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Abstract—Example-based super-resolution (SR) attracts great 

interest due to its wide range of applications. However, these 

algorithms usually involve patch search in a large database or the 

input image, which is computationally intensive. In this paper, we 

propose a scale-invariant self-similarity (SiSS) based super-

resolution method. Instead of searching patches, we select the 

patch according to the SiSS measurement, so that the 

computational complexity is significantly reduced. Multi-shaped 

and multi-sized patches are used to collect sufficient patches for 

high-resolution (HR) image reconstruction and a hybrid 

weighting method is used to suppress the artifacts. Experimental 

results show that the proposed algorithm is 20~1,800 times faster 

than several state-of-the-art approaches and can achieve 

comparable quality. 

I. INTRODUCTION 

Super-resolution (SR) methods aim to recover new high-
resolution (HR) information beyond the Nyquist frequency of 
the low-resolution (LR) image [1]. They attract great practical 
interest, especially to HDTV, video communication, video 
surveillance, medical imaging, etc. Recently, much attention 
has been given to example-based SR using one single LR 
image, because it can overcome some limitations of the multi-
frame SR [2] and can be implemented in lower computation 
and memory costs. 

Example-based SR estimates the missing HR information 
by capturing the cooccurrence prior between the LR and HR 
image patches or their transforms. Some standard approaches 
rely on searching a database built from a representative 
training image set [3][4][5]. They are capable of producing 
plausible fine details, but it is hard to efficiently realize such 
algorithms in hardware. An alternative approach employs the 
self-similarity characteristics of the natural image. For 
example, in [6] both the patch recurrence within the same 
image scale and across different coarser image scales were 
employed to recover information among subpixel 
misalignments and implicit LR-HR patch pairs. In [7] a 
dictionary of LR-HR patch pairs was built online using input 
LR images of coarser scales and the SR reconstruction relied 
on Approximate Nearest Neighbor (ANN) searches in the 
dictionary. In [8] a local self-similarity assumption on natural 
images were followed, so that patches were extracted from 

extremely localized regions as small as 10×10 rather than the 

whole input image. In [9] a local search in a small window 
was employed to recover non-local redundancy under a back-
projection framework. Different from small upscale steps in 

the aforementioned algorithms, it enlarged the image two 
times in one step and had lower computation cost. 

Example-based SR algorithms are computationally 
intensive, because for each pixel or patch they need to search 
the HR counterpart in a database, images or image regions. 
This has become a major challenge to the commercial 
application of the SR technology. In this paper, we propose a 
scale-invariant self-similarity (SiSS) based super-resolution 
method. Instead of searching the counterpart in the database or 
image, we use the patch itself for SR reconstruction if it 
satisfies the characteristics of SiSS, so that the computational 
complexity is significantly reduced. We use multi-shaped and 
multi-sized patches to generate sufficient examples for SR 
reconstruction, and a hybrid weight to suppress the artifacts. 
The proposed method is 20~1,800 times faster than patch 
searching methods, while achieving comparable image quality. 

The rest of this paper is organized as follows: Section 2 
introduces the SiSS based SR algorithm. Section 3 presents the 
experimental verification. Section 4 concludes the paper. 

II. THE PROPOSED APPROACH 

A. Scale-Invariant Self-Similarity (SiSS) 

Self-similarity is a characteristic of natural image where 
the local visual content tends to repeat itself within and across 
the scales of the image. Based on this prior, patch recurrence 
is recovered in the example-based SR by searching similar 
patches in the original or downsampled input LR image, and 
then the HR correspondences are used to reconstruct the HR 
image [6][7][8]. In this paper we consider a special case of the 
self-similarity, where the local visual content repeats itself at 
every scale, namely Scale-invariant Self-Similarity (SiSS). 
Suppose an image patch P represents a certain local content. 
We can measure the SiSS of patch P by 

( )( )(P)D(P),Cmin ssFsiss
s

= , (1) 

where Ds(·) is the downsample operation of scaling factor s, 

Cs(·) is the central region of P with the same size as Ds(P), 

and F(· ) is a similarity measurement. A high siss value 

suggests that the local content appears the same in every scale 

under the similarity function F(·).  

