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Abstract  A plane strain problem for two magnetoelectroelastic (MEE) half-planes adhered by a thin 
isotropic interlayer is considered. A novel crack model, i.e., a magnetoelectrically permeable interface 
crack with pre-fracture zones is introduced for MEE bimaterial system. The stresses in pre-fracture zones and 
the lengths of pre-fracture zones are unknown, which are determined by solving the corresponding Hilbert 
problem and solving nonlinear equations introduced by yielding condition on the pre-fracture zones. Some 
particular cases are further analyzed and numerically discussed. In the suggested model, any singularities 
connected with the crack are eliminated, and the results presented in this paper should have potential 
applications to the design of multilayered MEE structures and devices. 
 
Keywords  Pre-fracture zone, Interface crack, Magnetoelectrically permeable, Magnetoelectroelastic plane 
 
1. Introduction 
 
Magnetoelectroelastic (MEE) materials have been widely used in electronics industry. In the design 
of MEE structures, it is important to take into account the defects/imperfections, such as cracks, 
which are often pre-existing or are generated by external loads during the service life. Therefore, in 
recent years, research on fracture mechanics of MEE materials has drawn a lot of interest, and lots 
of achievements have been made for two-dimensional (2-D) internal crack problems [1-5] and 2-D 
interface crack problems [6-8]. It is noted that in the works of [7] and [8], the contact zone model is 
firstly extended to interface crack problems of MEE materials. 
However, all the above-mentioned works related to interface crack problems, the singularity 
behavior on the crack tips always exists. On the other hand, two kinds of MEE materials, as well 
known, generally cannot be connected directly. Thus, in this study, a novel interface crack model for 
MEE bimaterial, i.e., the model of interface crack with pre-fracture zones is put forward. For 
simplicity, the interface is assumed to be magnetoelectrically permeable. The problem is reduced to 
solve a Hilbert problem and two nonlinear equations introduced by Mises yielding condition. The 
particular cases of symmetric loads and identical MEE material are further analyzed, and some 
numerical results are presented. These obtained results and/or conclusions could be of interest to the 
analysis and design of smart sensors/actuators constructed from MEE composite laminates. 
 
2. Statement of the problem 
 
Referring to Ref. [9], it is assumed that the MEE half-spaces are adhered by means of an isotropic 
interlayer with shear modulus μ , Poison’s ratio ν  and yield limit Yσ . Furthermore, the 
half-spaces are assumed to be loaded at infinity with uniform stresses ( )

33 0
mσ σ= , ( )

31 0
mσ τ= , 

uniform electrical displacement ( )
3 0

mD d=  and magnetic induction ( )
3 0

mB b=  (m=1 stands for the 
upper domain, and m=2 for the lower one). In this paper, although the interlayer thickness will not 
be taken into account as usual, the properties of the interlayer and its influence upon the fracture 
process will be considered by means of introduction of pre-fracture zones with cohesive stresses. As 
shown in Fig. 1, the pre-fracture zones are, respectively, denoted by [ ]1,a a  and [ ]1,b b , and the 
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open part of the crack is denoted by [ ],a b . 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An interface crack with pre-fracture zones between two semi-infinite MEE planes 
 
Assume that the MEE materials are poled in the 3x − direction. As pointed out before [8], the 
displacement 2u  decouples in the ( )1 3,x x − plane from the displacement components 1 3, ,u u  
electrical potential ϕ  and magnetic potential φ . And in present study, our attention will be 
focused only on the generalized plane strain problem for the components 1 3, ,u u ϕ  and φ . 
Thus, for the considered magnetoelectrically permeable interface crack, the continuity and 
boundary conditions at the interface can be written in the form 
 [ ] [ ] [ ] [ ] T

1 3, , ,u u ϕ φ⎡ ⎤ =⎣ ⎦ 0 , [ ] [ ] [ ] [ ] T
31 33 3 3, , ,D Bσ σ⎡ ⎤ =⎣ ⎦ 0 , ( )1 ,x a b∉ , (1) 

