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� 
Abstract— Bone tumor ablation has been a viable treatment in 

a minimally invasive way compared with surgical resections. In 
this paper, two key challenges in the computer-assisted bone 
tumor ablation have been addressed: 1) establishing the spatial 
transformation of patient’s tumor with respect to a global map of 
the patient using a minimum number of intra-operative images 
and 2) optimal treatment planning for large tumors. Statistical 
atlas is employed to construct the global reference map. The atlas 
is deformably registered to a pair of intra-operative fluoroscopy 
images, constructing a patient-specific model, in order to reduce 
the radiation exposure to the sensitive patients such as pregnant 
and infants. The optimal treatment planning system incorporates 
clinical constraints on ablations and trajectories using a multiple 
objective optimization, which obtains optimal trajectory planning 
and ablation coverage using integer programming. The proposed 
system is presented and validated by experiments.  
 

Index Terms— Deformable registration, Ablation, Statistical 
Atlas, Planning, Optimization. 

I. INTRODUCTION 
ccording to the statistics from American Academy of 
Neurological and Orthopaedic Surgeons, though bone 

cancer is not as common as other types of cancers, it has higher 
occurrence rate in children and youth, which tremendously 
devastates the entire life quality of patients. Invasive treatments 
together with high radiation exposure can make this even worse, 
so it’s of great importance to develop minimally invasive 
interventions with minimal radiation exposure. Percutaneous 
radiofrequency ablation (RFA) has emerged as a routinely used 
technique for the minimally invasive treatment of numerous 
organ cancers [1], such as tumors in bone, lung or liver.  

In practice, clinicians are mostly facing two challenges in 
minimally invasive interventions – how to accurately ablate the 
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tumor with minimal radiation exposure to the patient, and how 
to make multiple ablations efficiently covering a large tumor. 
Manual treatment planning and execution is dependent on the 
operator’s experiences and relies on a trial-and-error approach. 
This is error-prone and time-consuming without the assistance 
of planning and navigation. Planning could be done using the 
patient pre-operative CT images. However, such CT images are 
not always available since taking CT scan is not suitable for all 
patients due to its high radiation exposure. 

To address the aforementioned key challenges, this paper 
focuses on a statistical atlas based registration approach for 
constructing patient-specific models with minimal radiations 
(two fluoroscopy shots in this article) and a multiple-objective 
optimization for ablation planning. These two aspects are the 
major novel contributions of this paper: statistical atlas based 
registration and planning, as depicted in Fig. 1. 

There are three advantages of the proposed method: 1) no 
same-patient CT scan is required, which reduces the radiation 
exposure to the patient as well as to the physicians; 2) the 
patient-specific model and its spatial transformation to a pair of 
intra-operative X-ray images are optimized simultaneously 
rather than sequentially, which potentially increases the 
accuracies of the model and registration; and 3) the treatment 
planning module yields optimal overlapping ablation plans 
based on the constructed patient-specific anatomical model and 
tumor model. Accurate ablation delivery can be achieved by 
incorporating the current system with other robotic devices. 

The rest of this paper is organized as follows. Section II 
summarizes the challenges, significance and related work in 
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Fig. 1. The diagram of the proposed atlas-based registration and 

planning system for tumor ablation. 
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registration and planning, particularly for tumor ablation. 
Section III presents the proposed approach, which is validated 
in Section IV. Finally Section V concludes the paper. 

II. SIGNIFICANCE AND RELATED WORK  

A.  Registration and Reconstruction of Patient-Specific Models 
Registration is a key step in accurate image-guided surgeries 

[2] [3] [4] to get the transformation from intra-operative patient 
anatomy to pre-operative models or statistical population 
models. There is a large body of research on image registration 
using various modalities.  

However, the construction of 3D surface models of patients’ 
anatomy from one calibrated 2D images is a very challenging 
task. Some a-priori knowledge on the geometric structure of 
the anatomy is often required to constrain the ill-posed nature 
of the problem. Making use of statistical atlases is an alternative 
for taking this a priori information into considerations because 
an atlas can effectively capture the mean and the variations of a 
given population. 

