
Title Building smart cameras on mobile tablets for hand gesture
recognition

Author(s) Meng, X; Cheung, CM; Ho, KL; Lui, KS; Lam, EY; Tam, V

Citation
The 6th International Conference on Distributed Smart Cameras
(ICDSC 2012), Hong Kong, China, 30 October-2 November 2012.
In ACM/IEEE ICDSC Proceedings, 2012

Issued Date 2012

URL http://hdl.handle.net/10722/186788

Rights ACM/IEEE International Conference on Distributed Smart
Cameras Proceedings. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38027329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Building Smart Cameras on Mobile Tablets for
Hand Gesture Recognition

Xiang Meng, Chung-Ming Cheung, Ka-Lok Ho, King-Shan Lui, Edmund Y. Lam and Vincent Tam
Department of Electrical and Electronic Engineering

The University of Hong Kong, Hong Kong

Abstract—Mobile tablets have become very popular due to
their portability and the wide diversity of the applications
available. The touch screens and built-in accelerometers facilitate
different forms of input instead of keyboards and mice. Nowa-
days, high-resolution cameras become a standard feature in a
mobile device. Nevertheless, this camera is seldom considered to
serve as a form of user inputs to the application, although similar
technology is realized in some home entertainment systems. This
paper describes our experience on making a smart camera on an
iPad that can recognize pre-defined hand gestures. We study the
time performance of performing image processing on an iPad. We
find that due to the limited computational power of the mobile
device, recognition results may not be available fast enough for
a real-time application. We explore applying cloud computing
to solve the problem. To the best of our knowledge, this is the
first study on recognizing hand gestures on an iPad. Our results
facilitate the development of a brand new type of applications
that require smart cameras.

I. INTRODUCTION

In recent few years, mobile tablets has become more and
more popular. With the help of the intelligent operation
systems (iOS [1] & Android [2]) and millions of applications
developed based on these operation systems, the mobile tablets
can almost fulfill all the common functions of PC which people
use on a daily basis. Being supported by the widely deployed
wireless network and mobile network, mobile tablets gradually
becomes the most popular terminal. With mobile tablets being
known and used by more and more people, question raised:
how should human interact with the mobile tablets?

Being a mobile device, mobile tablets share some common
features:

• They have very few ports to external devices (only one
for iPad);

• Multi-touch screen, accelerometer and camera are in-
stalled in most mobile tablets.

The first feature makes traditional input methods, such as
keyboards and mice, not suitable for mobile tablets. The
majority of instructions for mobile tablets are coming from
the multi-touch screen. The accelerometer is also used and
studied for some special operations [3]. Although being a
default device equipped in mobile tablets, camera is seldom
used as an input medium of instructions.

It is not a brand new idea for using the camera as the
input device for instructions. Real product such as Kinect
from Microsoft [4] has already been released to the market.
In general, the camera control system works as follows:

1) The camera captures the users’ gestures and movements;
2) The camera control system can interpret and translate

those gestures and movements into some well formatted
information;

3) Developers will utilize that information to implement
corresponding functions.

Studies about how to implement and improve the camera
control system have been conducted. In Ref. [5], the authors
proposed a new algorithm to realize multi-touch on surface by
utilizing normal cameras placed overhead. The new algorithm
relies on a machine learning method and a geometric finger
model to achieve a high precision of a few millimeters. [6] is
a work focusing on capturing images of the object of interest.
The authors developed a system that can track the position
of an object using different pictures provided by two or more
cameras.

The camera control system has many advantages. It does not
require physical contact and can serve as a mean of remote
control. Many industries have already applied the camera
control system in practice. Thus, it is fair to say camera control
is promising. However, current applications with a camera
control system are all computer based. As far as we know,
applications and implementations of camera control are rare
on mobile tablets.

In this work, we study hand gesture recognition on iPads.
We extract the image of the hand from the picture captured
using the iPad and recognize the gesture using a novel
recognition algorithm. Although the recognition is feasible to
be carried out on an iPad, due to the limited computational
capacity, the response time is slow. This is not favorable to
a real-time application that requires instant response. We thus
explore applying cloud computing to reduce the processing
time needed.