 [ ] [ ] [ ] [ ] ( )3 3 10, 0, 0, 0, ,D B x a bϕ φ= = = = ∈ , (2) 

 ( ) ( )
[ ]
[ ]
[ ]

1 1
( )
33 1 1 1 1 1

1

, ,
,0 , , ,

0, , ,

m

x a a
x p x x b b

x a b

σ
σ σ

′⎧ ∈
⎪≡ = ∈⎨
⎪ ∈⎩

 ( ) ( )
[ ]
[ ]
[ ]

1 1
( )
31 1 2 1 1 1

1

, ,
,0 , , ,

0, , ,

m

x a a
x p x x b b

x a b

τ
σ τ

′⎧ ∈
⎪≡ = ∈⎨
⎪ ∈⎩

 (3) 

where Τ  denotes transposition, [ ] ( ) ( ) ( )1 1 1 3i0 i0 , , etc.x x u uΠ = Π + −Π − Π = , and the values σ , 
τ , σ ′  and τ ′  are unknown to be determined. 
In addition, as pointed out in Ref. [9], because the interlayer is usually much softer than the MEE 
materials, the interlayer yielding or damage will appear firstly. Thus, some law of interlayer 
material yielding or damage, for example, ( )1 0, ,f σ τ σ =  for the right pre-fracture zone and 

( )1, , 0f σ τ σ ′′ ′ =  for the left pre-fracture zone, respectively, should be satisfied. For simplicity, 

1 1 Y2σ σ σ′= =  are assumed in present study [9]. 
Up till now, boundary conditions (i.e., Eqs. (1-3)) together with the known governing equations (see 
Ref. [8]) have formulated a plane strain problem of linear fracture mechanics for a crack [ ]1 1,a b  

between two half-planes, where the components σ , τ , σ ′  and τ ′  at the crack faces and the 
positions of point 1a  and 1b  are all unknown to be determined. 
 
3. The magnetoelectroelastic solution 
 
From the early work [8], it is known that for the case of plane strain, the following expressions at 

0τ

0σ

0σ

b

1x

3x
a b  b1 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 11 , , , , ,ijks sij sij is is ise h dc α μ

0τd

b d

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 22 , , , , ,ijks sij sij is is ise h dc α μ

a1 
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the interface hold true: 
 ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( )1 1 3 4 5 1 1 3 1 1 1 1 1, , , , , ,x V V V V u x u x x x x xϕ φ

ΤΤ + −′ ′ ′ ′ ′ ′ ′ ′ ′= = = −⎡ ⎤⎣ ⎦V W W , 

 ( ) ( ) ( )(1) (1) (1) (1)(1)
1 31 33 3 3 1 1,0 , , ,x D B x xσ σ

Τ + −⎡ ⎤= = −⎣ ⎦ GW GWt , 

where ( ) ( ) ( ) ( ) ( )1 3 4 5, , ,z W z W z W z W z
Τ

= ⎡ ⎤⎣ ⎦W  is an introduced unknown vector function, 

and ( ) ( )1 1 i0 ,x x+ = +WW  ( ) ( )1 1 i0x x− = −WW ; the matrix G  has been given in Ref. [8]. 
 Considering that the crack is magnetoelectrically permeable, and that 

( ) ( ) ( )
1 1 3

(1)
1 i,0 x z x xx z∞

→∞ = + →∞= −= G G Wt t  with { }T
0 0 0 0, , ,d bτ σ∞ =t , we easily get 

 ( ){ }1

4
3

W
− ∞= −G G t , ( ){ }1

5
4

W
− ∞= −G G t . 

