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Hemispheric Asymmetry in Perception: A Differential
Encoding Account

Janet H. Hsiao1, Ben Cipollini2, and Garrison W. Cottrell2

Abstract

■ Hemispheric asymmetry in the processing of local and global
features has been argued to originate from differences in
frequency filtering in the two hemispheres, with little neuro-
physiological support. Here we test the hypothesis that this asym-
metry takes place at an encoding stage beyond the sensory level,
due to asymmetries in anatomical connections within each hemi-
sphere. We use two simple encoding networks with differential
connection structures as models of differential encoding in the
two hemispheres based on a hypothesized generalization of
neuroanatomical evidence from the auditory modality to the

visual modality: The connection structure between columns is
more distal in the language areas of the left hemisphere andmore
local in the homotopic regions in the right hemisphere. We
show that both processing differences and differential frequency
filtering can arise naturally in this neurocomputational model with
neuroanatomically inspired differences in connection structures
within the two model hemispheres, suggesting that hemispheric
asymmetry in the processing of local and global features may be
due to hemispheric asymmetry in connection structure rather
than in frequency tuning. ■

INTRODUCTION

How the brain processes visual stimuli at the global and
local level has been extensively examined. Navon (1977)
proposed the “global precedence hypothesis” and argued
that the global form of a visual stimulus is unavoidably
recognized before the local forms. This effect was later
shown to depend on both the characteristics of the local
and global forms and the hemispheric asymmetry in the
perception of local and global features (Hoffman, 1980).
Follow-up studies further confirmed that there is a right
visual field (RVF)/left hemisphere (LH) advantage for re-
sponses to local features and a left visual field (LVF)/right
hemisphere (RH) advantage for responses to global fea-
tures (e.g., Flevaris, Bentin, & Robertson, 2010; Weissman
& Woldorff, 2005; Han et al., 2002; Ivry & Robertson, 1998;
Proverbio, Minniti, & Zani, 1998; Martinez et al., 1997;
Robertson, Lamb, & Zaidel, 1993; Van Kleeck, 1989; Delis,
Robertson, & Efron, 1986; Robertson & Delis, 1986;
Sergent, 1982; Martin, 1979). For example, by using hierar-
chical letter stimuli due to Navon (1977), where a large
letter is made up of many smaller letters (Figure 1A), it
has been shown that participants are faster at detecting
small letters when they are presented to the RVF/LH and
faster at detecting large letters when presented to the
LVF/RH (e.g., Ivry & Robertson, 1998; Van Kleeck, 1989;
Sergent, 1982; Figure 1B). Accordingly, Sergent (1982)
concluded that global precedence in form analysis is a
property of the RH but not the LH. She referred to the

two levels of visual stimuli as having differential spatial
frequency contents, low frequency for global features and
high frequency for local features, and argued that the LH
is more adept in processing high-frequency information,
whereas the RH is more efficient in processing low fre-
quency information. This differential frequency processing
account was supported by some follow-up studies (Ivry
& Robertson, 1998), using tasks such as spatial frequency
identification (Kitterle, Christman, & Hellige, 1990) and
discrimination (Proverbio, Zani, & Avella, 2002), face rec-
ognition (Keenan, Whitman, & Pepe, 1989), and in fMRI
(Han et al., 2002) and EEG (Flevaris, Bentin, & Robertson,
2011) studies.
A fundamental problem with this proposal is that stud-

