR9-activated (right) cDCs of burn and sham mice.
Percentages of mature cDCs (MHCIIhiCD80hiCD86hi) are shown as mean 6 SEM (n = 9, 3 independent experiments). (b) Percentages of
MHCIIhiCD80hiCD86hi mature cDCs and (c) mean fluorescence intensity (MFI) of MHC-II, CD80 and CD86 expression on cDCs with and without TLR9
activation are shown as mean 6 SEM (n = 9, 3 independent experiments). *P,0.05; **p,0.01, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.g003

Altered Dendritic Cell Functions following Injury
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tion consists of pDCs (CD11clowB220+PDCA1+) and IKDCs

(CD11clowB200+DX5+) [19,20,21]. Staining with specific surface

markers further revealed that both the numbers and percentages

of splenic cDCs and pDCs decreased for the first three days post-

burn injury (Fig. 1b, c). The pDC quantity remained low until day

5 post-injury but returned to normal levels by day 7. As for splenic

IKDCs, both the numbers and percentages remained unaltered

except a modest decrease at the early time points (Fig. 1b, c) [30].

As reflected in Table 1, the absolute numbers and percentages

of two CD42CD8a+ and CD4+CD8a2 cDC subpopulations

decreased post-burn injury, while the ratio of splenic CD4+CD8a2

cDCs to CD42CD8a+cDCs compared to sham remained

unaltered (Table 2). CDC and pDC quantities were also reduced

in the wound draining LNs (i.e. two axillary, two brachial, three

mesenteric and two inguinal LNs) following burn injury (Table 3)

and no significant difference in CD11c+ DC infiltration was

detected at the injury site between burn and sham groups (Fig. 2).

These data suggest that the decreased in splenic DC populations

was not due to their migration to the wound draining LNs or the

injury site.

Burn Injury Impaired TLR9-mediated Maturation of pDCs
We postulate here that burn injury impaired TLR9-induced DC

maturation. To this end, we only focused on cDC and pDC

populations. To do this, we purified splenic cDCs and pDCs from

burn and sham-injured mice at days 1, 3 and 5 post-injury and

activated with the TLR9 ligand, CpG. Expression of maturation

markers, including MHC II, CD80 and CD86, was measured by

FACS. At day 3 post-injury, without TLR activation, cDCs of

both burn- and sham-injured mice expressed similar levels of

MHC II, CD80 and CD86 (Fig. 3). Upon TLR9 stimulation, the

percentage of cDCs that underwent maturation to become mature

cDCs (i.e. MHCIIhiCD80hiCD86hi) was lower in burn-injured

mice compared to sham control (Fig. 3a &b). The expression of

MHC II and CD80 were lower in splenic cDCs of burn mice

(Fig. 3b &c). Similar responses were observed at days 1, 3 and 5

post-burn injury (Fig. 4a).

In contrast to the modest effect on splenic cDCs, pDCs of burn-

injured mice demonstrated a decreased maturation ability

following TLR9 activation (Fig. 5). At day 3 post-injury, the

percentage of pDCs that became MHCIIhiCD80hiCD86hi mature

pDCs after TLR9 challenge was also lower in burn-injured mice

(Fig. 5a & b). The TLR9-activated pDCs from burn-injured mice

demonstrated an approximately 2-fold decrease in MHC II

expression, measured as the mean fluorescence intensity (MFI)

(109.1620.1 of burn vs. 236.3610.8 of sham) (Fig. 5c). Similar

findings were detected at day 1, 3 and 5 post-burn injury (Fig. 4b).

TLR9-activated-cDCs of Burn-injured Mice had an
Aberrant Ability to Drive Th1 and Th17 T Cell
Differentiation

To examine whether burn injury affected DCs’ ability to

activate and shape T cell responses, splenic TLR9-activated cDCs

were pulsed with OVA or HA peptides and co-cultured with

OVA-specific CD4+ or HA-specific CD8+ transgenic T cells,

respectively. TLR9-activated cDCs from burn-injured mice did

not exhibit an altered ability to induce CD4+ and CD8+ T cell

proliferation (Fig. 6a, b). To assess the ability of cDCs of burn-

injured mice on polarizing T helper cell differentiation, we

monitored cytokines production by the CD4+ T cells activated by

splenic TLR9-cDCs. The activated T cells demonstrated aberrant

Th1 and Th17 cytokines production, secreting markedly lower

levels of Th1 (IFN-c, IL-2, TNF-a) cytokines and Th17A,

compared to T cells that were primed by TLR9-activated cDCs

of sham-injured mice (Fig. 7).