Various methods have been proposed for constructing a 
patient-specific model from one image using statistical atlases. 
Intensity-based methods (e.g., [5]) perform deformable 3D-2D 
registration between X-ray images and digitally reconstructed 
radiographs (DRRs) generated from a statistical volumetric 
atlas, by optimizing certain intensity similarity. However, a 
statistical volumetric atlas is not easy to build and the 
deformable registration using it needs to optimize ultra-high 
dimensional nonlinear object functions. 

Feature-based methods employed statistical shape atlas and 
minimize some distance between edges extracted in the image 
and model silhouette. A large amount of methods (e.g., [6] [7] 
[8] [9]) achieved this sequentially: 1) rigid 3D-2D registration 
using the mean shape of the atlas; 2) global deformation using 
the variations of the atlas and the fix transformation obtained in 
step 1); and 3) local deformation of the model obtained in step 
2) using free-form deformation model. 

Zheng et al. [10], [11] proposed to address the problem by 
adapting the ICP algorithm. They proposed a three-stage 
process: scaled rigid registration, statistical instantiation, and 
regularized local deformation. The scaled rigid transformation 
was estimated using ICP from paired ray-model pairs between 
the mean shape of the PDM and the X-ray images. Statistical 
instantiation is an adapted ICP algorithm, aiming to refine the 
rigid registration. In the regularized shape deformation, the 
local deformation was treated as a free-form deformation and 
formulated as a constraint least-squares surface fitting problem 
using 3D point correspondences established before, wherein 
the 3D thin-plate spline was used to constrain the smoothness 
of deformation [14]. After rigidly aligning the mean shape of 
the PDM to the image contour, the shape parameters were 
estimated using the conjugate gradient method. Clean image 
contours are need for this method. The ICP algorithm plays an 
important role in the two registration parts and explicit point 
correspondences are necessities for the registration as well as 
the deformation. 

Hurvitz and Joskowicz [15] proposed to establish explicit 
paired correspondences by performing 2D-2D intensity-based 
deformable registration between the X-ray images and DRRs, 

aiming to avoid edge detection and to reduce the probability of 
mismatching. The DRRs were generated using a CT-like atlas. 
The 2D image deformation was modelled using a B-spline 
transformation, which was estimated using gradient descent. 
The estimated B-spline transformation was then applied to the 
contour points of the DRR to calculate the point-ray pairs in a 
way similar to the approach in [14]. The major difference lies in 
the way of establishing the paired point correspondences. 
Instead of extracting image contours from the DRRs, the 
projections of uniformly spaced sample points on the apparent 
contour of the template surface model were used. Visual rays 
were calculated for each sample point using the estimated pose. 
Finally, by minimizing the distances of these point-ray pairs, 
new atlas pose and shape parameters were estimated using 
pattern search algorithm. To establish paired point 
correspondences, a gradient descent optimization method was 
used for 2D-2D intensity-based deformable registration. To 
initialize whole procedure, manually marked landmarks in each 
X-ray image were used. The construction accuracy is governed 
by the intensity-based 2D-2D registration as well as the 
sampling scheme. 

Most recently, a method was proposed in [16] by employing 
an orientation weighting [17] to diminish the influence of false 
correspondences. Using the point-ray distance, it minimizes the 
sum of back-projection error in 3D as so doing in [6]. The 
back-projection error is multiplied by the weight defined in 2D 
as the cosine of the angle from the projected surface normal to 
the image gradient at the corresponding edge location, aiming 
to suppress the paired correspondences with large angle 
difference. This method in essence is an ICP-like method that 
takes the closest point on the edge map as correspondences. The 
surface reconstruction was performed via two sequential 
stages: 1) rigid registration using the mean shape of atlas and 2) 
shape estimation using the estimated transformation. The 
optimization problems were solved by using preconditioned 
conjugate gradients in a trust region approach. 

B. Treatment planning for tumor ablation 
Baegert [18] employed a visibility graph method to optimize 

entry point and no-fly zone, but they did not address 
overlapping ablation issues. Overlapping spherical ablations 
have been studied by Dodd and Chen [19] [20]. Dodd [20] 
developed geometrical models to cover spherical tumors and 
Chen [19] explores an alternative approach by inscribing a 
regular polyhedron in the target sphere and circumscribing each 
face of the polyhedron with an ablation sphere. Villard et al.  
[18] used a local search optimization technique, which may not 
yield global optimal solutions.  

