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Abstract 

Drawing artists and non-drawers are like any adult both 
experts at face recognition. Yet, artists have a richer learning 
experience with faces: they were trained in rapid sketching of 
faces. Zhou, Cheng, Zhang and Wong (2011) found that 
drawing experts showed less holistic processing (HP) for face 
recognition than non-drawers. Using a computational model 
of face recognition that did not implement motor processing, 
we examined whether engagement of local attention and 
nature of the learning task could account for the reduced HP 
in drawers without the influence from motor experience. We 
showed that compared with the non-drawer model that had a 
global face input (i.e., Hsiao, Shieh & Cottrell, 2008), a 
drawer model that incorporated both global face and local 
facial parts (eyes and mouth) in the input showed reduced HP, 
suggesting the modulation of local attention engagement. In 
contrast, the other drawer model that used only global face 
input but learned to perform an additional face part 
identification task did not show the reduced HP effect. In 
addition, both drawer models demonstrated stronger left side 
(right hemisphere) bias than the non-drawer model. Our data 
thus suggest that engagement of local attention is sufficient to 
account for the reduced HP in drawers, and that HP and left 
side bias effects can be differentially modulated by visual 
attention or task requirements.     
 

Keywords: Model of face recognition; Holistic processing; 
Hemispheric lateralization; Visual expertise. 

Introduction 

Visual expertise in subordinate-level discrimination has 

been extensively studied (e.g., Bukach, Gauthier, & Tarr, 

2006), such as our expertise in recognizing individual faces. 

Several behavioral markers of visual expertise have been 

identified, including holistic processing (HP), which refers 

to the phenomenon of viewing faces as a whole instead of 

various parts (Bukach et al., 2006; although some argue that 

HP is specific to face recognition; e.g., McKone, Kanwisher, 

& Duchaine, 2007). Subsequent studies suggest a 

correlation between an increase in HP and expertise in 

subordinate-level individualization, as opposed to expertise 

in basic-level categorization (e.g., Wong, Palmeri, & 

Gauthier (2009)). For example, Wong et al. (2009) trained 

two participant groups to recognize an artificial object type 

(Ziggerins) with different training tasks: one group learned 

to rapidly individualize Ziggerins at the subordinate level, 

whereas the other group learned rapid sequential 

categorization at the basic level. The results showed that 

only the individuation experts showed an increase in HP, 

even though the two groups had the same amount of 

exposure to Ziggerins. This suggests that qualitatively 

different expertise processing can arise depending on the 

nature of the training task.  

Such a qualitative difference of expertise processing 

resulting from different learning and training experience has 

been recently observed for face recognition. Zhou, Cheng, 

Zhang and Wong (2011) studied two groups: (a) an 

experimental group was composed of art students who had 

extensive formal training in sketching and drawing portraits, 

and (b) a control student group of non-drawers – i.e. who 

had no prior drawing background or education-. Hence, the 

two groups had different learning experience in processing 

faces. Non-drawers would show the typical face expertise 

any adult is endowed with: being able to recognize at least a 

thousand of faces. In contrast, art students would have 

internally assimilated an ordered procedure for rendering 

faces on a 2D surface (Balas & Sinha, 2007; Willenbrink & 

Willenbrink, 2012), for example: a) sketch the basic head 

proportion, b) sketch the overall head form and basic lines 

for features, c) place the brows and lips, and so on. Such a 

fine-grained procedure relies upon a mix of global and local 

processing, and featural and configural processing. Art 

students would not ignore face details which are critical to 

render a vivid portrait of an individual. Hence, art students 

are used to scrutinize a face and could be less engaged in 

HP than non-drawers. This educative guess is supported by 

eye-tracking studies (Miall & Tchalenko, 2001; Tchalenko 

et al. 2003) of eye movements of a skilled artist. Miall and 

Tchalenko (2001) proposed as an account of the visual 

encoding of the studied artist Ho: ―The capture of visual 

information detail by detail, rather than in a more holistic 

manner, is reflected in the way the drawing or painting is 

built up. Each detail and each element is of intrinsic 

importance.‖ Using the complete composite paradigm of 

face recognition, Zhou et al. (2011) found less HP for art 

students than for non-drawers. Reduced HP with drawing 

expertise is not an isolate case. Previously, Hsiao and 

Cottrell (2009) found reduced HP for Chinese readers - who 

were experts at recognizing Chinese characters - compared 

with novice Chinese readers. Tso, Au, and Hsiao (2011) 