ies examining grating detection do not support hemi-
spheric specialization for particular frequency ranges (e.g.,
Peterzell, 1991; Fendrich & Gazzaniga, 1990; Kitterle et al.,
1990; Peterzell, Harvey, & Hardyck, 1989; Di Lollo, 1981;
Rijsdijk, Kroon, & Van der Wildt, 1980). For example,
Peterzell et al. (1989) presented vertical gratings to the
LVF and the RVF of the participants and found no differ-
ence between the two hemispheres in contrast-sensitivity
functions measured or in visible persistence durations.
Fendrich and Gazzaniga (1990) presented a pair of
Gaussian windowed sinusoidal gratings either within the
LVF and the RVF of both commissurotomy patients and
healthy controls and asked them to judge whether the
pair had the same orientation; they showed that there
was no indication of an interaction between visual field
and spatial frequency of the gratings in this task (Ivry &
Robertson, 1998, have argued that this result is due to the1University of Hong Kong, 2University of California, San Diego
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use of absolute rather than relative frequencies in these
studies). Sergent (1982) thus argued that this asymmetry
“must result from processing taking place beyond the sen-
sory level.” Consistent with this speculation, an ERP study
found that the hemispheric asymmetry in processing global
versus local information was observed in the N2 compo-
nent but not in the earlier, sensory-evoked P1 component,
suggesting a higher stage of perceptual processing (Heinze,
Hinrichs, Scholz, Burchert, & Mangun, 1998). fMRI studies
have also shown that activation corresponding to the ob-
served behavioral asymmetry was found in the occipito-
temporal regions of the two hemispheres (Martinez et al.,
1997).
A similar hemispheric asymmetry has also been con-

sistently reported in auditory perception. For example, in
dichotic listening studies of speech recognition, it has
been shown that there is an advantage for responses to
prosody, which relies more on low frequency information,
when the stimulus is presented to the left ear/RH, and
an advantage for responses to content, which relies more
on high frequency information, when the stimulus is pre-
sented to the right ear/LH (e.g., Chan & Hsiao, 2012;
Ivry & Robertson, 1998; Ivry & Lebby, 1993; Ley & Bryden,
1982; Bartholomeus, 1974). In addition, similar to visual
processing, it has been proposed that auditory (speech)
signals are represented bilaterally and symmetrically at
an early sensory stage and that the processing asym-
metry emerges at a later stage due to asymmetric sampling
in time (Poeppel, 2003; see also Zattore, Evans, Meyer, &
Gjedde, 1992).
Ivry and Robertson (1998) further elaborated Sergentʼs

hypothesis by proposing the double filtering by frequency
(DFF) theory, which posits that after attentional selection
of a task-relevant frequency range, the LH amplifies high
frequencies, whereas the RH amplifies low frequencies.

Their model (Figure 2A) postulated different frequency
tuning units and modules, and the output from each
module was combined through an attentional weighting
layer. They used one-dimensional hierarchical patterns
(Figure 2B) in their simulations. Consistent with human
data, the model exhibited a hemisphere-by-level inter-
action and a global level advantage (Figure 2C). Neverthe-
less, the underlying neural mechanism of this differential
frequency filtering phenomenon remains unclear.

What could cause this asymmetry? One possibility is
that there are anatomical differences between the hemi-
spheres that influence processing. Recent research has
shown that, in the left posterior superior temporal lobe,
a region associated with language processing, pyramidal
cells have longer dendrite lengths and contact fewer ad-
jacent columnar units than do those in the RH (Hutsler
& Galuske, 2003; Buxhoeveden, Switala, Litaker, Roy, &
Casanova, 2001; Anderson, Southern, & Powers, 1999). A
similar asymmetry also exists in the macrocolumnar struc-
tures (Galuske, Schlote, Bratzke, & Singer, 2000). In addi-
tion, Galuske et al. (2000) found that in the posterior part
of BA 22, which involves language-relevant processing of
auditory signals, there were modular networks of long-
range intrinsic connections linking regularly spaced clus-
ters of neurons; although the cluster size was similar in
the two hemispheres, the spacing between clusters in the
networks in the LH was about 20% larger than those in
the RH. This asymmetry was not observed in the primary
auditory area. Although relevant anatomical data do not
currently exist for the visual cortex, the behavioral asym-
metry has been observed in both visual and auditory
modalities (e.g., Hutsler & Galuske, 2003; Poeppel, 2003;
Ivry & Robertson, 1998). We therefore hypothesize that
there may be similar spacing differences in the left extra-
striate areas versus the right.

