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New Impulse(Noncausality) Test for Descriptor Systems by
Möbius Transformation

WANG Qing, LAM Edmund Y. and WONG Ngai
Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

E-mail: wangqing,elam,nwong@eee.hku.hk

Abstract: Descriptor systems (DSs) are usually used to model very-large-scale integration (VLSI) circuit systems and multibody
dynamics macromodeling. The analysis of DSs, however, is much more complicated than linear time-invariant (LTI) systems
due to the poles at in�nity. Möbius transformation (MT) provides a way to transform poles at in�nity to �nite poles and largely
facilitates the reuse or adaptation of the standard techniques for LTI system to analyze DSs. Nonetheless, MT is well known in
the literature and its potential use is currently less appreciated in the analysis of DSs. This paper gives a new way to the impulse
(noncausality) test using the properties of the transformed LTI systems by MT. Moreover, the applications to the analysis of
controllability, observability and regularity are given. Numerical examples are included to show the effectiveness of the proposed
method.

Key Words: Impulse, Causality, Descriptor system (DS), Möbius transformation (MT), Linear time invariant (LTI) system.

1 Introduction

Descriptor systems (DSs), also called singular systems,
generalized state space systems, represent dynamic systems
well because they contain not only the dynamic part but also
nondynamic part. They have been found many applications
in very-large-scale integration (VLSI) circuits andmultibody
dynamics macromodeling [1, 2] and network analysis [3]. A
great deal of attention has been devoted to the study of DSs,
such as regularization [4], controllability [5], impulse con-
trollability and observability [6], stability and stabilization
[7–10], robust pole assignment [11], partial realization [12],
H∞ control [13–15], positive realness and passivity [1, 16–
19], H2 control [20], H∞ �ltering [21], and model order
reduction (MOR) [22–24].
Impulse (noncausality) analysis of DSs is a very important

problem because impulse (noncausality) may cause degra-
dation in performance, damage components, or even destroy
the system. Various approaches have been proposed in the
literature to address this problem [3, 25–29]. One particular
approach relies on the system decompositions by rank de-
composition or singular value decomposition (SVD) [3, 25–
27]. The technique based on the generalized eigenvalue
problem is used in [28]. A new concept, impulsive direction
is introduced for the impulse (noncausality) analysis in [29].
However, it is well known that the impulse (noncausality) is
equivalent to the existence of poles at in�nity, which can be
obtained by solving a generalized eigenvalue problem. Until
now, no effort has been devoted to use the properties of poles
at in�nity to study the impulse (noncausality).
In this paper, the main focus is on transforming DSs to

linear time-invariant (LTI) systems by Möbius transforma-
tion (MT) (also called homographic transformation, linear
fractional transformation, or fractional linear transforma-
tion). The impulse (noncausality), controllability, observ-
ability and regularity are analyzed by the transformed LTI
systems. Section 2 reviews the basics of MT and gives the
transformed LTI systems. Section 3 details the main results
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SPACE Research Fund under grant 201007176165.

about the analysis of impulse (noncausality), controllability,
observability and regularity in terms of the transformed LTI
systems. Numerical examples to demonstrate the effective-
ness of the proposed results are given in Section 4. Finally,
Section 5 draws the conclusion.
Notation: Throughout this paper, MT represents the

transpose of the matrix M . Identity matrices are invariably
denoted by I when their dimensions are obvious, otherwise
denoted by In to represent an n × n identity matrix. In the
same way, zero matrices are denoted by 0 or 0m×n. If not
explicitly stated, matrices are assumed to have compatible
dimensions. C represents the complex numbers and R de-
notes the real numbers.
2 Preliminaries
Throughout this paper, a DS in the state-space form is as-

sumed:

Σ : Eδ (t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du (t) ,

where x(t) ∈ R
n is the state vector, u(t) ∈ Rm is the control

input and y(t) ∈ Rl is the measured output,E, A, B, C and
D are appropriately dimensioned real constant matrices with
singular E and rank[E] = q < n. If δ (t) denotes the differ-
ential operator, ẋ(t), DSΣ represents a continuous-timeDS.
Or if δ (t) denotes the one-step forward operator x (t+ 1) ,
DS Σ is a discrete-time DS. The above system is also identi-
�ed by DS (E,A,B,C,D).
DS (E,A,B,C,D) is assumed to be regular, i.e. there

exists a scalar s0 ∈ C such that det (s0E −A) �= 0. The
�nite poles are determined by det (sE −A) = 0, at �nite
s and pole at in�nity is de�ned as det (sE −A) = 0, at
in�nity, which in turn is isomorphic to det