The rest of this paper is organized as follows: we will
present our methodology Section II. Comprehensive simula-
tion results will be presented in Section III. In Section IV, we
will discuss simulation results and future directions.

II. METHODOLOGY

In this section, we describe our gesture recognition and
cloud processing in details. The recognition consists of two
steps: retrieve binary image of the hand from the picture
captured by the camera and recognize the hand gesture.



A. Retrieving the Binary Image of the Hand

We identify the hand by detecting pixels of skin color on the
picture. We detect skin color through building a global skin
detector first. We only consider the hue value of the HSV
color space [7] when segmenting skin color, because this can
minimize the effects of illumination in affecting the accuracy
of our algorithm. In the global skin detector, we used several
sample images of hands to set a loose threshold for the hue
value of skin color.

Then, we need to build a more accurate adapted skin
color model for skin detection according to the surroundings’
conditions. To do so, pixels belonging to the foreground (any-
thing not belonging to the background) need to be extracted.
We have considered two different approaches to segment the
foreground.

1) Static Image Approach: In this approach, an image of
solely the background is required. This image is acquired by
considering the average of 3 photos of the background taken
to reduce noise. Afterwards, 3 photos with the presence of
skin are taken to acquire some samples of the skin color. By
subtracting the background from the sample photo and taking
the pixels with a difference larger than a certain threshold, the
foreground can be obtained.

The advantages of this approach are coding is simple and
results are accurate. However, background images have to be
retaken whenever the environment changes.

2) Video Approach: A mixture of Gaussians (MoG) model
[8] is used to model the background continuously (Fig. 1).
It segments the foreground and background by considering
objects in motion to be in the foreground and static ones to
be in the background.

When compared with the static image approach, this method
can better adapt to changes in background. Nevertheless, as
more data have to be processed, more time is needed to process
the data or the resolution of the images has to be tuned down.

Fig. 1. Foreground extracted by MoG model

Once the foreground is obtained, the following steps are
performed to determine new thresholds for the hue values (Fig.
2).

1) Filter obvious non-skin pixels in the foreground (e.g.
shirts) by the global skin detector;

2) Plot a histogram of the hue values of the pixels in filtered
foreground;

3) This histogram (H2) is added to the histogram used in the
previous frame (H1) to produce the histogram (Hnew) to

be used for adaptively filtering skin color pixels in the
current frame, according to the following equation.

Hnew = H1 × (1−A) +H2 ×A

where A is the weight of H2;
4) Take the lower and upper thresholds such that it only

includes a certain percentage of the histogram with the
smallest range as possible.

Fig. 2. Thresholds for the hue values

In both approaches, hue value thresholds for detecting skin
color are adaptively determined. If the static image approach is
used, the background can be subtracted from the image using
a low threshold value to give more accurate results.

We mainly use the static image approach in this application
although it needs more time for taking background images be-
fore processing starts, because it can guarantee more accurate
results. The process is illustrated in Fig. 3.

B. Hand Gesture Recognition

After extracting the hand from the background, we deter-
mine the gesture. We count the number of fingers holding up
and use the angle formed between fingers to differentiate the
different gestures.

1) Acquiring the contour of the hand: We make the as-
sumption that it is highly likely the hand is the main feature
in the binary image. Therefore, after finding all contours in the
image with the findContour function provided by the OpenCV
library, it is assumed that the contour with the largest area is
the hand.

However, we have discovered that the head often appears in
the image as well. It is possible that it creates a contour larger
than the hand and thus the algorithm will consider the wrong
contour for hand gesture recognition. To solve this problem,
face detection is used to find faces and regions with faces are
ignored during the find contour step.