further showed that the reduction in HP found in expert 

Chinese readers depended on their writing rather than 

reading experience of Chinese characters, since proficient 

readers who had limited writing experience (i.e. Limited-

writers) showed increased HP as compared with novices, in 

contrast to the reduced HP observed in Chinese readers who 

could read and write fluently (i.e., Writers; Tso, 2012).  
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In the present study, we aimed to examine the underlying 

mechanism accounting for the results in Zhou et al. (2011) 

through computational modeling and simulations. 

Computational modeling is an insightful tool to test ideas on 

the nature of cognition difficult to test with human subjects 

(McClelland, 2009). Motor experience, visual attention, and 

nature of the learning task are all potential factors that may 

account for drawers’ reduced HP in face recognition. These 

factors may be difficult to disentangle within drawers so that 

the separate contribution of each to HP is not easily 

amenable to experimental study. Here, we aimed at testing 

two simplified models of drawing expertise that did not 

implement motor processing and to compare them with our 

previous model of face recognition (i.e., the intermediate 

convergence model in Hsiao, Shieh, & Cottrell, 2008), 

which is to serve as a non-drawer model, in order to 

examine whether visual attention and nature of the learning 

task can account for the reduced HP in drawers without the 

influence from motor experience. Through these two models, 

we postulated two hypotheses concerning how art students 

having developed expertise in the task of drawing faces 

could demonstrate reduced HP in face recognition compared 

with non-drawers.  

The non-drawer model – called base model thereafter – 

shown in Figure 1 is trained to map face images to whole 

face identity. This global task is intended to reflect ordinary 

face recognition by non-drawers. The models of drawing 

expertise are not as purely global as the base model. They 

embed local processing in addition to the global face 

identification. 

Rationale behind the first model of drawing expertise 

Our first model of drawing expertise shown in Figure 2 is 

trained to map face, eyes and mouth images to whole face 

identity. Modeling the encoding of visual information from 

facial parts such as eyes and mouth to serve the task of 

whole face identity reflects the engagement by artists in 

local attention. Using eye-tracking, Tchalenko, Dempere-

Marco, Hu, and Yang (2003) reported that artists do process 

individually facial parts and even scrutinize faces for 

informative details: ―[...] the experienced painter differed 

from the novice in his ability to repeatedly target saccades 

onto a small detail of the model’s face, and to lock on to 

that detail in a steady fixation.‖  Consistently, Zhou et al. 

(2011) showed that artists had slower response times (RT) 

compared with non-drawers. This could be because of the 

additional engagement of local attention on facial parts. The 

nature of this more local and prolonged visual engagement 

is translated in the first model of drawing expertise by a 

larger input layer compared with the base model. A drawing 

expert may manipulate  more encoded visual inputs - as 

suggested by the expertise literature (Bransford, 2000) - but 

would still perform the same global identification task than 

the normal face recognizer. Because of the selective 

encoding of eyes and mouth in addition of global encoding 

of the face image, this model reflects engagement of both 

global and local attention at the encoding stage of visual 

processing. 

Rationale behind the second model of drawing expertise 

Our second model of drawing expertise shown in Figure 3 

is trained to map face images to both whole face identity 

and cluster identities for mouth and eyes. Hence, the 

rationale is that artists use the same global attentional 

resources – i.e. the model has the same global input layer as 

the base model- but artists engage in a more analytical face 

recognition task. Here, given a face input, the model tries to 

recognize in addition to face identity, a mouth prototype (a 

kind of mouth) and a pair of eyes prototype (a kind of eyes). 