(
1

s
E −A

)
= 0,

at s = 0. It is said to be impulse-free (causal) or have no
in�nite poles if deg det (sE −A) = lim rank [E] [3, 25].
The existence of poles at in�nity for DS is the key difference
from the LTI system.
An MT τ (z)

s = τ (z) =
az + b

cz + d
, s ∈ C, (1)
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will be used in the following lemma, where a, b, c, d ∈ R

satisfying ad− bc �= 0.

Assumption 1 a and c are chosen such that aE − cA is
nonsingular.

Lemma 1 DS (E,A,B,C,D) is transformed to an LTI sys-
tem (I, Ã, B̃, C̃, D̃) by the MT τ (z) in (1), i.e.

τ(E,A,B,C,D) = (I, Ã, B̃, C̃, D̃),

where

Ã = (aE − cA)
−1

(dA− bE) , (2)
B̃ = (aE − cA)

−1
B, (3)

C̃ = (ad− cb)C (aE − cA)
−1

E, (4)
D̃ = cC (aE − cA)−1

B +D. (5)

Proof. By replacing s in (1), the transfer function of the DS
(E,A,B,C,D) can be rewritten as

C (sE −A)
−1

B +D

= C

((
az + b

cz + d

)
E −A

)
−1

B +D

= C (cz + d) (z (aE − cA)− dA+ bE)
−1

B +D

= D̃ + C̃
(
z − Ã

)
−1

B̃,

due to the invertible assumption of aE − cA. The result fol-
lows.
When the MT τ (z) in (1) reduces to the typical MT

τ typical (s) =
z − 1

z + 1
, (6)

the following corollary can be get from Lemma 1 immedi-
ately.

Corollary 1 By the typical MT τ typical (s) in (6), DS
(E,A,B,C,D) becomes LTI system (I, Ā, B̄, C̄, D̄), i.e.,

τ typical(E,A,B,C,D) = (I, Ā, B̄, C̄, D̄),

where

Ā = (E −A)
−1

(A+ E) , (7)
B̄ = (E −A)

−1
B, (8)

C̄ = 2C (E −A)
−1

E, (9)
D̄ = C (E −A)

−1
B +D. (10)

Remark 1 In the case of E = I, Corollary 1 reduces
to the standard result for transforming a continuous-time
LTI system (I, A,B,C,D) to a discrete-time LTI system
(I, Â,

√
2 (I −A)

−1
B,

√
2C (I −A)

−1
, D̂), i.e.

τ typical(I, A,B,C,D) = (I, Â, B̂, Ĉ, D̂),

where

Â = (I − A)−1 (A+ I) ,

B̂ =
√
2 (I −A)

−1
B,

Ĉ =
√
2C (I −A)

−1
,

D̂ = C (I −A)−1
B +D.

Remark 2 It is very clear that in�nity is transformed to a
�nite point by the MT in (1), which avoids the dif�culties for
handling in�nity and facilitates the use of the properties of
in�nity. It is well known that the existence of poles at in�nity,
also the source of impulse (noncausality), distinguishes DSs
from LTI systems. So the impulse (noncausality) can be test-
ed by the transformed LTI system in terms of the properties
of poles at in�nity. Moreover, when the typical MT in (6) is
considered, the open left half plane, S0 = {s |Re (s) < 0} is
restricted to the open unit disk |z| < 1, which is much small-
er than S0. Direct applications include the stability analysis
and the frequency domain analysis with very wide range fre-
quencies for continuous time DS.

3 Impulse (Noncausality) Analysis
3.1 Poles
Under the regularity assumption of the DS

(E,A,B,C,D), there exist two real nonsingular ma-
trices P and Q such that

PEQ =

[
Ip 0
0 N

]
, PAQ =

[
J 0
0 In−p

]
, (11)

where N is a nilpotent matrix with nilpotent index h, (i.e.
Nh−1 �= 0,Nh = 0). h is also called the index of the matrix
pencil {E,A} or the index of the DS (E,A,B,C,D). Then
the �nite poles si, i = 1, 2, . . . , p, are the eigenvalues of
matrix J and DS (E,A,B,C,D) is impulse-free (causal) if
and only if N = 0 [3]. It is pretty easy to show that �nite
poles si, i = 1, 2, . . . , p, becomes

zi = τ−1 (si) =
sid− b

−sic+ a
, i = 1, 2, . . . , p, (12)

by the MT τ (z) in (1).
From Lemma 1, we have the following results. The

eigenvalues of Ã are also called the poles of LTI system
(I, Ā, B̄, C̄, D̄).