Here we test the hypothesis that the perceptual asym-
metry results from differential connection configurations
at an encoding stage beyond the sensory level through
computational modeling. In our model we use auto-
encoders (Figure 3), neural networks that learn com-
pressed encodings of their input at the hidden layer
(Cottrell, Munro, & Zipser, 1987; Rumelhart, Hinton, &
Williams, 1986). The distribution of connections between
the encodings and the input units is determined by a
Gaussian probability density function (pdf ). While hold-
ing the number of connections in each model fixed, we
use a wide pdf to model longer-range connections be-
tween columns in the LH and a narrow pdf to model
short-range connections in the RH network. We then use
a single-layer perceptron to extract from these encodings
whether there is a target in the stimulus (either global or
local). The error in the output reflects how informative
the encoding is given the task, analogous to human RT—
greater uncertainty leads to longer RTs. Note here that
the modelʼs asymmetry is very different from the Gaussian
receptive field functions used in previous models of hemi-
spheric asymmetry. We sample from the Gaussian to

Figure 1. (A) Stimuli in Sergentʼs (1982) experiment. A hierarchical
letter pattern contains a global and a local pattern; the global pattern
(the large letter) is composed of a number of local patterns (the
small letters). Sergent used four letters to compose the patterns:
“H” and “L” were designated as targets and “T” and “F” as distracters.
“L+” means the large letter is a target, and “S+” means the small
letters are targets. “id.” means the local and global patterns are
identical. (B) The RT data for the L+S− and L−S+ stimuli in the
LVF and RVF presentation conditions (Sergent, 1982).
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allocate the occurrence of a fixed number of connections
whose weights are set by learning, not as the activa-
tion function of a radial basis function (RBF) unit (e.g.,
Monaghan & Shillcock, 2004) or as the weighting of the
inputs (e.g., Ivry & Robertson, 1998). In fact, the receptive
field widths in these prior models are the opposite of
ours, that is, wide in the RH, and narrow in the LH (e.g.,
Monaghan & Shillcock, 2004).

We conducted two simulations. In the first simulation,
we used the same one-dimensional hierarchical pattern
stimuli as the DFF simulation (Figure 2B; Ivry & Robertson,
1998). In the second simulation, we used hierarchical
letter patterns similar to those used in Sergentʼs experi-
ment (Sergent, 1982; Figure 4); we also examined the
resulting spatial frequency content after the differential
encoding scheme was applied.

Figure 2. (A) Ivry and Robertsonʼs computational model based on the DFF theory (Ivry & Robertson, 1998). The model contains six different
frequency modules; each module extracts information of a specific spatial frequency from the input and learns to map it to the output (Module 6
has the lowest frequency). The four decision nodes correspond to four target patterns: whether Target 1 or Target 2 is present and whether it is
at the global or local level. The outputs from the modules then go through an attention weight layer as a filter. The filter first selects a task-relevant
frequency range; at the second stage, in the RH network, it amplifies the output from the low spatial frequency modules within the range, whereas
in the LH network it amplifies the output from the high spatial frequency modules, through giving different weights to different modules. The
figure shows an example of RH network. (B) One-dimensional hierarchical patterns. There are two target (10101 and 01110) and two distracter
patterns (11010 and 10110). Shown at the top is an actual input pattern formed by taking the first distracter pattern and replacing each black portion
with a target pattern; this represents the first target pattern at the local level and the second distracter pattern at the global level. A 0 unit appears
between each local pattern as a separator. (C) Results of the model with large stimuli (i.e., stimuli are enlarged by five) after 100 epochs showed
an advantage for stimuli with a global level target and an interaction between network and target level, consistent with human data. Note that the
LH network became better at identifying both local and global targets with further training.
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METHODS

Here we ran two types of simulations, both using two
target patterns and two distracter patterns that could be
combined into local targets and global distracters and
vice versa. In the first experiment, we used the simplified
one-dimensional hierarchical stimuli used in Ivry and
Robertsonʼs (1998) simulation. Each stimulus was 29 units
long, constructed by combining two patterns so that one
pattern forms the local features and the other forms
the global pattern of the stimulus, with a blank (0) unit
between each local pattern (Figure 2B). In the second
simulation, we replicated Sergentʼs experiment using
two-dimensional hierarchical letter patterns. Each pattern
could appear at the local or global level, for a total of
16 input patterns (Sergent, 1982). In this simulation, each
pattern was 31 × 13 (403) pixels, with the same letters
and same assignments of letters to targets and distracter
sets as used in Sergentʼs experiment (Figure 4).
In the simulations, we used two autoencoder networks