This paper differs from the related studies such as [18] [19] 
[20], in three aspects: 1) the use of patient-specific models 
derived from a statistical atlas of the bone, which ensures the 
minimal radiation exposure to both patient and physician, 2) a 
treatment planning method based on decoupled mathematical 
programming for optimizing overlapping ablations and 3) the 
addressing of clinical constraints of minimizing the number of 
probe punctures to ensure minimal invasiveness, minimizing 
the number of ablations while giving complete coverage over 
the tumor, and avoiding critical objects such as neurovascular 
bundles. 
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III. THE PROPOSE METHOD 

A. Image-Guided Bone Tumor Ablation 
The statistical atlas guidance system for tumor ablation 

consists of three key modules (see Fig. 2): 1) statistical atlas 
building, 2) deformable 3D-2D registration for simultaneous 
pose estimation and patient-specific model construction, and 3) 
treatment planning optimization for execution.  

Section III.B presents the approach for building a statistical 
atlas, AL, as a populational model. Section III.C describes the 
proposed method for registering the statistical atlas to a single 
X-ray, XR, to get the atlas to patient transformation, TF, as well 
as constructing the patient-specific model. The TF is a 6-DOF 
transformation, called “pose”, which includes a rotation R and a 
translation t. Finally the transformation, TF, will be used to map 
the tumor in X-ray to its spatial location residing in statistical 
atlas. The ablation planning approach described in Section 
III.D will be utilized to get optimal tumor ablation coverage 
while avoiding critical non-fly-zone.  

 
Fig. 2 Diagram of the statistical atlas guided tumor ablation system. 

B. The Statistical Atlas  
Statistical atlases have been used in various applications to 

characterize differences between individuals in a population. In 
terms of building patient-specific models, they provide a 
natural and meaningful manner to regularize the automatic 
generation of plausible instances, which otherwise is ill-posed. 
Approaches of constructing, training and using statistical 
models in different of applications can be found in [21,22]. 

To characterize shape variations, a statistical shape atlas is 
commonly constructed using PDM [23], according to the 
standard procedures in the principle component analysis (PCA) 
of shapes. Consequently, a mean shape S[0], modes of shape 
variation e[k] and shape variation λt are obtained. A valid shape 
instance can be constructed by a linear combination of the mean 
shape and the first K dominant modes. In practice, the shape of 
a 3D object is commonly given as a triangulated surface mesh 
with M vertices. It is convenient to represent a shape instance 
using vertices. Therefore, the m-th vertex on an instance shape 
can be written as, 

 
where X[0] is the m-th vertex on the mean shape S[0] and αk is the 
coefficient of the k-th mode. 

Commonly, αk is constrained by applying the limit of ±3λk, 
assuming all modes are independent [24]. A more accurate 
estimate of the shape parameter α = (α1,...,αK)T can be obtained 
using multivariate Gaussian models [23]. 

C. Simultaneous 3D-2D Registration and Patient-Specific 
Model Construction 
Instead of using the same-patient pre-operative CT images, a 

patient-specific model is built from a single X-ray image via a 
deformable 3D-2D registration that makes use of statistical 
atlas. For the guidance, the pose of the patient-specific model 
with respect to the patient on the operation table is required. In 
fact, the registration and modeling are two coupled problems: 
the registration needs an accurate model while the accurate 
modeling requires an accurate pose.  

Unlike the methods in literature that perform registration 
using the mean shape S[0] and then construct a plausible model 
by fixing the transformation parameters, the registration and 
model construction are optimized simultaneous in our method. 
This is achieved by minimizing the objective function 

                         (1) 

 
The solution of (1) is referred to as the maximum penalized 

likelihood estimate (MPLE) since the shape parameter α used 
for registration in the first term needs to fulfill the constraints 
from its prior probability distribution in the second term. 
Specifically, the first term is the sum of Euclidean distances 
between the N line-of-sight and the estimated shape weighted 
by the posterior correspondence probabilities, pmn. The second 
term is the Mahalanobis distance of the estimated shape from 
the mean shape, which ensures that the estimate shape is 
legitimate in terms of the statistical plausibility. The free 
parameter ρ>0 modulates the contribution of the penalty term. 

