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ABSTRACT

In optical coherence tomography (OCT), unbiased and low variance Doppler frequency estimators are desirable for
blood velocity estimation. Hardware improvements in OCT mean that ever higher acquisition rates are possible.
However, it is known that the Kasai autocorrelation estimator, unexpectedly, performs worse as acquisition rates
increase. Here we suggest that maximum likelihood estimators (MLEs) that utilize prior knowledge of noise
statistics can perform better. We show that the additive white Gaussian noise maximum likelihood estimator
(AWGN MLE) has a superior performance to the Kasai autocorrelation estimate under additive shot noise
conditions. It can achieve the Cramer-Rao Lower Bound (CRLB) for moderate data lengths and signal-to-noise
ratios (SNRs). However, being a parametric estimator, it has the disadvantages of sensitivity to outliers, signal
contamination and deviations from noise model assumptions. We show that under multiplicative decorrelation
noise conditions, the AWGN MLE performance deteriorates, while the Kasai estimator still gives reasonable
estimates. Hence, we further develop a multiplicative noise MLE for use under multiplicative noise dominant
conditions. According to simulations, this estimator is superior to both the AWGN MLE and the Kasai estimator
under these conditions, but requires knowledge of the decorrelation statistics. It also requires more computation.
For actual data, the decorrelation MLE appears to perform adequately without parameter optimization. Hence
we conclude that it is preferable to use a maximum likelihood approach in OCT Doppler frequency estimation
when noise statistics are known or can be accurately estimated.

Keywords: Cramer-Rao bounds, maximum likelihood estimation, Doppler optical coherence tomography.

1. INTRODUCTION

With ever increasing acquisition speeds in traditional OCT systems,1, 2 and an increasing range of in-vivo ap-
plications, a one-size fits all approach to data analysis is no longer sufficient. In the area of Doppler frequency
estimation for blood velocity determination, the noise regime and computational power available would deter-
mine the best algorithm to use. In this work we examine the statistical performance of frequency estimators3–5

for use in Doppler optical coherence tomography (OCT),6–8 under different noise assumptions. Under additive
shot noise conditions, we show that the commonly used Kasai estimator is statistically sub-optimal, but can
still perform adequately in the presence of moderate amounts of multiplicative decorrelation noise. The AWGN
MLE, on the other hand, is statistically optimal and achieves the Cramer-Rao lower bound (CRLB) for moderate
SNRs and data lengths. The downside of this optimality is that it is more sensitive to deviations from noise
assumptions. Even small amounts of multiplicative decorrelation noise causes its performance to be worse than
that of the Kasai estimator.9 As decorrelation noise is commonly encountered for in-vivo situations in OCT, we
derive a multiplicative decorrelation noise MLE that performs better than both the Kasai estimator and AWGN
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MLE under conditions where multiplicative decorrelation noise is dominant. However, parametric methods such
as maximum likelihood methods generally require more computation.

2. KASAI ESTIMATOR

Kasai derived an estimator3 to calculate Doppler shifts of continuous wave ultrasound signals. While derived
for processing analog signals, it is often utilized in its discrete form for OCT. The phase, 6 , of the lag one
autocorrelation function acts as an estimate of the phase change during this time interval. From this one obtains
an estimate for the Doppler frequency, given by

Ω̂Kasai =
6

(
∑N−1

n=1 sn+1s
∗
n

)

∆t
=

6

{
∑N−1

n=1 |sn+1||sn| exp[j(φn+1 − φn)]
}

∆t
. (1)

Here sn is the signal acquired at the nth time instance, φn, its phase, and ∆t, the time between measurements.
As no assumptions are made about the noise statistics, the Kasai method provides reasonable estimates even in
the presence of decorrelation noise (Fig. 3).10 It therefore has a wider applicability than a parametric method
such as the maximum likelihood estimator. However its non-parametric nature means that a priori knowledge
of the noise statistics is not utilized, resulting in statistical sub-optimality. Its wide applicability comes at the
price of optimality.

3. ADDITIVE WHITE GAUSSIAN NOISE MAXIMUM LIKELIHOOD ESTIMATOR

If sn is a single measured datum at time instance n, we represent the Doppler OCT data for measuring flow
velocity as

sn = |r| exp[j(nΩ∆t+ φr)] + zn. (2)

Here, |r| exp(jφr) is the unknown complex constant reflectance, and j =
√
−1. The time between measurements

is ∆t = T/N , where T is the total acquisition time and N is the total number of samples. The additive noise is
given by zn, which is circularly symmetric complex Gaussian. That is, each of the real and imaginary parts of
zn are independent and identically Gaussian distributed with zero mean and equal variance.