(Cottrell et al., 1987; Rumelhart et al., 1986) with different
connectivity configurations as a way to learn an efficient
encoding from the input data. While holding the number
of connections for each hidden unit fixed, the LH network
had a comparatively wider pattern of connectivity than
the RH network (Figure 3), in accordance with the asym-
metry reported between long-range connections in LH
and RH BA 22 (Galuske et al., 2000). More specifically,
each hidden unit had a fixed number of connections to

the input layer, and these connections were randomly
drawn from a Gaussian pdf. Each hidden unit within a
model hemisphere used a Gaussian pdf with an identical
σ (variance), with the LH σ (σ1D = 12, σ2D = 18; the sub-
scripts 1D and 2D refer to the stimulations with one- and
two-dimensional stimuli, respectively) greater than the RH
σ (σ1D = 1.8, σ2D = 4; see Figure 3). The variances were
chosen as two extreme cases of denseness/sparseness of
the connections to examine the qualitative differences be-
tween the LH and RH networks; a wide range of values for
the variances were tested, and similar results were found.
The connection pattern from the hidden layer to the out-
put layer was completely symmetric to those from the
input layer to the hidden layer. Each hidden unit was
associated with a position in the input space such that
the set of hidden units were evenly distributed across
the input space. When selecting the connections for a par-
ticular hidden unit, the Gaussian pdf was centered at that
hidden unitʼs location in the input space.

After selecting all connections and constructing a net-
work, the network was trained on all 16 input patterns until
the network reached a fixed error (summed across all out-
put units and patterns; see below for more details). Similar
to Monaghan and Shillcock (2004), we trained to a perfor-
mance criterion, rather than for a fixed number of itera-
tions, because the networks with different connectivity
patterns learned the patterns at different rates. Once a net-
workwas trained, hidden unit encodings for each input pat-
tern were computed by presenting the input pattern and
then recording the hidden unit activities. These hidden unit
encodings were compressed encodings that reflect the
result of having differential connectivity to the hidden units.

After obtaining the compressed encodings of the input
stimuli, we used a perceptron (i.e., a one-layer neural net-
work) with a sigmoidal output function to classify the en-
codings according to whether there was a target or not (at
either level) in the input stimuli, the same task participants
were required to do in Sergentʼs (1982) experiment. The out-
put layer of the perceptron had a single node; the node had
value “1” when a target was present at either level (75% of
the stimuli) and “0” otherwise (25% of the stimuli). The
error was measured as the difference between the output
of the perceptron and the desired output (0 or 1). As has

Figure 4. Hierarchical letter patterns used in our second simulation.
Each pattern is 31 × 13 (403) pixels. They are composed of the
same letters used in Sergentʼs (1982) experiment.

Figure 3. LH and RH
autoencoder networks; both
have the same number of
connections. Each hidden
node has a fixed number of
symmetric connections to
the input and output layers,
respectively.
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been done in previous studies, this error was considered
to be a measure of uncertainty, and compared directly
with human RT (e.g., Dailey, Cottrell, Padgett, & Adolphs,
2002; Seidenberg & McClelland, 1989).

In the simulation with one-dimensional stimuli, we ex-
plored the parameter space by testing the model with dif-
ferent combinations of the parameters, ranging from 11–15
hidden nodes and 5–10 connections from each hidden
node. In the simulation with hierarchical letter patterns,
the combinations ranged from 11–15 hidden nodes and
from 170 to 220 connections from each hidden node.