We assume that if a local visual content is SiSS in a 

certain resolution, it will keep the SiSS characteristic in a 

higher resolution. Similar assumption on edge sharpness  (i.e.  
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Fig. 1. Example SiSS patch and partial patch. 

edge prior) has been studied and used in SR [10]. The 

difference in this paper is that the SiSS is not only a 

characteristic of the edge but also of more general local 

structures in the natural image. Based on the assumption, if a 

patch P has a high siss, P and its central region Cs(P) can be 

considered as a HR-LR pair of the same local visual content. 

In this case, P can be directly copied to an enlarged image as a 

HR reconstruction of Cs(P). In other words, instead of 

searching patches like self-similarity based method, we can 

measure the SiSS of local visual contents and select those 

eligible ones to reconstruct the HR contents. Since there is no 

patch search involved in the reconstruction, the computational 

complexity could be extremely low. 

In practice, we relax the SiSS criterion to a specific scale 
same as the image enlargement factor. Without loss of 
generality, suppose P(x,y) is a patch of size W×W, the 
enlargement factor is 2 and a negative mean-square error 
(MSE) is used as the similarity function. The SiSS 
measurement can be simplified to 
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where P↓↓↓↓ denotes the 1/2-downsampled patch P. If the siss is 

larger than a given threshold, patch P is determined to be SiSS.  

B. Multi-Shaped and Multi-Sized Patch Reconstruction 

In natural images only a small portion of local visual 
contents, like edge and corner structures, are SiSS, even if the 
SiSS criterion is relaxed according to (2). Fig. 1 shows an 
example, where patch A is SiSS, since its central region 
marked by the blue bounding box appears the same as the 
patch A itself. In this example, only some patches along the 
edges can satisfy SiSS, so that only part of the HR image can 
be reconstructed. However, if we check patch B, we can see 
that it is not SiSS because of a darker region at the top right 
hand corner. If we only take the lower part of B into account, 
the lower partial patch can satisfy SiSS. In this case, the lower 
part can be directly copied to reconstruct the HR image. 
Inspired by the above observations, we use multi-shaped 
partial patches in the SR reconstruction. In practice, 9 different 
modes are considered as shown in Fig. 2, where mode 0 is a 
complete square patch and modes 1~8 are partial patches of 
various shapes. Here,   (2) can be re-written as 
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where Mode(m) represents the shaded pixels shown in Fig. 2. 

Moreover, as for patch B in Fig. 1, it can be seen that if a 
smaller patch C inside and at the center of B is considered, it 
becomes SiSS. Apparently, for a natural image of a given 
resolution, the smaller the patch, the more patches and partial 
patches that are SiSS. In practice, we use two different sizes of  

 
Fig. 2. Multi-shaped patches. Fig. 3. Patch with “outlier” pixel. 

patches: 8×8 and 4×4, where modes 0~8 are used in 8×8 
patches and modes 0~4 are used in 4×4 patches. Section 3 will 
show that sufficient patches can be collected if the multi-
shaped and multi-sized patches are used. 

C.  Data Fusion 

After collecting sufficient patches with SiSS, the high-
resolution image is reconstructed by blending those patches. A 
straightforward method is to calculate the weighted average of 
the overlapped pixels. In our case, it is reasonable to make the 
weighting a function of the siss calculated by (3). Similar to 
[7] and [9], an exponential function of siss is used, such that 

)/exp( Psissw σ= , (4) 

where σP is a parameter to control the dependency between the 
weight and the SiSS characteristics. 

The negative value of MSE in (3) describes the overall 
similarity between the patch and its central region. However, 
in natural image patches there are often some “outlier” pixels 
that cannot be described by the overall similarity. Fig. 3 shows 
a patch with a dark pixel at the top right corner and the zoom-
in view of its central region. In this case, it will get a large siss 
value and weight by (3) and (4). Obviously, the patch with 
high weight will cause artifacts similar to “halo” or ringing in 
the reconstructed image. Similar examples of “outlier” pixels 
can be found in partial patches. 

To solve this problem, we consider the pixel-to-pixel 
difference between the patch and its central region by adding a 
new exponential function into (4), i.e. 
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where  2/xu =
  2/yv = and σI controls the dependency 

between the weigtht and the pixel-to-pixel difference. For 
those “outlier” pixels, the second term in (5) alleviate their 
impacts to the reconstructed image, so that the artifacts in the 
reconstructed image can be reduced. 