2) Finding the fingertips in the contour: To find the finger-
tips, well-defined characteristics that can be used to identify



Fig. 3. Summary of static image approach

fingertips are needed. In our algorithm, a point on the contour
is identified as a fingertip if it satisfies the following three
conditions:

• The angle that this point forms between the lines formed
by joining this point with the points a certain distance in
front of it and behind it on the contour must be smaller
than 60◦;

• This angle must also be smaller than the angles calculated
from its neighbor points, that is, it should be a local
minimum;

• The cross products of the two lines formed from this
point must have a positive z-direction vector to ensure
the point is a fingertip, not the valley-like shape between
two fingers (marked by purple circles in Fig.4)

3) Finding the center of the palm of the hand: We observe
that in the contour of a hand, the fingers and the wrist are
narrower than the palm. Therefore, the largest circle that can
be fit into the inside of the contour represents the location
of the palm. Then, the center of this circle will be a good
estimation of the center of the palm.

Fig. 4. Acquiring data from image

4) Identifying hand gestures: Gestures with different num-
ber of fingers raised can simply be distinguished by counting
the number of fingertips detected in the hand contour.

For gestures with the same number of fingers raised, fur-
ther information needs to be calculated from the contour to
distinguish them.

The method used in our algorithm is to find the angle
difference between raised fingers and compare it with results
from experiment to determine which gesture it is.

First, angles from each fingertip to the palm’s center are
calculated, then the angle differences between these angles
are found. This additional information will be used to identify
hand gestures.

For example, in our application, there are two hand gestures
with two fingers raised(Fig. 5). The angle difference between

Fig. 5. Acquiring data from image

the two fingers are calculated and it is defined to be gesture
A if the difference is smaller than 43◦, or gesture B if the
difference is larger than 43◦ (Fig. 6).

Fig. 6. Difference between the fingers’ angles of Gesture A & B

We implemented the recognition program on an iPad and
most gestures can be recognized successfully. Nevertheless,
we found that after a gesture was captured by the camera, it
took a long time for the recognition result to be produced. The
response time of the program is not desirable for a real-time
application. We thus explore using cloud computing to reduce
the processing time.

C. Applying Cloud Computing

Due to the limited processing capability of iPad, we found
it is quite time-consuming to perform the program solely on
iPad. To enhance the user experience, we borrow the idea of
mobile cloud computing to speed up the process [9]. Part of



the computation is still conducted on the iPad, while some
data are sent to a server through the network to obtain result.

We divide the program into three parts:
1) Initialization and Presentation
2) Transmission
3) Processing

The iPad will still be in charge of initializing the request and
collecting necessary data. The processing job will be sent to
a more powerful server and wireless connection is used as
the media of communication between iPad and the server.
With this approach, we can save a large amount of processing
time, which greatly enhances the responding speed and user
experience.

First, we combined all pictures into one single JPEG file.
The JPEG file is converted to NSData on iPad. It is then sent
to the server through PHP. The data is uploaded to a temporary
folder in the server, and is converted back to a JPEG file for
further process. After the processing has finished, the server
returns a string containing the results and the iPad terminal will
interpret and present the result. The logic flow is presented in
Fig. 7.

Fig. 7. Logic flow of the server model

III. RESULTS

In this section, we present our experiments on the response
time performance of our hand gesture recognition program.

We conducted our experiments with iOS and Windows
as the platform for mobile device and the cloud server,
respectively. The specifications of the devices we used are
shown in Table I.

CPU RAM
Server Intel Core i5 3.30 GHz 4 GB
iPad Apple A5 1 GHz 512 MB

TABLE I
DEVICE SPECIFICATIONS

We measure the response times of using iPad only and using
the iPad with cloud server to process different numbers of
gestures. As stated before, we use static image approach to

retrieve the binary image of the hand in the experiments. The
result is presented in Fig. 8. Every point in the figure is the
average of 50 trials.

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

No. of Gestures in Sequence

T
o

ta
l 
R

e
s
p
o

n
s
e
 T

im
e

 (
s
)

 

 
With cloud server

iPad only

Fig. 8. Response time of the iPad-only processing and server-assisted
processing

From the result, we can see that by applying the cloud
computing concept and using a server to do the major process-
ing, we can save approximate 3

5 of the processing time. The
more complex the gesture sequence is, the more significant
the improvement made by applying cloud computing.