Theorem 1 The following statements hold.
1) The transformed poles zi, i = 1, 2, . . . , p, in (12) are
the eigenvalues of Ã in (2).

2) The transformed pole α = − d
c
from in�nity is the re-

peated eigenvalue of Ã with n− p multiplicities.

Proof. (1) As the transformed poles zi �= − d
c
, i =

1, 2, . . . , p, are �nite, we have

det

(
1

czi + d
In

)
�= 0, i = 1, 2, . . . , p. (13)

From (12) and (13), and together with det (siE −A) = 0,
it follows that

det (siE −A)

= det (aE − cA) det

(
1

czi + d
In

)
det

(
ziI − Ã

)

= 0, (14)

which further implies

det
(
ziI − Ã

)
= 0,
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due to det (aE − cA) �= 0 in Assumption 1. Thus, zi, i =
1, 2, . . . , p, are eigenvalues of Ã.
(2) It is pretty easy to show that

det
(
αI − Ã

)
= det ((bc− ad)E) = 0, (15)

due to the singularity of E and bc − ad �= 0. So, α is an
eigenvalue of Ã. Furthermore, the multiplicity of the eigen-
value α is n − p. If not, assume that Ã has another �nite
eigenvalue z′0 except zi, i = 1, 2, . . . , p in (12) and α. Then
s′0 = τ (z′0, a, b, c, d) , is a �nite pole of DS (E,A,B,C,D)
from (14),which gives that DS (E,A,B,C,D) has p+1 �-
nite poles. This is obviously wrong. Therefore, Ã has eigen-
value α with n− p multiplicities.

Remark 3 From Theorem 1, we know that whether DS is
impulse-free (causal) or not, Ã always has repeated eigen-
values α with n − p multiplicities. However, the properties
of eigenvectors associated with eigenvalueα can distinguish
between impulse-free (causal) DS and impulse (noncausal)
DS, shown in Theorem 2.

So, together with Theorem 1 and Corollary 1, we have the
following corollary for the stability test of continuous-time
DS as open left half plane is changed to the open unit disk
by the typical MT in (6). Due to the compact unit disk, the
analysis of the poles is very handy under the case of wide
range of the poles of continuous-time DS. Better estimation
of the range of the poles helps to speed up the simulation
when large scale DS is considered.

Corollary 2 Continuous-time DS (E,A,B,C,D) is stable
if and only if Ā in (7) has n−p repeated eigenvalues−1 and
the others of Ā belong to the open disk |z| < 1.

3.2 Impulse (Noncausality)
Theorem 2 We have the following conclusions.
1) DS (E,A,B,C,D) has impulse (is noncausal) if and
only if the eigenvectors, pi, i = 1, 2, . . . n − p, associ-
ated with the repeated eigenvalues α

(
Ãpi = αpi

)
are

linearly dependent.
2) DS (E,A,B,C,D) is impulse-free (causal) if and only
if pi, i = 1, 2, . . . n− p, are linearly independent.

Proof. (1)

Ãpi = αpi, i = 1, . . . , n− p,

gives
α (aE − cA) pi = (dA− bE) pi,

which results in
bc− ad

c
Epi = 0.

Due to ad − bc �= 0, it follows that Epi = 0.Thus, pi, i =
1, 2, . . . n−p, are also the eigenvectors ofE associated with
eigenvalue 0. From (11), we have

P−1

[
Ip 0
0 N

]
Q−1pi = 0,

which further gives

pi = Q

[
0

pNi

]
, NpNi

= 0, i = 1, . . . , n− p, (16)

with NVN = 0, where

VN =

[ [
0

pN1

]
· · ·

[
0

pNn−p

] ]
.

It follows that VN belongs the null space of N and

rank (VN ) = n− p− rank (N) ≤ n− p

due toN �= 0. Therefore, pNi
, i = 1, 2, . . . n−p, are linearly

dependent.
Conversely, the linear dependence of pi, i = 1, 2, . . . n−

p, implies the linear dependence of pNi
, i = 1, 2, . . . n −

p. So, N is not invertible and N �= 0. So the DS
(E,A,B,C,D) has impulse.
(2) The proof can be implied from the proof of (1).