From this model, as expressed in (2), we can calculate the likelihood of obtaining a measured signal. If s1 is a
single measured datum, then each of the real and imaginary parts of the complex residual, s1−|r| exp[j(Ω∆t+φr)],
will have a Gaussian distribution with zero mean and variance σ2. Hence the likelihood is given by

P (s1|Ω, φr) =
1

2πσ2
exp

{[
x1 − |r| cos(nΩT

N
+ φr)

]2
+
[
y1 − |r| sin(nΩT

N
+ φr)

]2

2σ2

}

(3)

where x1 = Re[s1] is the real part of the signal and y1 = Im[s1] is the imaginary part. By grouping the N datum
together, the log-likelihood function for the data can then be written in the form,

L = log [P ({s1, s2, . . . , sN}|Ω, φr)] = −N log(2πσ2)− 1

2σ2

N∑

n=1

∣
∣
∣
∣
sn − |r| exp

[

j

(
nΩT

N
+ φr

)]∣
∣
∣
∣

2

.

︸ ︷︷ ︸

(4)

variable term

The first term is a constant, and the second term can be written as

−
N∑

n=1

(
|sn|2 + |r|2

)
+ 2

N∑

n=1

Re

{

s∗n|r| exp
[

j

(
nΩT

N
+ φr

)]}

, (5)

the last term of which is the real part of inverse discrete Fourier transform of {s∗1, . . . , s∗N}. The AWGN MLE,

Ω̂MLE, is obtained by choosing the values of the Doppler frequency, Ω, and reflectance phase, φr, that maximizes
the real part of the inverse DFT of the (complex conjugate of the) signal,5

(Ω̂MLE, φ̂MLE)
T = argmax

Ω,φr

(

Re

{

|r|
N∑

n=1

s∗n exp

[

j

(
nΩT

N
+ φr

)]})

. (6)
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Figure 1: The maximum likelihood estimator for Doppler frequency is the location of the peak of the power
spectral density.

As φr is chosen to make the expression in curly brackets real, this is equivalent to finding the frequency cor-
responding to the peak of the power spectral density. As the AWGN MLE is parametric, provided that the
acquired signal is well described by the noise model, it is asymptotically efficient and unbiased. However, its
performance may deteriorate in the presence of outliers or deviations from model assumptions, such as in the
presence of decorrelation noise.

4. MULTIPLICATIVE DECORRELATION MAXIMUM LIKELIHOOD ESTIMATOR

Consider a stationary OCT beam such that a voxel is imaging a transverse blood vessel. At any time instant,
there are scatterers randomly distributed within the voxel. As the scatters move into and out of a voxel, the
signal “decorrelates.” This causes relaxation of the auto-covariance function. One can simulate decorrelation
with Doppler shifted correlated random variables. Hence the signal is obtained by modifying the signal from (2)
to include a multiplicative term qn,

sn = qn|r| exp[j(nΩ∆t)] + zn, (7)

where qn is a correlated complex Gaussian random variable with a known auto-covariance matrix, Σ. Here Σ is
real and Toeplitz symmetric, with the first row (the auto-covariance function) having a Gaussian profile. Its 1/e
full-width is determined by the coherence time of the signal. Defining

S̄ =
(
Re[s1 exp(−jΩ∆t)] . . . Re[sN exp(−jNΩ∆t)] Im[s1 exp(−jΩ∆t)] . . . Im[sN exp(−jNΩ∆t)]

)T
,
(8)

the 2N by 2N covariance matrix by Σ̄ =

(
Σ 0N

0N Σ

)

, and setting zn = 0, the likelihood function is then given

by,

P ({s1, . . . , sN}|Ω) = 1

(2π)
N
det
(
Σ̄
) 1

2

exp

(

−1

2
S̄T Σ̄−1S̄

)

. (9)

Therefore the multiplicative decorrelation MLE for Ω is

Ω̂dMLE = argmin
Ω

(
S̄T (Ω)Σ̄−1S̄(Ω)

)
. (10)

Maximizing the log-likelihood is equivalent to minimizing the quadratic form S̄T (Ω)Σ̄−1S̄(Ω) with respect to Ω.
This can be computed using standard optimization algorithms.11