Taking into account that ( )4 constW z = and ( )5 constW z = and noting the structure of G, we can 
further obtain 
 ( ) ( ) ( ) ( )(1) (1)

33 1 31 1 1 1,0 i ,0 j jj j jx m x t x xσ σ γ+ −⎡ ⎤+ = +Φ Φ⎣ ⎦ , (4) 

 ( ) ( ) ( ) ( )1 1 3 1 1 1i j jju x s u x x x+ −′ ′+ = −⎡ ⎤ ⎡ ⎤ Φ Φ⎣ ⎦ ⎣ ⎦ . (5) 
where 

  ( ) ( ) 0
j j jz zΦ = Ω +Φ , ( )

( )
34 4 35 50 2i

, 1,3
1j

j j

g W g W
j

t γ
+

Φ = =
+

% %
, 

 1 3( ) ( ) ( ),i jj z z zW s WΩ = + 31 11
31 11, , 1,3j

j j j
j

g m g
t g m g j

t
γ

+
= − = − =

% %
% % , 

 [ ]1 1 1u W W+ −′ = − , 31 33
1,3 1,3 1,3

11 13

,g gm s m
g g

= − = −
% %

m
% %

, 

and ijg% are the elements of G. 

Considering that ( ) ( ) ( )1 1 1j j jx x x+ −= =Φ Φ Φ  for ( )1 1 1,x a b∉ , it follows from Eq. (4) that 

 ( ) ( ) ( )0 0i 1j z j j jz m tσ τ γ→∞Φ = + + . (6) 
Using Eq. (4) for 1j =  and the corresponding interface conditions (3) yields the following Hilbert 
problem 
 ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1, ,x x P x t x a bγ+ −Φ + Φ = ∈ , (7) 
where 
 ( ) ( ) ( )1 1 1 1 2 1iP x p x m p x= + . 
The solution of Eq. (7) satisfying Eq. (6) can be expressed as 

 ( ) ( )
( ) ( )1

1
1 0 1

1

1 1 d
2 i

b

a

P t X t
z C C z t

X z t t zπ

+⎡ ⎤
Φ = + +⎢ ⎥−⎣ ⎦

∫ , (8) 

where 
 ( ) ( ) ( )0.5 i 0.5 i

1 1X z z a z bε ε− += − − , 

 
( )

0 1 0 1 1
0 1

1 1

i2 i + i
1 2

m a bC l
t
σ τπ ε

γ
+ +⎛ ⎞= − ⎜ ⎟+ ⎝ ⎠

, 
( )

0 1 0
1

1 1

i2 i
1

mC
t
σ τπ

γ
+

=
+

, 1ln 2ε πγ= , 1 1 1l b a= − . 

Substituting Eq. (8) into Eq. (4) and noting that ( ) ( ) ( )1 1 1j j jx x x+ −Φ = Φ = Φ  for ( )1 1 1,x a b∉ , the 
following relation at the interface can be derived 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1

1

(1) (1) 1 1
33 1 1 31 1 1 1 0 1 0

1

1 11
1 1

1,0 i ,0 2 i i i
2 i 2

1 i d i d .
a b

a b

a bx m x x l m
X x

X t X t
m t m t

t x t x

σ σ π ε σ τ
π

σ τ σ τγ
+ +

⎧ +⎛ ⎞+ = − − + +⎨ ⎜ ⎟
⎝ ⎠⎩

⎫⎡ ⎤⎪′ ′+ + + + ⎬⎢ ⎥− − ⎪⎣ ⎦⎭
∫ ∫

 (9) 

Noting the finiteness of the stresses at the point 1a  and 1b , we can further obtain the following 
system of linear algebraic equations 

 ( )[ ] ( )
11 1

0 1 0
1 1

1 2ii i i
1 2ii 1

m l m
m

εσ τ π σ τ
εσ τ γ

−′ ′ ++ ⎧ ⎫⎧ ⎫
= +⎨ ⎬ ⎨ ⎬− −+ +⎩ ⎭ ⎩ ⎭

N , (10) 

where the components of matrix ( ), 1, 2ijN i j⎡ ⎤= =⎣ ⎦N  have the following form 