Remark 4 The connection between the properties of �nite
poles of the transformed LTI system and the test of impulse
(noncausality) is �rst established, which overcomes the dif-
�culties for dealing with poles at in�nity. This new insight
provides a fresh tool on the test of impulse (noncausality).

From the results in [6], the impulse (noncausality) analy-
sis is enriched by the results in Theorem 2, which shown in
the following corollary. Methods 2 and 3 are not practical as
all s ∈ C are needed to be checked. Method 4 also fails when
A is close to be singular, which can be avoided by free choic-
es of a, b, c and d in (1) by the proposed method. Methods 5
and 6 also fails in the some cases, which are shown Example
2 in Section 5.

Corollary 3 The following statements are equivalent:
1) DS (E,A,B,C,D) is impulse-free;
2) If there exist a vector v ∈ R

n and a vector w ∈ R
n

such that (sE −A) v = Ew, for all s ∈ C then v = 0;
3) If there exist a vector v ∈ Rn and a vector w ∈ Rn

such that Ev = 0 and Av = Ew, for all s ∈ C then
v = 0;

4)
(
A−1ImE

) ∩KerE = {0}.
5) The block A22 either is nonsingular or vanishes, where

WET =

[
Iq 0
0 0

]
, WAT =

[
A11 A12

A21 A22

]
,

whereW and T are invertible matrices.
6) rank

[
0 E

E A

]
= n+ rankE;

7) pi, i = 1, 2, . . . n − p, associated with the repeated
eigenvalues α for matrix Ã are linearly independent.

The index of matrix pencil {E,A} is also implied from
the properties of vectors pi, i = 1, 2, . . . n− p, which can be
further applied to the passivity test for DS [1, 19, 30].

Corollary 4 The index of DS (E,A,B,C,D), h, is equiv-
alent to the maximum number of proportional vectors of pi,
i = 1, 2, . . . n− p.

Proof. For matrix Ã, there exists a matrix Vα such that
ÃVα = VαDα, where

Dα = diag (α, . . . , α) ,

and the columns of Vα are the eigenvectors associated with
the repeated eigenvalue a. From (16), Vα can be expressed
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as

Vα =
[
p1 · · · pn−p

]

= Q

[ [
0

pN1

]
· · ·

[
0

pNn−p

] ]
.

Now we need to prove that some of pNi
are proportional.

Firstly for matrix N, there exists a similarity transformation
T satisfying

TNT−1 =

⎡
⎢⎣

N1 0
. . .

0 Nr

⎤
⎥⎦ ,

where

Ni =

⎡
⎢⎢⎢⎢⎣

0 1 0
. . . . . .

. . . 1
0 0

⎤
⎥⎥⎥⎥⎦ ∈ RrNi

×rNi ,

has ones on the superdiagonal and is called a nilpotent Jor-

dan block with
r∑

i=1

rNi
= n− p. It is clear that the nilpotent

index forNi is rNi
, i = 1, 2, . . . r, and the eigenvectors pNi

,

i = 1, 2, . . . n− p, associated with the repeated eigenvalue 0
of matrix Ni are

pNi
= k

[
1 0 · · · 0

]T ∈ RrNi
×1, k �= 0,

which follows that the columns of

VNi
=

[
pNi

· · · pNi

] ∈ RrNi
×rNi

are proportional with NiVNi
= 0.Moreover, we get

Vα = Q

[
I 0
0 T−1

] [
ṼN1

· · · ṼNr

]
,

where

ṼNi
=

[ [
0
pNi

]
· · ·

[
0
pNi

] ]
, i = 1, . . . , r.

which shows that the columns of Vα are proportional. So,
we have

h = max
i

rNi
= max

i
{row(ṼNi

)}.

i.e. the maximum number of columns, which are proportion-
al.

4 Application to Regularity, Controllability and
Observability

4.1 Regularity
Corollary 5 DS (E,A,B,C,D) is regular if and only if the
LTI system (I, Ã, B̃, C̃, D̃) is regular.

Proof. Due to det (aE − cA) �= 0, if there exists a �nite
scalar s0 �= a

c
such that det (s0E −A) �= 0, then

z0 = τ−1 (s0, a, b, c, d) =
s0d− b

−s0c+ a
,

is �nite and
det

(
1

cz0 + d
In

)
�= 0.