Such partitioning of eyes and mouth in kinds reflects that 

artists would engage in clustering facial features. This 

hypothesis is not only sound but also well-grounded. In his 

Treatise on Painting, the Renaissance genius Leornardo Da 

Vinci exposes some technical insights on how to develop 

the skills necessary to a portraitist (Rigaud, 1877). For 

example, in the section of "How to remember the Form of a 

Face", Da Vinci mentioned: "If you wish to retain with 

facility the general look of a face, you must first learn how 

to draw well several faces, mouths, eyes, noses, chins, [...], 

all those principal parts which distinguish one man from 

another." Then, we read: "[...] noses are of ten different 

sorts: straight, bunched, concave, [...]." In another section 

entitled "Observations on drawing Portraits", we read: "The 

uniting of the nose with the brows is in two ways [...]. The 

forehead has three different forms."  

Details on the implementation of these models are given 

in the next section. We trained the three models to either the 

same performance level in the whole face identification task 

or the same amount of epochs, and examined their 

difference in HP and lateralization. Face processing has 

been shown to involve right hemisphere (RH) lateralization, 

as indicated by the left side bias effect: a chimeric face 

made from two left half faces from the viewer's perspective 

is usually judged more similar to the original face than one 

made from two right half faces (Gilbert & Bakan, 1973). It 

is commonly assumed that HP is associated with RH 

lateralization. However, some experimental and 

computational studies (Hsiao & Cottrell, 2009; Hsiao & 

Cheung, 2011) showed the possibility of increased 

engagement of RH whereas decreased HP is measured. 

Another work on Chinese reading expertise (Tso, 2012) 

revealed a reduced HP for Chinese Writers as compared 

with Limited-writers; however there was no difference in 

left side bias between them. Our modeling work is hoped to 

also shed additional light on this issue. 

 

 
 

Figure 1: Base Model 
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Modeling Implementation 

Base model for non-drawers 

Face recognition by non-drawers is modeled by Hsiao et 

al.’s (2008) intermediate convergence model of face 

recognition. This model (Figure 1) incorporated several 

known observations about visual anatomy and neural 

computation. Hsiao et al.’s (2008) used Gabor responses 

over the input images to simulate neural responses of cells 

in the early visual area, and Principal Component Analysis 

(PCA) to simulate possible information extraction processes 

beyond the early visual area. They then used this PCA 

representation as the input to a two-layer neural network. In 

addition, they implemented a theory of hemispheric 

asymmetry in perception, Double Filtering by Frequency 

theory (DFF, Ivry & Robertson, 1997) in the model. The 

theory posits that visual information coming into the brain 

goes through two frequency-filtering stages. The first stage 

involves attentional selection of a task-relevant frequency 

range. At the second stage, the LH amplifies high spatial 

frequency (HSF) information, while the RH amplifies low 

spatial frequency (LSF) information. This differential 

frequency bias in the two hemispheres was implemented in 

the model by using two sigmoid functions assigning 

different weights to the Gabor responses in the two 

hemispheres. In the present implementation, the face input 

(100 x 135 pixels) was first filtered with a grid (6 x 6) of 

overlapping 2D Gabor filters in quadrature pairs at five 

scales and eight orientations. The five scales corresponded 

to 2 to 32 cycles per face (the task-relevant frequency range, 

depending on the image size. The maximum frequency 

should not exceed 2 pixels per cycle; the 6th scale, 2
6
 = 64 

cycles per image exceeds the maximum frequency of the 

images, 100/2 = 50 cycles per image). The resulting Gabor 

vector representation of the face was split into left and right 

halves. The perceptual representation of each half was 

compressed into a 50-element representation. After PCA, 

each principal component was z-scored to equalize the 

contribution of each component in the model. The PCA 

representation was then fed to a feedforward network with 

one hidden layer of 50 nodes. The number of nodes was 

determined empirically to allow efficient training of the 

network of all the three models of the present study. The 

output layer of the neural network has one output for each of 

the 53 faces of the testing set. Face images were taken from 

the CAlifornia Facial Expressions dataset (CAFÉ; Dailey, 

Cottrell, & Reilly, 2001). We used two different neutral 

images for each face to constitute the training and testing 

sets. The neural network was trained with gradient descent 

with adaptive learning rate backpropagation from the 

MATLAB
®
 Neural Network Toolbox (Version 7.0.3). All 

the networks were trained for both 400 epochs and 150 

epochs. 400 epochs is enough for all the models to reach 

perfect recognition rates on the training sets and near perfect 

accuracy on testing sets. Training with only 150 epochs 

offers another viewpoint on the behavior of the three models 

by decreasing the ceiling effects observed with 400 epochs.  