D.  Implementation Details 

Without loss of generality, we consider the image 
enlargement with a scale factor of 2. In implementation the LR 
image is firstly divided into a plurality of overlapping patches. 
Then, for each patch the siss values of multiple modes are 
calculated. If the siss exceeds the threshold, the patch is copied 
to the enlarged image and blended with overlapped patches. 
Finally, a back-projection [7][11] is used to keep consistency 
between the reconstructed HR image and the LR image. 

Fig. 4 gives the algorithm details. In Step 2, a fallback 
image is built by resizing the LR image. Although the multi-
shaped and multi-sized patches are used, in natural images 
there are always a small portion of complex contents that are 
not  SiSS. In  this case  the  fallback  image  is  used  to fill the  
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Fig. 4. SiSS based super-resolution algorithm. 

“holes” in the reconstructed image in Step 14. In Step 3, the 8×8 patches are collected using a sliding window moving in a 
½-pixel step in X and Y directions, so that the patches have 
been aligned to the grid of the HR image. In practice, the 
sliding window with ½-pixel displacement can be obtained by 
edge-guided interpolation [12].  

Steps 5~8 describe the multi-shaped patch selection, 
where we use negative MSE as the similarity function. When 
the siss0 is calculated for mode 0 in Step 5, all the subtraction 
and multiplication operations in MSE have been done. 
Therefore, when the siss1 ~ siss8 for modes 1~8 are calculated 
in Step 7, only addition among pixels is required. Since the 
active pixels in modes 1~8 are rather regular, those additions 
can be efficiently calculated by an addition tree. The weight 
calculation in Step 10 is another critical point besides the siss 
calculation. Compared with (4), the proposed weighting 
method described in (5) has an additional exponential 
function. For an image of 8-bit pixel depth, there are only 256 
possible values of the second term, so that the exponential 
function can be efficiently realized by a lookup table (LUT). 

III. EXPERIMENTAL RESULTS 

Firstly, we show the effectiveness of the proposed 
individual modules. Fig. 5(a) shows the reconstruction result 
using 8×8 square patches. It can be seen that most of the 
stripe region cannot be reconstructed due to a lack of SiSS 
patches. If the multi-shaped patches are used, many more 
regions can be reconstructed as shown in Fig. 5(b). Fig. 5(c) 
and (d) show that more regions can be reconstructed using 
smaller (4×4) patches. Fig. 5(e) shows the result using multi-
shaped and multi-sized patches, where most of the regions can 
be reconstructed. However, there are “halo”-like artifacts 
around the strong edges, since only the SiSS measurement was 
used in weighting. If we apply the proposed pixel-to-pixel 
weighting, the “halo”-like artifacts can be reduced as shown in  
Fig. 5(f). Fig. 5(g) and (h) show the results after applying 
fallback image and back-projection (BP). 

 
Fig. 5. Effectiveness of individual components. 

Next, we check the reconstruction quality using a 481×
321 image as shown in Fig. 6(a). Fig. 6(b) is the result of the 
bicubic interpolation, where the edges become blurry and has 
“jaggy” artifacts. Fig. 6(c) is the result of edge-guided 
interpolation (EGI) [12], where there is no “jaggy” artifact, but 
still appears blurry in edges. Fig. 6(d) is the result of ANN 
based SR [7] without BP, where sharp edges were 
reconstructed by searching in a large dictionary. Fig. 6(e) 
shows the result of the proposed algorithm (without BP). It 
can be seen that although the edge reconstructed is not as 
sharp as the ANN based SR [7], it is much better than the 
interpolation methods.  

Finally, the overall performance was tested. The LIVE 
database [13] with 29 high quality images of various scenes 
was used in the experiments. The original images acted as the 
ground truth, and the ½-downsampled images using bicubic 
interpolation acted as the LR images. In patch selection, two 
different thresholds 10 and 5

 

were applied to 8×8 and 4×4 
patches respectively. In patch weighting σP=15 and σI=10 
were set. The proposed algorithm was implemented in C/C++ 
without any optimization. The bicubic interpolation, EGI[12], 
kernel  ridge regression [4],  sparse  coding [5],  ANN [7]  and  

 
Fig. 6. Comparison of reconstruction quality. 

(a) LR image (481x321) (b) bicubic interpolation 

(c) EGI [12] (e) proposed (w/o BP) (d) ANN (w/o BP) [7] 

(a) 8x8 

square 
(b) 8x8 multi-shape (c) 4x4 (d) 4x4 multi-shape 

(e) (a)~(d) all (f) hybrid weight (g) with fallback (h) after BP 

Input: LR image L, Threshold t4x4 and t8x8, Weighting parameter  
σP and σI, Threshold for fallback tf. 