For both the autoencoder networks and the perceptron,
the training algorithm was gradient descent (Rumelhart
et al., 1986) using sum-square error (SSE) for the objective
function. The learning rate started at a constant (ζ1D =
ζ2D = 0.1 for the autoencoder networks; ζ1D = ζ2D =
0.05 for the perceptron) and was adapted during training:
If the error decreased in the current epoch, the learning
rate for the next epoch increased by a factor of 1.05; if
the error increased, the new learning rate was decreased
by a factor of 1.25. Training of the autoencoders pro-
ceeded until the average SSE across all output nodes
reached a predetermined threshold (0.025) within a pre-
determined maximum number of iterations (max1D =
1000, max2D = 250). Rare cases where the autoencoder
could not reach the SSE performance criterion within
the maximum number of training iterations were marked
as rejections. Little effect was seen in varying this thresh-
old in the ranges of 0.05 (requiring very few training
iterations) to 0.01 (requiring many training iterations
and leading to a high incidence of rejections). Training
for the perceptron classifiers stopped after 250 iterations;
values between 100 and 1000 iterations showed similar
performance. After training the perceptron had 100%
classification accuracy.

To match the statistical power found in Sergentʼs ex-
periment, we ran the model 68 times in each simulation,
giving us approximately the same number of total trials
(68 models × 16 trials per model hemisphere) as Sergentʼs
human data (12 participants × 90 trials per visual field).

To examine encoding differences between LH and RH
networks in terms of spatial frequency, output images were
computed for each network. This was done by presenting
each input image to a trained network and then record-
ing the output unit activities. These output images were
then analyzed for spatial frequency content. To compare
and visualize, we took the log power at each frequency
and then computed the difference in log power between
RH and LH networks. We used hierarchical letter patterns
(Sergent, 1982) for this analysis.

RESULTS

Results of the Simulation with
One-dimensional Stimuli

We first report the results of the simulation in which we
used the same one-dimensional stimuli as those used in

Ivry and Robertsonʼs (1998) model (Figure 2B). To verify
that the results were robust to the parameters defining
the model architecture, we ran the model with different
parameter combinations, ranging from 11 to 15 hidden
nodes and from 5 to 9 connections from each hidden node
(in total 25 different combinations). We used repeated-
measures ANOVA to analyze the data; the within-subject
variable was Target Level (global vs. local), and the
between-subject variables were Hemisphere (LH vs. RH
networks), Number of Hidden Nodes (11, 12, 13, 14, and
15), and Number of Connections from each hidden node
(5, 6, 7, 8, and 9). The dependent variable was the Error in
the output layer of the perceptron.
Consistent with human data, the results showed that the

model had better performance when the target was at the
global level (F(1, 3350) = 1092.823, p < .001), and there
was a significant interaction between Hemisphere and Tar-
get Level (F(1, 3350) = 756.923, p < .001; Figure 5A);
although both of these two effects interacted with either
the number of hidden nodes (Target Level × Number of
Hidden Nodes, F(4, 3350) = 38.347, p< .001; Target Level ×
Hemisphere × Number of Hidden Nodes, F(4, 3350) =
20.456, p< .001) or number of Connections (Target Level ×
Number of Connections, F(4, 3350) = 11.927, p < .001;
Target Level × Hemisphere × Number of Connections,
F(4, 3350) = 4.805, p = .001), when we split the data
according to either number of hidden nodes or num-
ber of connections, both effects were significant in all
cases ( p < .001 for all cases; Figure 5B). Nevertheless, in
Sergentʼs (1982) human data, there was no main effect of
Hemisphere; the two hemispheres had a similar perfor-
mance level on average. In contrast, our model showed
a main effect of Hemisphere: the LH network performed
better than the RH network, F(1, 3350) = 154.231, p <
.001; this effect interacted with number of hidden nodes,
F(1, 3350) = 12.808, p < .001: Performance difference
between the two hemisphere networks was significant
when the network had 11 [F(1, 670) = 69.770, p <
.001], 12 [F(1, 670) = 63.882, p < .001], 13 [F(1, 670) =
16.954, p< .001], or 14 hidden nodes [F(1, 670) = 19.119,
p < .001], but not when it had 15 hidden nodes [F(1,
670) = 2.383, p = .123; Figure 5B]. This suggests that
performance difference between the two hemisphere
networks can be influenced by parameter settings.