 ( ) ( ) ( ) ( )1

1

0.5 i 0.5 i
11 1 1 12 1 1d , d

a b

a b
N t b t a t N t b t a t

ε ε+ +
= − − = − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ , (11a) 

 ( ) ( ) ( ) ( )1

1

0.5 i 0.5 i
21 1 1 22 1 1d , d

a b

a b
N t a t b t N t a t b t

ε ε− −
= − − = − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ . (11b) 

For the sake of simplicity to calculate, Eq. (11) can be further approximated (see Ref. [9]). 
After substituting Eq. (10) into yielding conditions, a system of nonlinear equations is then derived 
as 
 ( )0 0, , , 0 1, 2i a b iσ τΨ Δ Δ = = , (12) 
where 1a a aΔ = −  and 1b b bΔ = −  are the pre-fracture zone lengths. 
Using Eq. (5), (7) and using (8), one arrives at the following equation on displacement jumps 

 
( ) ( ) ( )( ) ( ){
( ) ( ) ( ) ( ) ( ) } ( )

0.5 i 0.5 i
1 1 1 3 1 0 1 0 1 1 1 1

1 1

1
1 1 1 1 1 2 1 1

1 1

1i 2 i i
2 i

11 i i ,
2

u x s u x m x a x b
t

m J x m J x h x
t

ε επ σ τ
π γ

γγ σ τ σ τ
γ

− ++ = + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−′ ′+ + + + −⎡ ⎤⎣ ⎦

 (13) 

where 

 ( ) ( )
( ) ( ) ( )

( )1 1 1

1 1 1
1 1 2 1

1 1d d , d d
x a x b

a a a b

X t X t
J x t v J x t v

X v t v X v t v

+ +

= =
− −∫ ∫ ∫ ∫ , ( ) ( )1

1
1 d

x

a
h x P t t= ∫ . 

The integral for ( )1 1h x  can be calculated analytically, and the integrals for ( )1 1J x  and ( )2 1J x  
can be presented via hyper-geometric functions. As well known, for a real MEE bimaterial, ε  is 
very small [6] and the influence of the oscillation on the value of  ( )1 1J x  and ( )2 1J x  is 

negligibly small. Therefore by assuming 0ε =  in evaluating ( )1 1J x  and ( )2 1J x , one gets [9] 

 ( ) ( ) ( ) ( )( ) ( )1
1 1 10 1 1 1 1 1cos , , ,

2
x aJ x J x x a b x H a b x aα− −

≈ = − − + , 

 ( ) ( ) ( ) ( )( ) ( )1
2 1 20 1 1 1 1 1cos , , ,

2
x bJ x J x x a b x H a b x bα− −

≈ = − − − , 

where ( )1 1 1 12b a a lα = + − , and ( ), , ,H a b x ξ  is a known function given in [9]. 
Thus, Eq. (13) can be rewritten as 

 
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

0.5 i 0.5 i
11 1 1 3 1 0 0 1 1 1 1 1 1

1 11 10 1 20 1 1 1 1 1 1 1

i i

1 2 i 1 2 .i i

u x s u x x a x b tm

J x J x t h x tm m

ε εσ τ γ

γ σ τ σ τ π γ γ γ

− ++ = + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
′ ′+ + + + − −⎡ ⎤⎣ ⎦

 (14) 

Crack opening displacements (COD) at the initial crack tips are defined as follows 
 ( ) ( ) ( ) ( )1 1 3 3 1 1 3 3, , ,a a b bu a u a u b u bδ δ δ δ= = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (15) 
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After substituting 1 ,x a b= , respectively, into the expressions of ( )1 1u x⎡ ⎤⎣ ⎦ , ( )3 1u x⎡ ⎤⎣ ⎦ and the COD 
in Eq. (15) will be then acquired as well. In addition, carrying out a similar derivation to the one 
given in [9], the expressions for the electrical displacement and magnetic induction at different 
segments of the interface can be easily obtained (omitted here). 
It is remarked that both the electrical displacement ( ) ( )1