In (1) dmn is the weighted distance of the vertices Xm to the 
line (cn, vn) passing through the center of perspective cn and 
having the direction vn. Instead of using the inverted distances 
as so doing in the methods in literature, the weights are the 
correspondence probabilities. Vn is the skew symmetric matrix 
implementing the vector cross product with vn, and pmn is the 
correspondence probability.  

Without the need for establishing paired correspondences, 
the simultaneous 3D-2D deformable registration and 
patient-specific model construction are solved by adapting the 
“one-step-later” (OSL) algorithm [25]. Specifically, the 3D-2D 
deformable registration is achieved using the method [26] [27] 
that couples particle swarm optimization (PSO) with 
expectation maximization (EM). The proposed method stops 
when the OSL is converged or the maximal number of iteration 
is reached. The patient-specific model and its pose with respect 
to the given X-ray are obtained simultaneously, rather than 
sequentially. 

D. The Closed-form Solution of The Shape Parameter 
As the estimation of α is carried out within the M-step, a 

closed-form optimal solution for it is preferred, considering the 
computational efficiency. 

By further defining 

                      (2) 
the objective function (1) can be written in the form of a linear 
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system of the shape parameter as Aα = b with 

 

             (3) 
where Λ = diag(λ) is a diagonal matrix with . 

This results in a linear equation system over the unknown 
shape parameter α, which can be solved using standard linear 
equation system solvers such as QR decomposition. This 
closed-form solution enables the real-time estimation of shape 
parameter and hence facilitates the use of the complete set of 
eigenvectors for shape estimation. 

E. The Estimation of Tumor Region Center  

  In order to estimate the center of a spherical tumor region, 
two intra-operative fluoroscopic images are used. In the worst 
case where the imaging device is not tracked, the proposed 
3D-2D deformable registration is performed using each image 
respectively, as illustrated in Fig. 1. Then the 3D center of the 
spherical tumor region is calculated via triangulation using the 
two estimated transformations. Consequently, the center of the 
tumor region within the constructed patient-specific model is 
ready for use in the planning. 

F. The Optimal Planning 
By far, the patient specific bone models together with tumor 

models are derived from the statistical atlas as described in the 
last section. Then the tumor treatment optimization module 
derives optimal probe insertion trajectories as well as optimal 
placement locations of ablation electrode. The optimization 
need to satisfy the constraints of fulfilling complete tumor 
coverage, starting from specified entry points, avoiding critical 
no-fly zone, and minimizing the number of ablations and skin 
punctures. The no-fly zone and entry regions are generally 
specified by the clinicians.  

 
Fig. 3  The optimal treatment planning is achieved using decomposed 
multiple-objective mathematical programming. Starting from feasible 
entry points to effectively avoid the critical no-fly zone, the optimal 
needle trajectories should result in the minimum number of skin 
punctures as well as the minimum number of ablations. 

As a common practice, the ablation electrode is modeled to   
generate an ablation sphere of radius, R, which is given by the 
manufacturer specification. The multiple-constraint problem is 
formulated as a sequence of decomposed multiple-objective 
integer programming sub-problems as shown in Fig. 3.  

Minimal punctures are required for the minimally invasive 
intervention that leads to multiple ablations using a minimal 
number of trajectories. The trajectories are commonly planned 
preoperatively. In this paper, the planning is achieved by 
minimizing the number of trajectories and the number of 
ablations as illustrated in Fig. 3. 

SUBJECT TO EXPERIMENTS 
The proposed method for tumor ablation was validated using 

simulation studies. High-resolution CT images of 19 normal 
adult cadaveric femurs were acquired. Each slice is 512x512 
pixels with pixel size of 0.703 mm and thickness of 0.625mm. 
The ground-truth model of each cadaveric femur was obtained 
by manually segmenting its CT using Analyze (AnalyzDirect 
Inc., Kansas, USA). Then, the “leave-one-out” evaluations 
were carried out using these CT reconstructions of 19 cadaveric 
femurs. That is, one CT was chosen as the patient data while the 
rest 18 CTs were used to build a statistical atlas. Doing so is 
clinical meaningful; in practice, it is unlikely that the patient’s 
CT is available for atlas building. 