Implementation of model I of drawing expertise 

Our first hypothesis states that drawing experts engage in 

local attention on specific facial features at the encoding 

stage in addition to the global encoding process shared with 

non-drawers. Hence, in addition to the face input, model I 

includes isolated mouth and isolated eyes as local inputs. 

We filtered mouth images (50 x 20 pixels) and eyes images 

(74 x 18 pixels) by a bank of Gabor filters of three scales 

and eight orientations. The three scales corresponded to 2 to 

8 cycles per face (The maximum frequency should not 

exceed 2 pixels per cycle; the 4th scale, 2
4
 = 16 cycles per 

image exceeds the maximum frequency of the images, 18/2 

= 9 cycles per image for eyes and 20/2 = 10 cycles per 

image for mouth). The size of the filtering grid (6 x 6) was 

the same for each kind of three - face, mouth and eyes - 

inputs reflecting the engagement of the same resources for 

processing the global face or anyone of the two local parts. 

The choice of eyes as a facial feature was motivated by 

Tchalenko et al.'s (2003) finding that artists primarily 

focused on eyes. We added also a bottom facial feature: 

mouth, richly informative for artists. After Gabor filtering, 

the vector representations of mouth and eyes followed the 

same scheme of splitting, weighting and compressing as the 

one for face input. Hence, the neural network of model I 

was fed with an input layer of length 300, with 100 PCA 

values for each of the three inputs. The model I of drawing 

expertise executes the same classification task as the base 

model. Hence, the two models have an identical output layer. 

 

 
 

Figure 2: Model I of drawing expertise 

 

 
 

Figure 3: Model II of drawing expertise 

 

Implementation of model II of drawing expertise 

The second model of a drawing expert in Figure 3 is 

modified from the base model by adding at the classification 

stage of the neural network level two tasks. Namely, the 

model has to map the mouth and the eyes in the face input to 

respectively a "mouth cluster" and an "eyes cluster". This 
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second model shares the same input layer with the base 

model. This means that both models use the same 

attentional or perceptual resources to encode the input face. 

However, the expert model is trained with a more analytic 

task than mere face identification. It has to perform a cluster 

mapping operation for mouth and eyes. Four eyes and four 

mouth clusters were defined based on a set of features for 

eyes and mouth mentioned in textbooks on drawing portraits. 

This clustering
1
 yielded high recognition rates (> 98%) for 

mouth and eyes on both training and testing sets for both 

training durations.  

Model of the composite task and measure of holistic 

processing 

In human studies, HP is usually assessed through the 

composite paradigm (Young, Hellawell, & Hay, 1987). In 

this paradigm, two stimuli are presented briefly, either 

sequentially or simultaneously. Participants attend to either 

the top or bottom halves of the stimuli and judge whether 

they are the same or different. In congruent trials, the 

attended and irrelevant halves lead to the same response, 

whereas in incongruent trials, they lead to different 

responses. HP is indicated by interference from the 

irrelevant halves in matching the attended halves; it can be 

assessed by the performance difference between the 

congruent and the incongruent trials. 

The holistic face processing effect has been accounted for 

by computational models. For example, Cottrell, Branson, 

and Calder (2002) trained a computational model to perform 

a face identification task and an expression judgment task, 

and showed that the model was able to account for HP 

effects in both tasks. Richler, Mach, Gauthier, and Palmeri 

(2007) also used a variant of Cottrell et al.'s (2002) model to 

account for the HP effect in face recognition. To assess HP 

in our three models, we applied the method used by Hsiao 

and Cheung (2011), which was derived from Richler et al. 

(2007). After training we attenuated the Gabor responses of 

either the top or bottom half of the images in the test set by 

multiplying a factor of 0.125 to simulate directing the 

models' attention to the bottom or top half of the images 

respectively. For the first model of drawing expertise, for 

mouth and eyes inputs, only the unattended part was 

attenuated (eyes are in the top half, mouth is in the bottom 

half; see Figure 5(a)). The complete composite design was 

used; it has been shown to be more robust than the partial 

composite paradigm (Richler, Cheung, & Gauthier, 2011). 