3 1,0D x  and magnetic induction ( ) ( )1
3 1,0B x  

are not singular as well at either the initial crack tips or the points 1a  and 1b . Thus, the proposed 
model removes singularities in all components of the magnetoelectromechanical field. On the other 
hand, it should be pointed out that both the electrical displacement and magnetic induction in the 
pre-fracture zone are not only directly related to the material parameters of MEE bimaterial and the 
applied tension load, but also related to ( )1 1u x′⎡ ⎤⎣ ⎦  and the normal stress in the pre-fracture zone, 
and that the electrical displacement in the pre-fracture zone depends on the applied electrical load, 
and magnetic induction on magnetic load. However, both the normal and shear stresses in the 
pre-fracture zone are independent of the applied magnetoelectrical load. 
 
4. Simplified case of symmetrical loads 
 
For the case of symmetrical loads, i.e., 0 0τ ≡ , placing the apex of the coordinate system in the 
middle point of the crack, one has a b= − , 1 1a b= − , τ τ′ = − , σ σ′ = . In Eq. (10), only one of the 
equations is necessary, which can be expressed as 

 ( ) ( ) ( )1
1 21 1 22 0

1

2 ii i 1 2i
1

sym sym bm N m N πσ τ σ τ σ ε
γ

− + + = − −
+

. (16) 

where 

 ( ) ( ) ( ) ( )0.5 i 1.5 i 0.5 i 0.5 i
21 1 1 22 1 1

1 12 , 2
1.5 i 0.5 i

sym symN b b b N b b bε ε ε ε

ε ε
− + − − += − − = − −

− +
. 

Extracting the real and imaginary parts of Eq. (16), we arrive at the system of linear algebraic 
equations with respect to σ  and τ . The solution of the obtained system can be expressed as 
 ( ) ( )1 0 22 12 0 21 112 , 2rm a a r a aσ σ ε τ σ ε= − = + , (17) 
where the expressions for r  and ( , 1, 2)ija i j =  are the same as those given in [9]. It is worth 
noting that the values of r , ija  and consequently σ  and τ  all depend on the pre-fracture zone 
length 1g b b= . 
Substituting Eq. (17) into the second equation of Eq. (12) and taking into account that a bΔ = Δ  in 
the considered case, one arrives at a transcendental equation with respect to g  as follows 

 ( ) ( )
2 2

21 Y
1 22 12 21 11 2

0 0

42 4 2
3

m a a a a
r r
σ σε ε
σ σ

⎡ ⎤ ⎛ ⎞
− − + + = ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
, 

where the Mises yielding condition ( ) ( )2 2 2
1 1 Y

4, , 4 0
3

f σ τ σ σ σ τ σ≡ − + − =  and 1 Y2σ σ=  are 

used [9]. 
From Eq. (14), the displacement jumps for ( )1 1 1,x b b∈ −  can be then obtained as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

0.5 i 0.5 i
1 1 1 3 1 0 1 1 1 1 1 1

1 1 10 1 1 20 1 1 1 1 1 1 1

,0 i ,0

1 i i 2 i 1 2 ,sym sym

u x s u x x b x b t

m J x m J x t h x t

ε εσ γ

γ σ τ σ τ π γ γ γ

− ++ ≈ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤+ + − + + − −⎣ ⎦

 

where ( ) ( ) ( )0 1 0 1 1,2sym
i iJ x J x i= =  with a b= − , 1 1a b= − . And the electrical displacement and 

magnetic induction can be expressed as 
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 ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )

1
1 1 1 43 33 1 1 1

1 1
3 1 43 33 0 0 1 1 1 1

1 (1)
43 33 33 1 1 1 1

, , , ,

,0 , , ,

,0 , , ,

u x g g x a a b b

D x g g d u x x a b

g g x x a b

η σ

σ η

σ

−

−

−

⎧ ′ + ∈⎡ ⎤⎣ ⎦⎪⎪ ′= − + + ∈⎡ ⎤⎨ ⎣ ⎦
⎪ ∉⎪⎩

% % U
% %

% %

 

 ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )

1
2 1 1 53 33 1 1 1

1 1
3 1 53 33 0 0 2 1 1 1

1 (1)
53 33 33 1 1 1 1

, , , ,

,0 , , ,

,0 , , ,

u x g g x a a b b

B x g g b u x x a b

g g x x a b

η σ

σ η

σ

−

−

−

⎧ ′ + ∈⎡ ⎤⎣ ⎦⎪⎪ ′= − + + ∈⎡ ⎤⎨ ⎣ ⎦
⎪ ∉⎪⎩

% % U
% %

% %

 

where 1 41 43 31 33g g g gη = −% % % % , 2 51 53 31 33g g g gη = −% % % % . 
 
5. Case of equivalent properties of the upper and lower bimaterial components 
 
In this case, 1 1γ = , 0ε =  hold true and Eq. (9) takes the form 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1

1

(1) (1) 0 1 0 1 1
33 1 1 31 1 1

0 1

0 0
1 1 1 1 1

0 1 1 1

i,0 i ,0
2

1 i d i d , , ,
i

a b

a b

m a bx m x x
X x

X t X t
m t m t x a b

X x t x t x

σ τσ σ

σ τ σ τ
π

+ +

+ +⎛ ⎞+ = − +⎜ ⎟
⎝ ⎠

⎡ ⎤
′ ′+ + + + ∉⎢ ⎥− −⎣ ⎦

∫ ∫
 (18) 

where ( ) ( )( )0 1 1X z z a z b= − − . 
Using Eq. (10), the pre-fracture zone stresses can be calculated by the following formula 

 ( )1 11
10 0

1

1ii
i 12i

m l m
m

πσ τ σ τ
σ τ

−+⎧ ⎫ ⎧ ⎫′ ′
= +⎨ ⎬ ⎨ ⎬−+ ⎩ ⎭⎩ ⎭

N . 

Components of the matrix N can be written exactly as  

 ( ) ( )2 1 1 21 1
11 1 1 12 2 2i 1 cos , i cos 1

2 2
l lN Nα α α α− −⎡ ⎤ ⎡ ⎤= − + = − −⎣ ⎦ ⎣ ⎦ , 

 ( ) ( )2 1 1 21 1
21 1 1 22 2 2i 1 cos , i cos 1

2 2
l lN Nα α α α− −⎡ ⎤ ⎡ ⎤= − − = − + −⎣ ⎦ ⎣ ⎦ , 

where ( )2 1 1 12b b a lα = − − . 
For this case, the expression for the displacement jump has the following form 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1 3 1 0 1 0 1 1 1 1 1

1 10 1 1 20 1 1 1 1 1

,0 i ,0 i

i i i , , .

u x s u x m x a x b t

m J x m J x t x a b

σ τ

σ τ σ τ π

+ = + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
′ ′+ + + + ∈⎡ ⎤⎣ ⎦

 (19) 

And 1
aδ , 3

aδ , 1
bδ  and 3

bδ  can then be obtained easily. 
In this case of homogeneous material with symmetrical loading, one has 0τ τ ′= =  and σ σ′ = . In 
the coordinate system with apex in the middle of the crack, ( ) ( )1

31 1,0 0xσ = , a b= − , 1 1a b= −  hold 
true. And only one equation of Dugdale –type  cσ σ=  [10] can be considered. In addition, 
according to the von Mises yielding condition given before, cσ  is related to the material 

parameters of interlayer, which can be taken as ( ) Y2 1 1 3 σ+ . Furthermore, for this case 