Output: HR image H. 
1      Set H(x,y)=0 and weight image W(x,y)=0; 
2      Compute a fallback image F(x,y) by resizing image L; 

3      Divide L into 8×8 patches using a sliding window moving  
in ½-pixel step in X and Y directions; 

4      for each patch P centered at (xc, yc) 
5            Calculate siss0 for mode 0 using (2); 
6            If siss0 > t8x8, then record patch P0 and siss0; 
7            Calculate siss1 ~8 for mode 1~8, select the maximum sissm; 
8            If sissm > t8x8, then record patch Pm and sissm; 
9            for each recorded patch Pi 
10                Calculate weight wi(x,y) using (5) given σP and σI, and 

calculate P’i(x,y)=w(x,y)Pi(x,y); 
11                Blending by H(u,v)=H(u,v)+P’i(x,y)and  

W(u,v)=W(u,v)+wi(x,y), where u=2xc+x, v=2yc+y; 

12     Repeat step 2~11 using 4×4 patches and threshold t4x4; 

13     for each pixel at (x,y) in H 
14           If w(x,y) > tf, then normalize by H(x,y)=H(x,y)/W(x,y), 

else fallback by H(x,y)=F(x,y); 
15     Update H using back-projection 
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NLIBP [9] based methods were tested for comparison. All the 
programs ran on a desktop with AMD Phenom-II 810 
2.60GHz CPU and 4GB memory. 

Table 1 lists PSNR and structural similarity (SSIM) [14] 
scores as well as the average runtimes per image for those 
algorithms. It can be seen that all the SR algorithms have 
much better PSNR and SSIM scores, while having higher 
computational costs than bicubic interpolation. Compared with 
the listed SR algorithms, the proposed algorithm achieves the best 
PSNR and SSIM scores, while the runtime is 20~1800 times less. 

Table 1. Objective quality comparison1 

Method PSNR SSIM Time (s) 

Bicubic interpolation 26.90 0.952 0.024 

Kernel ridge regression [4]) 28.64 0.980 101 

Sparse Coding [5] 28.45 0.981 1110 

ANN (3 BP iterations) [7] 28.46 0.974 13432 

NLIBP [9] 28.80 0.969 15.7 

Proposed algorithm 28.89 0.991 0.715 

The PSNR and SSIM only describe a certain aspect of the 
image quality, therefore, we also show the subjective quality. 
Fig. 7 shows results of Monarch in the LIVE database. It can 
be seen that all the SR algorithms outperform the bicubic 
interpolation and EGI, while the proposed algorithm has 
comparable quality to other two SR algorithms. Fig. 8 shows 
an example of one frame in the Foreman sequence. It can be 
seen that the proposed algorithm together with other SR 
algorithms not just reconstruct sharp edges but recover more 
detailed information in other regions. 

IV. CONCLUSION 

SR is a highly desired technology due to its better quality 
than most of the interpolation algorithms. However, the high 
computation cost has become a major obstacle between SR 
algorithms and real world applications. In this paper, we 
explored the SR problem in a different point of view. Based on 
the scale-invariant self-similarity (SiSS) characteristics of the 

local visual content, we proposed a SR approach based on 
patch selection rather than patch searching. The proposed 
multi-shaped and multi-sized patches could create sufficient 
patches for reconstruction and the improved weighting method 
suppresses the artifacts. Experimental results showed the 
effectiveness and efficiency of the proposed algorithm. Future 
work includes improving the sharpness of the reconstructed 
edges and suppressing the artifacts more efficiently. 
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Fig. 7. Subjective quality comparison using image Monarch. 

 
Fig. 8. Subjective quality comparison using a frame of Foreman sequence. 

1
 EGI [12] was not tested using PSNR or SSIM due to its different sampling location.      2 Only the runtime of ANN search realized by C/C++ was counted 

(a) LR image (352x288) (b) Bicubic (e) Proposed (d) ANN based [7] (c) NLIBP [9] (b) EGI [12] 

(a) LR image (384x256) (b) Bicubic (f) Proposed (e) ANN based [7] (d) NLIBP [9] (c) EGI [12] 
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