5. AWGN CRAMER-RAO LOWER BOUND

The theoretical best performance of an unbiased estimater is given by the Cramer-Rao Lower Bound(CRLB).
The CRLB for an estimator assuming additive white Gaussian noise (AWGN) is given by,5

Var (θ̂1) = Var (Ω̂) ≥ 12Nσ2

(N2 − 1)|r|2T 2
. (11)
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Figure 2: (a) Estimator performance in the presence of AWGN, for a data length of N = 32, an acquisition
time of T = 1 ms, and SNR of 5 dB. Lower is better. Variances are measured in krad2.s−2. The AWGN MLE
achieves the CRLB except for at low SNRs.
(b) MSE of Kasai estimator and AWGN MLE against data length for a constant acquisition time of T = 1 ms
and SNR of 5 dB. Maintaining a constant SNR while increasing the acquisition rate would require increasing the
detected photon rate (power).

For large N , the CRLB can be approximated as,

Var CR(Ω̂) ≈
12σ2

N |r|2T 2
. (12)

Here the CRLB, for large N , is inversely proportional to the total number of samples, N . It is also inversely
proportional to the SNR, |r|2/2σ2, and inversely proportional to the square of the total acquisition time T .
Further insight can be achieved by assuming a constant rate of detected photons (power). With this assumption
the shot-noise limited SNR is proportional to ∆t = T/N . Under these conditions,

VarCR(Ω̂) ∼ 1/T 3. (13)

Thus, if the number of samples is sufficiently large, the SNR is shot noise limited, and the rate of detected
photons (power) is constant, the CRLB has the intuitive property of being inversely proportional to the cube
of the total acquisition time. This can be understood intuitively, as the total number of photons detected is
proportional to T , while an additional factor of 1/T 2 arises because the variance of the spectrum is proportional
to 1/T 2. More importantly for large N , the CRLB becomes independent of N . As the MLE variance approaches
the CRLB asymptotically, we can infer that for sufficiently large N , the MLE variance also becomes independent
of sampling rate. This behavior contrasts with the Kasai estimator, whose variance increases with increasing
sampling rate.

6. COMPARISON OF PERFORMANCE BY SIMULATION

We ran simulations to estimate the variances and biases of the estimators. The analog frequency was assumed
to be Ω = 3π × 103 rad.s−1 for all simulations. We define the SNR to be |r|2/2σ2. Fig. 2 shows that for a data
length of N = 32, under shot noise conditions, the AWGN MLE achieves the CRLB with the SNR roughly at
−1 dB. The Kasai estimator slowly approaches the CRLB with increasing SNR, but is worse than the CRLB by
more than 7 dB. Fig. 2b shows that the MSE of the Kasai estimator increases with increasing acquisition rate,
when the SNR is kept constant. This is also true if the detected photon rate (power) is kept constant.5 This is
non-intuitive and unexpected behavior, since one would expect that increasing the sampling rate would provide
more information about parameters to be estimated. Sometimes the Kasai lag can be increased to achieve a more
precise Kasai estimate, but this has the undesirable consequence of decreasing the maximum measurable Doppler
frequency. Moving scatterers also introduce multiplicative decorrelation noise into the signal. Fig. 3 shows that
under the presence of multiplicative noise, and negligible additive noise, the decorrelation noise MLE has the
best performance except for at very low acquisition rates, and the AWGN MLE performance deteriorates.
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Figure 3: (a) Estimators under multiplicative decorrelation noise and negligible additive noise. The acquisition
time is 1 ms. The 1/e full-width coherence time is 0.01 ms. Variances are measured in krad2.s−2. Here, the
AWGN MLE performs the worst.
(b) Mean squared error. (c) Estimator bias in thousands of radians per second.

7. EXPERIMENTAL VERIFICATION

7.1 System Description

A 1310 nm spectral/Fourier domain OCT microscope was used for the imaging of a flow phantom. The light
source consisted of two superluminescent diodes combined by using a 50/50 fiber coupler to yield a spectral
bandwidth of 170 nm. The axial (depth) resolution was 3.6 µm, full-width-at-half-maximum, and the transverse
resolution was 7.2 µm (full-width-at-half-maximum), and the highest imaging speed was 47000 axial scans per
second, achieved by an InGaAs line scan camera (Goodrich-Sensors Unlimited, Inc.). The camera sensitivity was
typically set to “medium” to obtain the widest dynamic range. The high sensitivity setting typically resulted in
a signal saturating the camera pixels. A 5× objective, Mitsutoyu, was used and the center of tubing was placed
in focus.