The total response time of the cloud server actually consists
of three portion: iPad processing time, network delay for
sending/receiving the data, and the server processing time. Fig.
9 shows the time needed for each portion.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

No. of Gestures in Sequence

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

 

 
iPad delay

Server delay

Transmission delay

Fig. 9. Breakdown of the response time of the server-assisted processing

Delay on iPad is due to the pre-processing of the collected
pictures, which is pixel-wise combining all the jpeg files
into a single file for transmission. Delay on server is the
real processing time for the gesture recognition. Network



transmission delay is the time consumed for the transmission.
From Fig. 9, we can see that by applying cloud computing, we
actually reduce the processing job of iPad significantly. The
complex processing is carried by the much more powerful
server and the processing time is also quite small. It can also
be observed that with more gestures to recognized at a time,
the processing times for iPad and server only experience a
small increase while the major delay is caused by network
transmission.

IV. DISCUSSION AND CONCLUSION

Even though our camera control algorithm achieves the
fundamental function, there are a still a lot of improvements
we can consider in the future.

A. Network Transmission

Fig. 9 shows that network delay is the major source of
response delay. Besides, the delay grows exponentially when
the volume of data becomes larger. Therefore, to recognize
a fast and long sequence of gestures, we have to explore
strategies to reduce the network delay in sending the data. One
possible direction is to send only important data to reduce the
volume. That requires the iPad to locally process the data and
may increase processing time. Another direction is to pipeline
the image transmission process to send images one by one.
This, on the other hand, introduces extra overheads on network
transmission. The tradeoff needs to be studied further.

B. Hand Recognition Restriction

Currently, we distinguish different gestures through angles
between fingers. However, this criterion may not be sufficient
to distinguish gestures where angles formed between fingers
are similar. To increase accuracy, some other criteria should
be considered.

In this paper, we present our experience on developing the
first hand gesture application on a mobile device. We found
that gesture recognition on iPad is feasible but the response
time may not be good enough for a real-time application. We
proposed to use cloud computing to reduce the response time.
Our experimental results show that the response time can be
reduced significantly by using cloud computing. Our results
demonstrate that it is possible to adopt the camera on a mobile
device as an input device, which facilitates a whole new type
of applications to be developed.

ACKNOWLEDGEMENTS

The project has been funded in part by the HKU 81
Inclusion Fund. The authors would also like to thank Kristen
Au, Anji Ren, and Ami Wang for their valuable discussions.

REFERENCES

[1] iOS Developer Site, “https://developer.apple.com,” 2012.
[2] Android Developer Site, “http://www.android.com,” 2012.
[3] Christian Metzger, Matt Anderson, and Thad Starner, “Freedigiter: A

contact free device for gesture control,” in IEEE Proceedings of the
Eighth International Symposium on Wearable Computers, 2004.

[4] Kinect Official Site, “http://www.microsoft.com/enus/kinectforwindows,”
2012.

[5] A. Agarwal, S. Izadi, M. Chandraker, and A. Blake, “High precision
multi-touch sensing on surfaces using overhead cameras,” in Second
Annual IEEE International Workshop on Horizontal Interactive Human-
Computer Systems, 2007.

[6] E. Hildreth and F. Macdougall, “Multiple camera control system,” in US
Patent no. 7058204, June 2006.

[7] Shamik Sural, Gang Qian, and Sakti Pramanik, “Segmentation and
histogram generation using the hsv color space for image retrieval,”
in IEEE Proceedings of International Conference on Image Processing,
2002.

[8] Kedar A. Patwardhan, Guillermo Sapiro, and Vassilios Morellas, “Robust
foreground detection in video using pixel layers,” IEEE Pattern Analysis
and Machine Intelligence, vol. 30, no. 4, pp. 746–751, 2008.

[9] Andreas Klein, Christian Mannweiler, Joerg Schneider, and Hans D.
Schotten, “Access schemes for mobile cloud computing,” in Eleventh
International Conference on Mobile Data Management, 2010.