2 1 1b bα α= =  and Eq. (18) can be reduced as 

 ( ) ( ) ( ) ( )1

1

2 2
1 1

33 1 0 1 1 1 12 2
11 1

1,0 d , ,
i

b bc
b b

t b
x x t x a b

t xx b
σσ σ
π

−

−

⎧ ⎫−⎪ ⎪= + + ∉⎨ ⎬−− ⎪ ⎪⎩ ⎭
∫ ∫ . (20) 
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By setting the expression in the brackets to zero, one gets the following equation 

 0

1

cos
2 c

b
b

πσ
σ

= . (21) 

Thus, the pre-fracture zone length can easily be determined from Eq. (21). By the way, it is easily 
known that for internal crack problem of identical MEE material, although the length of pre-fracture 
zone depends on 0σ , σ  in the pre-fracture zone is independent of it. 
It is worth noting that after evaluating the integrals in Eq. (20) and using (21), one gets [9] 

 ( ) ( ) ( ) ( ) ( )
2 2

1 1 11 1 1 1
33 1 1 1 1

1 1 1 1

,0 sin sin , ,c
c

b x b b x bx x a b
b x b b x b

σσ σ
π

− −⎡ ⎤− +
= + − ∉⎢ ⎥− +⎣ ⎦

. 

Considering only imaginary part of Eq. (19) and noting ( )1 1 0u x =⎡ ⎤⎣ ⎦ and Eq. (21), we have 

 ( ) ( ) ( ) ( ) ( )3 1 1 1 1 1 1 1 1 1
1 1

, , , , , ,
2

cu x x b H b b x b x b H b b x b
t s
σ
π

= − − − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (22) 

The COD at the initial crack tip can be obtained for 1x b=  and can be written in the form 

 0
3

1 1

2 ln cos
2

b c

c

b
t s
σ πσδ

π σ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

. (23) 

It is important to note that for the case of isotropic upper and lower bimaterial components with 
( )1 2 1t μ κ= + , 1 1s =  [11], Eqs. (22) and (23) formally coincide with the associated equation of 

Panasyuk [12], and that the expressions for the electrical displacement and magnetic induction at 
the interface can be expressed in a simple form (omitted here). 
 
6. Numerical results and discussion 
 
In this section, for simplicity, numerical calculations only for the case of symmetric loads are 
carried out. As an example, material combination A/B of material A (upper material) and B (lower 
one) is mainly investigated. The material constants of them for material A with volume fraction 
vf=0.3 and for material B with volume fraction vf=0.5 are given by Sih and Song [13]. The interface 
layer was assumed to be elastic-perfectly plastic material with yield stress Y 220M P aσ = [9]. In 

addition, loading combination parameters ( )(1) (1)
0 33 Y 33D d eλ σ α=  and ( )(1) (1)

0 33 Y 33B b hλ σ μ=  are 
introduced to reflect the applied electrical and magnetic loads, respectively. 
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Figure 2. Relative pre-fracture zone lengths versus the applied tension load 

 
The numerical results for the relative pre-fracture zone lengths, stresses in pre-fracture zones and 
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the CODs at the initial crack tips with respect to the normalized applied normal load for different 
material combinations are presented in Figures 2-6, where 0 Yk σ σ= , ( ) 2l b a= − , b b lλ = Δ  
and 0D Bλ λ= = . And if no special explanation is given, all the curves in these figures consider 
only A/B combination. It is remarked that because of the symmetry, only the corresponding 
numerical results for the right pre-fracture zone are plotted. 
Figure 2 shows that the pre-fracture zone length of all current material combinations increases with 
the increasing of applied tension load and it is interesting to note that the pre-fracture zone length of 
A/B material combination is only slightly larger than that of A/A or B/B material combinations. 
Besides, the values of pre-fracture zone length are much smaller than the crack length, even for a 
relatively large external load. Figure 2 also indicates that for the internal crack problem of identical 
MEE material, the pre-fracture zone length is independent of the material properties of MEE 
material. 
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Figure 3. Normalized (a) normal stress and (b) shear stress in the pre-fracture zone versus the applied 

tension load 
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Figure 4. Normalized CODs at the initial crack tip versus the applied tension load 