7.2 Intralipid Flow Phantom

We used Intralipid-10%12 and a syringe pump with 0.58 mm diameter tubing. Intralipid globules have an average
diameter of 100 nm. The pipe was placed at a 16 degree incline, so that there was an axial velocity which could
be measured as a Doppler shift. Fluid flow in a tube has a Poiseuille profile, hence measurements of the Doppler
shift were taken at 0.16 mm from the inner edge of the tubing. Fig. 4 shows that for a 9.0 ml.hr−1 flow
rate, the Kasai estimator had the best performance, followed by the decorrelation MLE, and then the AWGN
MLE. To reduce computational time for the decorrelation noise MLE, the Kasai estimates were taken as the
starting values for the minimization in eq. (10), and the search domain was restricted to three Kasai estimate
standard deviations above and below this value. To compute the decorrelation MLE, an auto-covariance function
consisting of a sum of an exponential decay and a Gaussian function was used. This function was chosen to
approximate the shape of the experimentally obtained autocorrelation function. The full-width 1/e maximum
was set to 0.255 ms for the exponential function and 0.51 ms for the Gaussian function. The DFT length of
the AWGN MLE was increased by 256 times using zero padding, so that the estimator variance would not be
artifactually rounded to zero.

In this regime, there is a significant amount of decorrelation noise. The effects of decorrelation, one of which
is to reduce the SNR, are negligible if acquisition time is less than the coherence time of the signal, but increase
as acquisition times increase. Hence the decorrelation MLE performed better than the AWGN MLE. However,
to achieve a performance better than the Kasai estimator, more parameter fine tuning with regards to the shape
of the input auto-covariance function is required. Other sources of noise such as galvanometer jitter, thermal
drift, and other phase instabilities, could also contribute to a worse performance.
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Figure 4: Color Doppler Maps of 9ml.hr−1 intralipid flow. The tubing width is 0.58 mm. Estimates were made
from data vectors of length 128. The OCT line scan rate was rate was 47 kHz. As only a line scan was taken,
the x-axis represents a time axis. (a) The Kasai estimator variance was 4.2 krad2.s−2 (6.2 dB). (b) The AWGN
MLE variance was 63.1 krad2.s−2 (18 dB). (c) The decorrelation MLE variance was 13.0 krad2.s−2 (11.1 dB).

8. CONCLUSION

In this work we have discussed and demonstrated the relative advantages and deficiencies of the Kasai autocor-
relation estimator. While it has reasonable performance and wide applicability due to its non-parametric nature,
it is not optimal: neither in shot noise dominant nor in multiplicative decorrelation noise dominant conditions,
as prior knowledge of noise statistics is not utilized. We have shown with simulation that the AWGN MLE is sta-
tistically optimal under additive white Gaussian noise conditions, but is sensitive to multiplicative decorrelation
noise. Simulations also show that, under decorrelation noise dominant conditions, the decorrelation noise MLE
performs better than the Kasai estimator.

Experimental results confirm that the decorrelation MLE performs better than the AWGN MLE in flow
phantom situations. However, without parameter optimization, its performance is slightly worse than that of the
Kasai estimator. It is possible that other sources of noise, or flow instabilities are contributing to a perceived lower
estimation performance. Despite this, the decorrelation noise MLE still performs adequately. More optimization
is required to improve the performance of the decorrelation noise MLE. In particular, the shape of the auto-
covariance function can be tweaked to better match experimental situations. With further development, we
expect that it would be preferable to use a maximum likelihood approach in OCT Doppler frequency estimation
when noise statistics are known or can be accurately estimated.

With further refinement we expect that MLE estimators can reach the theoretical performance levels required
for in-vivo applications. The type of imaging device and its specific application will determine the appropriate
algorithm for Doppler frequency estimation. In the absence of knowledge of the noise statistics, the Kasai
algorithm would provide a good first estimate. More sophisticated algorithms, such as our decorrelation MLE
would be suited to systems with high acquisition rates and where the noise statistics are known. Although
more computationally intensive, MLEs make use of prior knowledge of the noise statistics and can deliver better
estimation performance.
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