From (14), it follows that

det
(
z0I − Ã

)
=

det (s0E −A)

det (aE − cA) det
(

1

cz0+d
In

) �= 0.

So, LTI system (I, Ã, B̃, C̃, D̃) is regular.
Conversely, if there exists a �nite scalar z0 �= α, such that

det
(
z0I − Ã

)
�= 0, then we have

det (s0E −A) = det (τ (z0)E −A) �= 0.

The conclusion holds.

4.2 Controllability
Corollary 6 DS (E,A,B,C,D) is controllable if and only
if the LTI system (I, Ã, B̃, C̃, D̃) is controllable.

Proof. The LTI system (I, Ã, B̃, C̃, D̃) is controllable if and
only if for any �nite z ∈ C,

rank
[
zIn − Ã B̃

]
= rank

[
(az + b)E − (cz + d)A B

]
= n,

So if cz + d �= 0, we have

rank
[
zIn − Ã B̃

]
= rank

[ (
az+b
cz+d

E −A
)

B
]
= n,

which results in

rank
[
sE −A B

]
= n, ∀s ∈ C, s �nite. (17)

If cz + d = 0, it is easy to obtain that z = α, and
rank

[
(aα+ b)E B

]
= rank

[
E B

]
= n, togeth-

er with (17) gives the controllability of DS (E,A,B,C,D)
[3].

4.3 Observability
Corollary 7 The observability of DS (E,A,B,C,D) is e-
quivalent to the controllability of LTI system (I,A,B, C,D),
where

A =
(
aET − cAT

)−1 (
dAT − bET

)
,

B =
(
aET − cAT

)−1
CT ,

C = (ad− bc)BT
(
aET − cAT

)−1
ET ,

D = cBT
(
aET − cAT

)−1
CT +DT .

Proof. DS (E,A,B,C,D) is observable if and only if DS
(ET , AT , CT , BT , DT ) is controllable. From Corollary 6,
DS (ET , AT , CT , BT , DT ) is controllable if and only if the
LTI system (I,A,B, C,D) is controllable. This completes
the proof.

5 Numerical Examples
Example 1: A very simple example is given to show

the ways to check the properties of DS by the transformed
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LTI system. The system matrices of a continuous-time DS
(E,A,B,C,D) are given by

E =

⎡
⎢⎢⎣

3.1326 0.1529 2.6503 −1.9745
−1.3168 0.9076 −1.6281 1.3934
−2.2474 −0.1597 −1.7871 2.2033
0.1058 −0.0061 0.0761 −0.2531

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

−12.3211 −0.5476 −12.3852 −1.3960
3.8224 −3.8348 6.4578 −0.0443
10.1039 0.7359 10.2075 1.0874
−0.5296 0.0220 −0.5178 0.9484

⎤
⎥⎥⎦ ,

B =

[
1 0 1 1
0 1 0 1

]T
, D = 0,

C =

[
4.0132 0.5475 4.2020 0.6321
0.4729 0.1873 0.5194 1.7128

]
.

For E and A, there exist

P =

⎡
⎢⎢⎣

2.0010 0.2483 1.7638 0.2245
0.2483 0.1489 0.1502 0.0384
1.7638 0.1502 2.2880 0.3692
0.2245 0.0384 0.3692 1.6744

⎤
⎥⎥⎦ ,

Q =

⎡
⎢⎢⎣

1.9547 −1.8721 −1.3984 0.0892
−1.8721 8.9893 0.8771 −0.1485
−1.3984 0.8771 1.4833 −0.1597
0.0892 −0.1485 −0.1597 0.6239

⎤
⎥⎥⎦ ,

such that

PEQ =

⎡
⎣ I2 0

0

[
0 1
0 0

] ⎤
⎦ ,

PAQ = diag(−3,−4, 1, 1).