Results of the Simulation with Hierarchical Letter
Pattern Stimuli

In the second simulation, we used the hierarchical letter
patterns used in Sergentʼs study. We explored how the
performance changed with different parameter combi-
nations, ranging from 22 to 30 hidden nodes and 40 to
120 connections from each hidden node (in total 25 dif-
ferent combinations). As in the first simulation, we used
repeated-measures ANOVA to analyze the data; the
within-subject variable was Target Level (global vs. local),
and the between-subject variables were Hemisphere (LH
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vs. RH networks), Number of Hidden Nodes (22, 24, 26, 28,
and 30), and Number of Connections from each hidden
node (40, 60, 80, 100, and 120). The dependent variable was
the Error in the output layer of the perceptron.
The results showed an advantage of detecting a

global level target, F(1, 3350) = 1070.838, p < .001, and
an interaction between Hemisphere and Target Level, F(1,
3350) = 858.284, p < .001 (Figure 6A); both effects inter-
acted with Number of Connections, F(4, 3350) = 36.261,
p < .001, but not Number of Hidden Nodes, F(4, 3350) =
1.933, p = .102. When we split the data by number of
connections, we found that both effects were significant
across all cases (Figure 6B). The model also showed a main
effect of Hemisphere, F(1, 3350) = 91.054, p < .001, and
this effect interacted with Number of Connections, F(4,
3350) = 17.519, p < .001: When the model had 40 [F(1,
670) = 58.135, p < .001], 60 [F(1, 670) = 112.781, p <
.001], or 80 connections from each hidden node [F(1,
670) = 14.713, p < .001], the LH network performed sig-
nificantly better than the RH network; this difference was
not significant when themodel had 100 [F(1, 670) = 1.343,
p= .247] or 120 connections [F(1, 670) = 0.251, p= .617].
Thus, the results from the two simulations suggested that

although the global level advantage effect and the inter-

action between hemisphere and target level could bemodu-
latedbydifferent parameter settings, themodulationgenerally
only affected the size of the effects, not the direction; in
other words, these effects were robust against parameter
changes. In contrast, theperformancedifferencebetween the
LH and RH networks was sensitive to parameter settings.1

We also investigated spatial frequency content pre-
served in the LH and RH encodings. We reproduced input
images from their encodings in the output; for hierarchical
letter patterns, low frequencies were better reproduced
in the RH network, whereas high frequencies were better
reproduced in the LH network (Figure 7A and B), con-
sistent with Sergentʼs (1982) hypothesis and the DFF
theory (Ivry & Robertson, 1998). However, this did not re-
sult directly from frequency tuning of the neurons. Rather,
differential frequency filtering behavior emerged naturally
as the result of the encoding scheme, suggesting that the
asymmetry in perception may be due to differences in
anatomy rather than frequency tuning per se.

DISCUSSION

In the current study, we test the hypothesis that hemi-
spheric asymmetry in the perception of global and local

Figure 5. (A) Results of the simulation with one-dimensional stimuli used in the DFF model (Ivry & Robertson, 1998). (B) Results of the
simulation when splitting the data according to either number of hidden nodes or number of connections.
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features originates from differential encoding beyond the
sensory level due to anatomical differences between the
two hemispheres, instead of differential frequency filtering
as proposed by the DFF theory (Ivry & Robertson, 1998).
We first argue that the lack of evidence supporting hemi-
spheric specialization for particular frequency ranges (e.g.,
Fendrich & Gazzaniga, 1990; Kitterle et al., 1990; Peterzell
et al., 1989; Di Lollo, 1981; Rijsdijk et al., 1980) suggests

that this hemispheric asymmetry takes place beyond the
sensory level (Heinze et al., 1998; Sergent, 1982) and the
two hemispheres do not differ in information extraction.
We then argue that the difference takes place at an
encoding stage due to differences in connection struc-
tures. We incorporate evidence about the anatomical dif-
ferences in columnar and connectional structure in the
auditory cortex between the two hemispheres (e.g.,

Figure 7. (A) Image
reproduction example (global:
H; local: F) showing the
frequency information in which
the two networks significantly
differ in power. (B) Spatial
frequency analysis of the
output from the autoencoders
with 26 hidden nodes and
100 connections to/from each
hidden node in the simulation
with hierarchical letter pattern
stimuli. The plots show the
difference in log radially
averaged power spectrum (i.e.,
the directional independent
mean spectrum) between
the two networks (RH–LH);
the blue line shows the mean,
and the red dash line indicates
one standard deviation across
the 68 simulation runs. Regions
marked in yellow indicate
significant difference from zero.