We created 4 types of stimulus pairs corresponding to the 4 

conditions in Figure 4. Twenty pairs of images in each 

condition were randomly selected to form the materials (80 

pairs in total). We calculated the correlation of the hidden 

layer representations in each pair as the similarity measure 

between them. 

                                                           
1 We also considered using partitioning clustering methods such 

as k-means or PAM. However these methods yielded an optimal 

number of two clusters for eyes data. This result was not realistic 

from a human observer analysis. We finally preferred to keep the 

four eyes clusters found by human analysis. 

 
Figure 4: Design of the composite task, with top halves 

attended. 

A threshold was set to be the midpoint between the mean 

correlation of the ―same‖ stimulus pairs and that of the 

―different‖ stimulus pairs. We assumed that the model 

responded ―same‖ when the correlation of a pair was higher 

than the threshold, and responded ―different‖ when the 

correlation was lower than the threshold. The HP effect was 

indicated by the discrimination performance difference 

between the congruent and incongruent trials measured by d'. 

Measuring hemispheric lateralization effect  

The left side (RH) bias was assessed by the accuracy 

difference between recognizing a left-lateralized stimulus 

(carrying RH/LSF information) as the original stimulus and 

recognizing a right-lateralized stimulus (carrying LH/HSF 

information) as the original one. We defined RH 

lateralization (RH/LSF preference, Hsiao et al., 2008; Hsiao 

& Lam, in press) as the left side bias measured in the biased 

condition minus that measured in the baseline condition. For 

the first model of drawing expertise with additional mouth 

and eyes inputs, lateralized stimuli were also used following 

the scheme applied to the face input (see Figure 5 (b)).  

 

 
Figure 5: (a) Illustrative example of a Congruent Same pair 

for the composite task where bottom half is attenuated. (b) 

Example of a left-lateralized stimulus for measuring 

lateralization effects. For (a) and (b), eyes and mouth parts 

were only used in Model I of drawing expertise.  

Results 

Model I of drawing expertise (Experiment 1) 

As shown in Figure 6, the model I of expertise with an 

input layer completed with mouth and eyes local inputs 

demonstrated less HP than the base model after either 150 

or 400 epochs of training. For the 400 epochs case (the 

perfect accuracy case on the training set), a directional t-test 

revealed that model I was statistically significantly less 

holistic than the base model, t(798) = -1.76, p = .04, 

confirming our hypothesis. The mean value of d’ 

(Congruent d’ – Incongruent d’) for model I was smaller by 

a magnitude of 4 than the base model. This could be the 

result of a stronger ceiling effect. When decreasing the 

number of training epochs from 400 to 150, d’ for model I 

was increased from 0.006 to 0.023, whereas d’ for the base 
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model increased from 0.026 to 0.063. Decreasing the 

number of epochs did not change the significantly lower 

amount of HP for model I compared to the base model, 

t(798) = -2.29, p = .011. Model I with its increased size of 

the input layer initially generalized better than the base 

model. For 150 epochs, model I outperformed the base 

model (98% versus 91% recognition rates on the testing 

sets). However, by 400 epochs, the base model caught up 

with model I, and both models had equally perfect 

recognition rates. 

Concerning RH lateralization (see Figure 7), a t-test 

indicated that model I was significantly more subject to a 

left side bias than the base model, t(798) = 9, p < .001. For 

150 epochs, the left side bias was further more accentuated 

for model I compared with the base model, t(798) = 16.03, p 

< .001. 

 
Figure 6: Experiment 1. Holistic Processing 

 

 
Figure 7: Experiment 1. RH Lateralization 

 

Together the results indicated that our first model of 

drawing expertise compared with the base model of non-

drawers is less holistic as measured by d’ and is 

characterized by a stronger left side (RH) bias effect. This 

finding of more RH lateralization for the model of drawing 

expertise was somewhat unexpected: drawers by focusing 

on parts in addition to global processing could have engaged 

in more LH/HSF processing than non-drawers. However, 

the main result here is the replication of Zhou et al. (2011)’s 

finding of less HP for drawing experts compared with non-

drawers. 