It is clear that DS (E,A,B,C,D) is stable and has impulse.
The index of DS (E,A,B,C,D) is 2. Furthermore, due to

rank
[
A AB A2B A3B

]
= 4,

rank
[
E B

]
= 4,

and

rank
[
CT (CA)

T (
CA2

)T (
CA3

)T ]T
= 4,

rank
[
ET CT

]T
= 4,

continuous-time DS (E,A,B,C,D) is controllable and ob-
servable.
Using the typical MT in (6), we can get the system matri-

ces of the transformed LTI system (I, Ā, B̄, C̄, D̄)

Ā =

⎡
⎢⎢⎣

1.3977 0.2386 2.6441 4.8736
−1.3739 −0.7642 −1.7587 −3.0093
−1.9780 −0.2353 −3.2759 −5.1107
0.1462 0.0145 0.1877 −0.4575

⎤
⎥⎥⎦ ,

B̄ =

⎡
⎢⎢⎣

10.9377 7.6183
−6.6118 −4.4193
−10.8779 −7.6427
−0.2708 −0.4783

⎤
⎥⎥⎦ ,

C̄ =

[
0.6508 0.1070 0.2035 −3.2211
0.0993 0.0596 0.0601 0.0154

]
,

D̄ =

[ −5.6044 −4.2627
−2.1807 −2.0145

]
.

• The eigenvalues of Ā are −1, −1, −0.5 and −0.6.
From Corollary 2, continuous-timeDS (E,A,B,C,D)
is stable.

• The eigenvectors associated with pole α = −1 are

p1 =
[
0.6285 −0.3942 −0.6667 0.0718

]T
,

p2 =
[ −0.6285 0.3942 0.6667 −0.0718

]T
,

which are linearly dependent. This shows that DS
(E,A,B,C,D) has impulse from Theorem 2. More-
over, the index of DS (E,A,B,C,D) is 2 as two eigen-
vectors p1 and p2 are linearly dependent.

• It is very easy to obtain that

rank
[
Ā ĀB̄ Ā2B̄ Ā3B̄

]
= 4,

which results in that DS (E,A,B,C,D) is controllable
from Corollary 6.

• The LTI system (I,A,B, C,D) from Corollary 7 is ob-
servable from

rank
[
CT (CA)

T (CA2
)T (CA3

)T ]T
= 4,

where

A =

⎡
⎢⎢⎣

1.3977 −1.3739 −1.9780 0.1462
0.2386 −0.7642 −0.2353 0.0145
2.6441 −1.7587 −3.2759 0.1877
4.8736 −3.0093 −5.1107 −0.4575

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

−1.4384 −0.1748
−0.0967 −0.0086
−2.1862 −0.3392
−1.9798 −1.6667

⎤
⎥⎥⎦ ,

C =

[
9.9153 −6.1419 −9.3647 0.8764
7.7562 −4.5322 −7.6219 0.7447

]
,

D =

[ −5.6044 −2.1807
−4.2627 −2.0145

]
,

So we can get that DS (E,A,B,C,D) is observable.
Example 2: This example will show that methods 5 and

6 in Corollary 3 fail to analyze the impulse (noncausality)
when E and A are

E =

[
I3 0
0 0

]
,

A =

[
400I3 0
0 10−8diag (0.1, 1, 0.4)

]
.

It is obvious that it is impulse-free. However,

A22 = 10−8diag (0.1, 1, 0.4) ,

is close to be singular due to det(A22) = 4 × 10−26, which
gives the impulse conclusion from method 5 in Corollary 3.
And

rank
[

0 E

E A

]
= 6 < n+ rankE = 9,

also gives the same conclusion from method 6 in Corollary
3. However, by the typical MT, we have

Ā =

[ −1.005I3 0
0 −I3

]
.

It is easy to show that the eigenvectors associated with −1
are linearly independent, which gives the impulse-free con-
clusion.
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6 Conclusions

The MT is used to transform DSs to LTI systems, which
permits us to use the established techniques for the LTI sys-
tems to study DSs. The connection between the properties
of DSs and the properties of the transformed LTI systems is
�rst found. The poles at in�nity are changed to �nite poles
in the transformed LTI systems for better using their proper-
ties. This facilitates the analysis of DSs as the existence of
poles at in�nity makes them different from LTI system. The
dependence of eigenvectors associated with the �nite poles
transforming from the poles at in�nity provides a novel so-
lution for the test of the impulse (noncausality). The control-
lability, observability and regularity also can be checked by
the corresponding counterparts of the transformed LTI sys-
tem. Further attention will focus on the impulse control, pas-
sivity test and stabilization in terms of the transformed LTI
system, and engineering application with more realistic case
studies as impulse (noncausality) is not allowed for practical
system.
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