Figure 6. (A) Results of the simulation with hierarchical letter pattern stimuli. (B) Results of the simulation when splitting the data according
to number of connections from each hidden node.

1004 Journal of Cognitive Neuroscience Volume 25, Number 7



Hutsler & Galuske, 2003; Buxhoeveden et al., 2001;
Galuske et al., 2000; Anderson et al., 1999; Seldon, 1981a,
1981b, 1982) into a computational model that uses auto-
encoder networks to develop efficient encodings of the
stimuli (Cottrell et al., 1987; Rumelhart et al., 1986): The
columnar structure in the posterior superior temporal lobe
in the RH has more connections among neighboring
columns compared with the LH and thus may develop
representations that are more functionally overlapped than
those in the LH (Hutsler & Galuske, 2003). Although rele-
vant anatomical data for the visual cortex are not currently
available, similar perceptual asymmetry has been observed
in both visual and auditory modalities (e.g., Poeppel,
2003). Thus, based on a hypothesized generalization across
the two modalities, we use two autoencoder networks with
differential connectivity configurations to simulate this dif-
ferential encoding: The RH autoencoder network has a
narrower connection distribution to allow more connec-
tions among neighboring nodes compared with the LH
autoencoder network. We then use a perceptron to ex-
amine how efficacious the two encoding systems are in
terms of detecting local and global level targets. The results
match human data (Sergent, 1982) well; they show a sig-
nificant hemisphere-by-level interaction: an RH advantage
for responses to a global level target and an LH advantage
for responses to a local level target (Sergent, 1982). They
also show an overall advantage in responses to a global
level target, consistent with human data (Navon, 1977).
This effect is because the narrower connection distribution
in the RH autoencoder network allows each hidden node
to develop a compressed representation for a local region
within the stimulus; because in natural images neighboring
pixels are more correlated than distant ones, there may
be more variance in low spatial frequencies across the
input patterns received by a hidden node, resulting in
the dominance of low spatial frequency information. In
contrast, with a wider and sparser connection distribu-
tion, each hidden node in the LH autoencoder network
samples across a wider range of the input image and the
sampled pixels are more random and less likely to be cor-
related; consequently, there may be comparable variance
in high and low spatial frequencies across the input pat-
terns received by a hidden node, resulting in the LH net-
workʼs better ability in preserving high spatial frequencies
as compared with the RH network.2

In comparison with Ivry and Robertsonʼs (1998) DFF
model, we show that our model provides a better account
of human data (Sergent, 1982). Their model enforces a dis-
crete separation of frequency information into modules,
and hemispheric differences take place through manip-
ulating the combination of the outputs from different fre-
quency modules. It is unclear how these frequency ranges
are combined in a certain way and how themodel is able to
account for the lack of evidence supporting hemispheric
specialization for particular frequency ranges (Fendrich &
Gazzaniga, 1990; Kitterle et al., 1990; Peterzell et al., 1989;
Di Lollo, 1981; Rijsdijk et al., 1980). In addition, there is

little anatomical evidence suggesting differential frequency
tuning in the neurons in the two hemispheres or differ-
ential modulation by frequency channels in the two hemi-
spheres similar to that proposed in the DFF model. In
contrast, through hypothesizing that hemispheric differ-
ences take place at an encoding stage beyond the sensory
level and using Gaussian probability distributions to simu-
late differential connection configurations at the encoding
stage, our model naturally develops the hemispheric differ-
ence in the frequency content in the encoding.