Model II of drawing expertise (Experiment 2) 

The model II of drawing expertise trained to recognize 

faces and to map mouths and eyes to respective clusters did 

not demonstrate less HP than the base model (see Figure 8). 

Statistical analysis showed that the expert model was as 

holistic as the base model for both 400 and 150 epochs, 

(t(798) = -0.38 , p = .35 ; t(798) = -1.12, p = .13). We 

expected model II to behave less holistically than the base 

model but it did not.  

Concerning the left side (RH) bias, a t-test showed that 

model II was significantly more RH lateralized than the base 

model for both 400 and 150 epochs, (t(798) =  4.56, p 

< .001; t(798) = 3.17, p <.001). Again, this finding of more 

RH lateralization for the model of drawing expertise is 

somewhat unexpected: forcing the model to map eyes and 

mouth to cluster identities could have favored instead more 

LH/HSF processing (e.g., Hsiao & Lam, in press). 

 

 
Figure 8: Experiment 2. Holistic processing 

 

 
Figure 9: Experiment 2. RH Lateralization 

Discussion & Conclusion 

Through computational modeling, we explored the nature of 

drawing expertise and aimed at accounting for Zhou et al. 

(2011)’s finding of less HP for drawing experts compared to 

non-drawers. Our first model of drawing expertise relied on 

engagement of local attention on face parts at the encoding 

stage in addition to the mere global face encoding in the 

case of the base model. This model of drawing expertise 

was successful in accounting for a lesser amount of HP 

compared with the base model. In the second model of 

drawing expertise, we kept the input layer of the base model 

but added to the face identification task, a mapping task of 

eyes and mouth to cluster identities. This second model was 

as holistic as the base model. Our modeling idea of an 

enriched input layer of both local and global information for 

experts in model I is supported by eye-tracking studies 
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(Miall & Tchalenko, 2001; Tchalenko et al. 2003) of artists 

showing richer and more selective visual encoding by 

drawing experts compared with non-drawers.  

Our findings of the two models of drawing expertise 

being more RH lateralized than the base model are 

congruent with the results of Hsiao and Cottrell (2009) on 

Chinese reading expertise. They found that Chinese 

character recognition experts have increased RH 

lateralization but reduced HP compared with novices. Like 

their results, our finding of increased RH lateralization but 

reduced HP for the first model of drawing expertise suggests 

that HP and RH lateralization may be separate processes 

that do not always go together, depending on the task 

requirement (Hsiao & Cheung, 2011). Our finding also 

provides a testable hypothesis that face drawers may exhibit 

stronger left side bias in face perception than non-drawers. 

Tso (2012) showed that Chinese Writers and Limited-

writers differed in HP but not in left side bias of Chinese 

characters. Drawers at first sight resemble Chinese Writers 

in that both achieved expertise through sharpening their 

motor and visual attention skills by eye-hand coordination 

while practicing their domain task. Nonetheless, the two 

groups may also differ in the following way. Chinese 

Writers were reinforced in a rote motor behavior while 

learning and copying the sequence of strokes for each 

character. However, drawers are not only challenged with 

each face’s genuine and instantaneous uniqueness but 

critically have to render this uniqueness by capturing its gist 

in the details of the face. Hence, writing Chinese involves 

more rote motor learning than drawing faces; in contrast, 

drawers may develop better/finer visual attention skills than 

Chinese writers. Future work will examine whether our 

model can also account for Tso's (2012) finding in Chinese 

Writers and Limited-writers. 

Our models of drawing expertise did not embed any 

motor component to represent motor drawing skills of 

experts. Hence, we showed that drawing experts and non-

drawers could be sufficiently differentiated in terms of the 

nature (merely global versus both local and global) of 

attention during visual encoding of faces. We paved a first 

step in accounting for the nature of drawing expertise. It 

remains to be investigated what could be the contribution of 

motor expertise in drawing experts on the amount of HP 

they engage in.  
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