A. Patient Specific Model based on Statistical Atlas  
The construction error of the patient-specific model was 

measured using surface-to-surface distance, which is defined as 
the Hausdorff distance of the constructed surface model to the 
ground-truth surface model. 

One typical constructed surface model using the proposed 
method is shown in Fig. 4. On the top, the surface rendering of 
the reconstructed femur is shown in side, top and front view. On 
the bottom left shows the histogram of the construction errors. 
As can be seen, the maximal error was 2.34 mm and the mean 
was 0.84 mm. To depict the spatial distribution of the 
construction errors, on bottom right, they are visualized on the 
constructed model in the color-coded manner: the warmer the 
color, the higher the error. 

B. Ablation Planning Using the Patient Specific Model 
An artificial bone tumor of 24 mm diameter was generated 

and registered to the patient-specific model. An ablation probe 
of 20 mm diameter was used for radiofrequency ablation, 
assuming the ablation electrode can kill a spherical space with 
multiple tines. 

The multiple candidate plans from the optimization module 
are evaluated both numerically and visually to verify the 
coverage rate and feasibility for execution. The numerical 
evaluation module calculates the volumetric overlap between 
the tumor and multiple ablation spheres placed at the planned 
locations.  Specifically, the Ablation Coverage is given by 

 Ablation Coverage = Ablations ∩ Tumor / Tumor.          (6) 
The augmented reality module displays an overlay of the 3D 

planned spheres within the constructed 3D patient-specific 
model, presenting a complete view (Fig. 5) to clinicians to 
examine how the tumor is covered by each ablation. This is 
especially useful when the clinician needs to select the best plan 
from multiple candidate plans. 
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Fig. 4. The patient-specific model and its construction errors. 

 
Fig. 5. Visualization of the patient specific model and one selected 
plan for multiple overlapping ablations. The four locations for 
ablations are represented by the four beads, which are connected by 
two trajectories. 
TABLE I: STATISTICAL MEASURES OF THE CANDIDATE PLANS 

FOR SIMULATED TUMOR SPHERE OF DIAMETER 24 MM 
ABLATED BY 20 MM DIAMETER PROBE 

Plan ID Ablation Coverage # Ablations # Trajectories  
1 1 6 2 
2 1 6 2 
3 1 4 2 
4 1 4 2 

 
For the four candidate treatment plans, their numerical 

coverage evaluation is shown in Tabel I. Note that plan 1 and 
plan 2 are different in terms of ablation locations as well as over 
treatment rate, even though they both have complete coverage 
over the tumor, 2 trajectories and 6 ablations. The plan 3 and 
plan 4 are different in this way. The augmented visualization of 
one of the candidate plans is shown in Fig. 5. 

In the planning experiment, if an ablation sphere of 30 mm 
diameter can be generated by the probe, then only 1 ablation is 
required for killing the tumor. 

The experimental results have demonstrated the feasibility of 
applying the proposed planning system to phantom study as 
well as patient study. Adequate coverage on the tumor region 
can be achieved using the minimum number of punctures and 
ablations. 

V. CONCLUSION 
This paper has demonstrated the feasibility of the proposed 

method for atlas-based, image-guided large bone tumor 
ablation. The proposed method is able to simultaneously build a 
statistical plausible patient-specific model and achieve 3D-2D 
deformable registration, using only one image. Its extension to 
the use of multiple images is straightforward when the tracking 
of intraoperative imager (e.g., C-arm) is available. In addition, 
the proposed optimal planning approach is able to the cover 
large tumors in a minimally invasive way. 

Future work includes validations of the proposed method 
using phantom and animal studies. With the capability of 
constructing patient-specific model from a couple of images 
using statistical atlas for planning, another future direction is to 
develop intra-operative surgical guidance navigation system 
based on the system proposed in this paper. 
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