Burn Injury Skewed Cytokines Production Profile of TLR9-
activated cDCs

Given TLR9-activated cDCs of burn-injured mice exhibited a

reduced ability to polarize Th1 and Th17 T cell response, we next

Figure 4. Reduced TLR9-mediated DC maturation following burn injury. Total splenic CD11c+ DCs were purified at different time point post-
burn/sham injury and subjected to CpG activation. TLR-activated cells were stained for CD11c, B220, PDCA1, CD80, CD86 and MHC II expression and
CDCs were gated as CD11chiB2202 and pDCs as CD11clowB220+PDCA1+. Percentages of MHCIIhiCD80hiCD86hi mature cDCs (a) and pDCs (b), as well as
MFI of MHC-II expression on cDCs (a) and pDCs (b) are shown as mean 6 SEM (n .9, 3–5 independent experiments). *P,0.05, **p,0.01, sham versus
burn by ANOVA.
doi:10.1371/journal.pone.0050238.g004

Altered Dendritic Cell Functions following Injury
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Figure 5. Splenic pDCs of burn-injured mice had a diminished ability to undergo maturation following TLR9 activation. Splenic DCs
were enriched on d3 after injury, activated with or without CpG (40 hr) then stained for CD11c, B220, CD80, CD86 and MHC II. PDCs were gated as
CD11clowB220+PDCA1+ and the expression of CD80, CD86 and MHC II were analyzed by flow cytometry. (a) Representative FACS plots of non-
activated and TLR9-activated pDCs of burn and sham mice. Percentages of mature pDCs (MHCIIhiCD80hiCD86hi) are shown as mean 6 SEM (n = 9, 3
independent experiments). (b) Percentages of MHCIIhiCD80hiCD86hi mature pDCs and (c) MFI of MHC II, CD80, and CD86 expression on pDCs with
and without TLR9 activation are shown as mean 6 SEM (n = 9, 3 independent experiments). *P,0.05, **p,0.01, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.g005

Altered Dendritic Cell Functions following Injury
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sought to determine whether this could be explained by changes in

the profile of cytokine secretion by cDCs themselves. Compared to

the sham controls, TLR9-activated cDCs from burn-injured mice

showed predominant secretion of the anti-inflammatory cytokine

IL-10 (,50% increase), whereas secretion of the pro-inflammatory

cytokines IL-6 (,30% decrease), TNF-a (,25% decrease) and IL-

12p70 (,60% decrease) was notably reduced (Fig. 8). To ensure

these differences in cytokine production found were not the result

of increased cDC death, we evaluated cell viability of TLR9-

activated cDCs using Annexin V and propidium iodide. No

significant difference in the viability of TLR9-activated cDCs was

detected between the burn-injured and sham groups (data not

shown).

PDCs From burn-injured Mice Had an Impaired Ability to
Secrete Pro-inflammatory Cytokines and to Induce T Cell
Proliferation

In order to determine the biological relevance of pDCs’

impaired maturation in response to TLR9 activation, we next

investigated whether pDCs’ ability to induce T cell proliferation

was affected. TLR9-activated pDCs of burn-injured mice exhib-

ited a functional impairment, with an aberrant ability to trigger

antigen-specific CD4+ and CD8+ T cell proliferation (Fig. 9). This

impairment was accompanied by a reduced secretion of IFN-a,

IL-6 and TNF-a compared to sham controls (Fig. 10).

Burn Injury Reduced DCs’ Transcript Abundance of TLR9
and Other Molecules in the TLR Signaling Pathway

To glean insights into the mechanism responsible for the altered

DC responses to TLR9 activation, we performed a gene

expression profiling of the TLR signaling pathway in cDCs and

pDCs of burn- and sham-injured mice. We found that cDCs and

pDCs from burn-injured mice expressed lower TLR9 transcript

levels compared to the sham controls (Fig. 11a). Using TLR

signaling pathway-specific qRT-PCR arrays, we observed that the

expression of all of the studied TLR signaling molecules were

down-regulated in cDCs and pDCs of burn-injured mice,

compared to those of sham (Fig. 11b).

Discussion

Severe injury promotes an imbalance of innate and adaptive

immune responses, resulting in compromised host defenses and

increased susceptibility to infection. Evidence suggests that,

Figure 6. Burn injury had no impact on the ability of cDCs to stimulate Ag-specific T cell proliferation. Three days post-burn/sham
injury, FACS-sorted cDCs were pulsed with either OVA323-229 class II or HA class I-restricted peptides (concentration ranging from 0.01 to 1 mg/ml) and
activated with CpG (6 mg/ml, 18–20 hr). DCs were then washed and subsequently co-cultured with CFSE-labeled CD4+ and CD8+ T cells for three
consecutive days. Proliferation of (a) CD4+ and (b) CD8+ TCR-transgenic T cells is illustrated by means of CFSE dilution measured using flow cytometry.
Representative FACS plots with percentages of unproliferated cells are shown (n = 9, 3 independent experiments).
doi:10.1371/journal.pone.0050238.g006
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following burn injury, the innate immune cells acquire an

exacerbated TLR reactivity that has been attributed to SIRS

[1,2]. In the present study, we examined the effect of burn injury

on the responsiveness of two major DC populations, cDCs and

pDCs, to TLR9 activation. Our findings show that burn injury

reduced the splenic cDC and pDC populations and altered their

TLR9 reactivity. Mouse splenic cDCs are broadly classified into

two major subsets, each with distinct functions:

CD42CD8a+cDCs, which express DEC-205, efficiently cross-

present to CD8+ T cells [30] and produce bioactive IL-12p70, a

cytokine involved in inducing Th1 cell responses; CD4+CD8a2

cDCs, by contrast, efficiently produce pro-inflammatory chemo-

kines. Splenic CD42CD8a+ and CD4+CD8a2 cDC subpopula-

tions were decreased upon burn injury. Burn injury altered the

ability of cDCs to secrete pro-inflammatory cytokines in response

to TLR9 activation; thus, impaired their ability to effectively prime

Th1 and Th17 T cell responses. Following burn injury, pDCs also

demonstrated altered immunobiology, with a reduced ability to

activate antigen-specific proliferation of CD4+ and CD8+ T cells

and to secrete pro-inflammatory cytokines.

DCs recognize microbes via PRRs, including the TLR family,

and therefore play a central role in activating host defenses against

microbes. However, the role of DCs in injury-induced immune

dysregulation remains unclear. Fujimi et al. reported that severe

Figure 7. CDCs from burn-injured mice had an impaired ability to trigger Th1 and Th17 CD4+ T cell responses. FACS-sorted cDCs were
isolated on d3 post injury, pulsed with OVA323-229 class II-restricted peptide (0.01 mg/ml to 0.1 mg/ml), then activated with CpG (6 mg/ml, 18–20 hr).
CD4+ T cells were subsequently co-cultured with the washed, activated cDCs for three days. Cytokines production was measured as pg/ml in
supernatants by cytometric bead analysis assay. Data represent mean 6 SEM (n = 9, 3 independent experiments). *P,0.05, sham versus burn by
ANOVA.
doi:10.1371/journal.pone.0050238.g007
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injury does not negatively affect the antigen-presenting function of

cDCs but does reduce their TLR4 reactivity [31]. Other

investigators have found that severe injury triggers DC dysfunc-

tion, which results in immune suppression. For example,

Patenaude et al. demonstrated that burn injury down-regulates

TLR4/MD-2 expression on splenic CD11c+CD8a+ cDCs and

disrupts their TLR4 reactivity [32]. Kawasaki et al. showed that

severe injury attenuates the production of TNF-a, IL-6 and IFN-c
by cDCs [33]. Burn injury has also been associated with decreased

TLR4 expression in dermal DCs as well as altered function of

epidermal Langerhans cells [34,35,36]. Furthermore, fms-like

tyrosine kinase 3 ligand treatment after burn injury promotes

resistance to wound infection by augmenting neutrophil function

in a DC-dependent manner [37].

Our findings support the role of DCs in injury-induced immune

dysfunction. We demonstrate abnormal responses of cDCs and

pDCs to TLR9 activation following burn injury. The release of

important pro-inflammatory cytokines, including IL-12, TNF-a
and IL-6 and IFN-a, required for productive innate and adaptive

immune functions, was compromised in both cDCs and pDCs.

Production of these cytokines is essential for functional differen-

tiation and commitment of helper T cells to Th1 and Th17

Figure 8. Burn injury impaired splenic cDCs’ ability to secrete
pro-inflammatory cytokines upon TLR9 activation. Three days
post-injury, FACS-sorted cDCs with purity .98% were activated with
CpG (6 mg/ml, 18–20 hr). Pro-inflammatory cytokine production by
TLR9-activated cDCs was measured by cytometry bead analysis (CBA)
assay. Data represent mean 6 SEM (n = 6, 3 independent experiments).
*P,0.05; **p,0.01, sham versus burn by ANOVA.
doi:10.1371/journal.pone.0050238.g008

Figure 9. TLR9-activated pDCs from burn-injured mice had a reduced ability to activate CD4+ and CD8+ T cell proliferation. Three
days post-injury, FACS-sorted splenic pDCs were pulsed with either OVA323-229 class II or HA class I-restricted peptides (concentration ranging from
0.1 to 10 mg/ml) and activated with CpG (6 mg/ml, 18–20 hr). CFSE-labeled OVA-specific CD4+ and HA-specific CD8+ T cells were co-cultured with the
washed, activated pDCs for three consecutive days. Proliferation of (a) CD4+ and (b) CD8+ TCR-transgenic T cells is illustrated by means of CFSE
dilution measured using flow cytometry. Representative FACS plots are shown and percentages of unproliferated cells were gated (n = 9, 3
independent experiments).
doi:10.1371/journal.pone.0050238.g009
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phenotypes. Th1 and Th17 T cells are important for the clearance

of pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and

the fugus Candida albicans [38,39]. Hence, an impaired repertoire of

pro-inflammatory cytokines during infection can have serious

negative consequences on the infected host. For instance, IL-12

release is critical for the elimination of intracellular bacteria and

viruses, as it is a potent activator of NK cells [40], NKT cells [41]

neutrophils [42], and plays an important role in Th1 differenti-

ation. IL-6 and TNF-a are also important for Th17 differentiation

and anti-microbial responses [43]. Our findings here suggest that

cDCs are unlikely contribute to the injury-induced SIRS; rather,

they promote an anti-inflammatory environment. At low peptide

concentrations, cDCs of burn-injured mice had a reduced ability

to trigger Th1 and Th17 T cell responses. This suggests that cDCs’

functional impairment may be particularly aggravated in early

infection stages when the abundance of pathogenic antigens is low.

Signaling through TLRs enables DCs to promote a rapid and

effective response against invading pathogens [25,27,28]. TLR9

activation triggers signal transduction pathways that result in the

activation of MAPK, NF-kB, and the IFN regulatory factor (IRF)

family. Alterations in the expression of these factors can cause

defects in DC maturation as well as cytokine and chemokine

production. Our gene-expression array data revealed that the

abundance of both TLR9 transcripts and of many key TLR

signaling molecules were reduced in cDCs and pDCs following

burn injury. Though the mechanism by which TLR9 is down-

regulated post-burn-trauma awaits clarification, the down-regula-

tion of TLR9 and its signaling pathway may be responsible for the

observed defects in DC functions detected in this study. We are, at

present, investigating the mechanism underlying how TLR9

signaling is affected in cDCs and pDCs, as well as whether

signaling of other TLRs is affected.

TLR9 plays a role in bacterial DNA recognition [44] and its

activation is required for an effective host anti-bacterial immune

response [45,46,47]. Although TLR9 is found in cDCs and pDCs

in mice, it is exclusively expressed in pDCs in humans. Thus,

pDCs are considered a major effector of antiviral immunity in

humans. To date, studies on the TLR reactivity of DCs after burn

injury have largely focused only on CD11chi DCs; only a limited

cohort of studies have investigated functional characteristics of

pDCs in burn injury. In addition to playing different roles in

shaping the innate and adaptive immune responses, cDCs and

pDCs are engaged in crosstalk with each other to enhance

immunological outcomes [48,49]. Thus, functional impairment of

Figure 10. PDCs from burn-injured mice had an impaired ability to secrete pro-inflammatory cytokines. Three days post-injury, FACS-
sorted spleen pDCs with purity .98% were activated with CpG (18–20 hr). Inflammatory cytokines and IFN-a productions by TLR9-activated pDCs
were measured by CBA assay and ELISA, respectively. Data are shown as mean 6 SEM (n = 8, 4 independent experiments). *P,0.05, sham versus burn
by ANOVA.
doi:10.1371/journal.pone.0050238.g010

Figure 11. CDCs and pDCs from burn-injured mice expressed a
lower transcript level of TLR9 and genes related to TLR
signaling pathway. Three days post-injury, cDCs and pDCs were
purified by FACS sorting. (a) Transcript level of TLR9 was examined by
real-time PCR. Fold changes of TLR expressions of burn and sham mice
were normalized to those of untreated control mice. The data analyzed
represents the mean 6 SEM of 5–6 independent experiments using 10
mice per group. *, p,0.05, sham versus burn by ANOVA. (b) The
expressions of genes related to TLR-mediated signal transduction were
examined by real-time PCR Array. Fold changes of transcript levels of
genes in cDCs and pDCs of burn mice were normalized to the
corresponding genes of sham mice per experiment. Genes expression
in cDC and pDC of sham mice were set as 1. The data analyzed
represent the mean 6 SEM (n = 10, 2 independent experiments).
doi:10.1371/journal.pone.0050238.g011
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one DC population can deleteriously affects the other’s function.

Recent investigations on the biology of different DC subsets

confirm the importance of inter-DC interactions. Here, we

demonstrated that, in addition to an inefficient production of

pro-inflammatory cytokines, pDCs failed to trigger effective CD4+

and CD8+ T cell proliferation. To our knowledge, this is the first

study that reported a functional impairment of pDCs following

severe injury. Future studies to further elucidate the cellular and

molecular events that result in DCs’ dysfunctions and how these

contribute to the induced immunosuppression oftenly observed

post-injury are needed. Such insight, in conjunction with that

contributed by the present study, will be critical for the

development of therapies to enhance immunity and decrease

morbidity following devastating burn injuries.
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