 
From Figure 3, it can be seen that for A/B material combination, the normal stress in the 
pre-fracture zones increases with the increasing of normalized normal load k , while the magnitude 
of shear stress decreases with the increasing of normalized tension load. The similar phenomena 
have been observed by Loboda et al. [9] for interface crack problem of piezoelectric bimaterial. 
As shown in Figure 4, with the increasing of normalized normal load, although 1

bδ  is negative, the 
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magnitude of 1
bδ  at initial crack tips increases for A/B combination, and 3

bδ  increases for A/B, 
A/A and B/B combinations. It should be pointed out that, as expected, for the considered loading 
cases, 3

bδ  is much larger than 1
bδ . In addition, it is interesting to note from Figure 4b that for A/B 

combination, 3
bδ  is slightly larger than that of both A/A and B/B combinations, which is a novel 

phenomenon different to the one observed in [9] for piezoelectric bimaterial problem. 
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Figure 5. Normalized (a) electrical displacement and (b) magnetic induction along the interface 

under different tension loads 
 

In Figure 5, the distributions of normalized electrical displacement ( ) ( )1
3 1 0,0D x d and normalized 

magnetic induction ( ) ( )1
3 1 0,0B x b  along the crack face are presented, where 0.25D Bλ λ= = . For 

0 Y 0.1k σ σ= =  and 0.3, the pre-fracture zone lengths can be easily determined by Eq. (21). They 
are, respectively, 0.00124a bλ λ= =  and 0.01124, which, in fact, are the same as those given by 
Loboda et.al [9] for piezoelectric crack problem with pre-fracture zone. As shown in Figure 5, on 
one hand, the applied tension loads have significant effects on both the electrical displacement and 
magnetic induction in the pre-fracture zone. On the other hand, for a definite tension load, both the 
electrical displacement and magnetic induction in the pre-fracture zone are almost unchanged. In 
addition, with the increasing of 1x l , both the electrical displacement and magnetic induction 

decrease rapidly, and as expected, the values of ( ) ( )1
3 1 0,0D x d  and ( ) ( )1

3 1 0,0B x b  finally approach 
to 1. 
 
6. Conclusion 
 
A plane strain problem for two MEE half-planes adhered by means of a very thin isotropic 
interlayer has been considered. A novel interface crack model, i.e., an interface crack with both 
open part and pre-fracture zone is put forward. The crack surfaces are assumed to be 
magnetoelectrically permeable. The problem is firstly reduced to a Hilbert problem on the unknown 
normal stress and shear stress in the pre-fracture zones, which can be solved exactly. By introducing 
Mises yielding conditions on interface layer, a system of nonlinear equations is established to 
determine pre-fracture zone lengths. Finally, the corresponding results for both cases of symmetric 
load and equivalent properties of the upper and lower bimaterial components are further obtained. 
From the theoretical and numerical results, the following conclusions can be drawn: 
• For the suggested model, all mechanical, electrical and magnetic characteristics are limited in the 
near-crack tip region, i.e., all singularities connected with the model are eliminated. 
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• For the magnetoelectrically permeable interface crack with pre-fracture zones, 3
bδ  plays a very 

important role in the fracture analysis of the interface crack because it is much larger than 1
bδ . And 

in general, increasing tension loads will cause crack growth and propagation. 
• For the internal crack problem of identical MEE material under symmetrical load, the pre-fracture 
zone lengths are independent of material properties, and the normal stress in the pre-fracture zone is 
independent of applied tension load. 
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