In our simulation with one-dimensional stimuli as those
used in the DFF model, we explored the parameter space
and found that the main effect of global level advantage
and the interaction between network and target level were
robust against parameter changes, although in some cases
there was a significant main effect of LH network ad-
vantage. In contrast, in the DFF model, with one given
parameter setting, the interaction between network and
target level was fragile—the LH network became better
at identifying both local and global targets with further
training. Also, the simulation of the DFF model used
one-dimensional hierarchical stimuli that differed greatly
from Sergentʼs original hierarchical letter patterns. In con-
trast, here we used two-dimensional hierarchical letter
patterns similar to those used in human studies (Sergent,
1982) and replicated the results, a test that has not been
conducted with the DFF model. In addition, through
analyzing the spatial frequency content preserved in the
encodings from the LH and RH networks, we show that
differential frequency filtering behavior emerged naturally
as the result of the encoding scheme, suggesting that
hemispheric asymmetry in perception may be due to
hemispheric differences in connection structures rather
than frequency tuning per se.

The modeling results provide support for the idea that a
hemispheric difference in cortical columnar and connec-
tion structure similar to that in the auditory cortex may also
exist in high-level visual areas. We speculate that it may be
in the lateral occipital region. It has been reported that
there is significantly greater ipsilateral activity (i.e., activa-
tion from the other hemisphere after the initial contra-
lateral projection from the visual hemifields to the
hemispheres) observed in the area anterior to the retino-
topic areas (Tootell, Mendola, Hadjikhani, Liu, & Dale,
1998), suggesting that the lateral occipital region may be
a convergence point after the visual field split (Hsiao,
Shieh, & Cottrell, 2008). Consistent with this speculation,
recent fMRI studies have suggested that the locus of this
hemispheric asymmetry in local and global processing is
in the occipital/occipitotemporal region (Han et al., 2002;
Martinez et al., 1997). Another possibility is the inferior
parietal lobe/superior temporal gyrus region, suggested by
recent fMRI studies showing that the activation in this re-
gion corresponds to the asymmetry observed in humandata
(Weissman & Woldorff, 2005; Fink et al., 1997; Robertson,
Lamb, & Knight, 1988). Further examinations are required
to confirm these speculations.
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We are currently pursuing the incorporation of more
anatomical data into the model, such as using 2D Gabor
filters to simulate responses of complex cells in the early
visual system (Daugman, 1985) and also using the pro-
posed autoencoder networks as the way to develop effi-
cient encoding in the two hemispheres in modeling more
complicated real world visual stimuli (such as faces; cf. the
Principal Component Analysis step in many visual per-
ception models, e.g., Hsiao et al., 2008; Dailey et al., 2002;
Dailey & Cottrell, 1999) to further examine the cognitive
plausibility of this differential encoding mechanism in
accounting for other hemispheric asymmetry phenomena
in perception, such as the left side bias in face perception
(e.g., Gilbert & Bakan, 1973) and the RVF advantage in
visual word recognition (e.g., Bryden & Rainey, 1963).
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Notes

1. In our simulations, we consistently found a significant inter-
action between Target Level and Hemisphere, a significant LH
advantage over the RH when the target was at the local level and
a significant RH advantage over the LH when the target was at
the global level, consistent with the human data. However, when
we examined the data of the LH and RH networks separately,
although a strong global level advantage over the local level condi-
tion was observed in the RH network, there was no apparent local
level advantage in the LH network (Figures 5 and 6). In Sergentʼs
(1982) results (Figure 1), the difference between L+S− and L−S+
conditions in the RVF/LH presentation condition was also much
smaller than that in the LVF/RH presentation condition; whether
this difference was significant was not reported.
2. In a separate simulation, we used low-pass and high-pass
filtered hierarchical patterns as the stimuli. We found that the
RH network had better performance in reproducing low-pass
filtered stimuli than the LH network, whereas the LH network had
better performance in reproducing high-pass filtered stimuli. This
result further confirms that the RH network is biased to learn and
represent low spatial frequency information, and the LHnetwork is
biased to learn and represent high spatial frequency information.
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